
Inductive Logic 
Programming

Ganesh Ramakrishnan

Adjunct Professor, CSE Dept

&

IBM India Research Labs, Delhi



What is ILP

� Inductive Logic Programming?

OR

� Inductive                 Logic Programming?



Machine Learning
Programs that hypothesize general descriptions from sample data 



Logic Programming

� Study of using symbolic logic as a programming 
language 

� Specification = Programming 



Logical Reasoning: 3 types

� Given preconditions α, post-conditions β and 
the rule R1: α ∴ β (α therefore β).
� Deduction means determining β. It is using the 

rule and its preconditions to make a conclusion 

� Induction means determining R1. It is learning 
R1 after numerous examples of β and α. 

� Abduction means determining α. It is using the 
post-condition and the rule to assume that the 
precondition could explain the postcondition (β ∧ 
R1 ⇒ α). 



First Order Logic: Primer



First-Order Logic: Primer

� Constant: Objects in the domain
E.g.: Anna, 

� Variable: Ranges over objects
E.g.: x

� Functions: Takes a tuple of objects and returns an 
object
E.g.: MotherOf(x), Friends(x, y)

� Predicates:  Represents either the property of an 
object or relationship between objects
E.g.: IsTall(x), Friends(x, y)



First-Order Logic

� Terms: A constant, variable or functional expression (a function 
applied to a tuple of terms)

� Atoms: Predicate symbol applied to a tuple of terms 

� son(spock, sarek)

� Clause: Statements of the form 

� Definite clause: Head has 1 atom without a negation and body 
has no negation.

� Datalog = First Order Logic – Function symbols
� Term Datalog was coined in the mid 1980's by a group of researchers interested in 

database theory. 



First-Order Logic

� World/Domain (Hebrand Interpretation):
Assignment of truth values to all ground predicates

� If we take all predicates and replace variables with constants, 
we will get a large number of Boolean variables. 

� Construction of world is concerned with truth assignments to 
these Boolean variables.

� Later, we will be interested in probability distributions over 
these assignments.

� Propositionalization:
Create all ground atoms and clauses. The resultant set 
is called the Herbrand Universe



Model Theory

� (Herbrand) Model
� An interpretation that gives the value TRUE for a formula is called a 

model for that formula 

� Valid Formulae
� Formulae for which every interpretation is a model are said to be valid

� Model Theory
� Concerned with attributing meaning to logical sentences



Model Theory (contd)

� Satisfiability

� A formula is said to be satisfiable if it has at least 
1 model. Otherwise it is said to be unsatisfiable

� The set of all Herbrand models for a definite-
clause program P is partially ordered by C 
and forms a lattice. 



Reasoning: Primer



Deduction Theorem

Implication is preserved if we remove any sentence/formula from 
the right and make it a condition



Proof Procedures In Logic

� Concern

� Searching spaces efficiently, keeping in mind 
soundness and completeness

� Soundness

� Anything that is derived should be a logical 
consequence

� Completeness

� Any logical consequence should be derivable



Computation and Search Rules

� Typical logic problem: Solve 
queries of the form l1, l2,·· ., 
ln? where the li are literals

� Two issues:
� Which literaI of the li shouId be 

solved first?

The rule governing this is called 
the computation rule 
(determines a tree of choices)

� Which clause should be 
selected first, when more than 
one can be used to solve the 
literal selected? 

� The rule governing this is 
called the search rule 
(determines the order in which this 

tree is searched )



Resolution and Unification

� Given: Program P and a query: l1, l2, ... , lj-1, lj,... ln ?

1. Use the computation rule to select lj
2. Use the search rule to select a clause: lj ← b1, b2, ... bk

in P that can solve lj. If none found, STOP. 

3. Solve the query: l1, l2, ... , lj-1, b1, b2,…..bk,….ln ?  
� The step of replacing the literal selected with the literaIs

comprising the body of the clause is an application of the rule of 
inference known as resolution

� The head of the clause selected does not have to 
match exactly the literal selected. It will be enough if 
the two can unify

� Unification: There is some substitution of variables for 
terms in the two literals that makes them the same

� Unification is “join” with respect to a specialisation order

� E.g: f(g(A), A) = f(B, xyz) : Unifies A with the atom xyz and B with 
the term g(xyz) 



Example for Datalog



Example for Datalog



Computation and search rules: 
completeness 

� One way to search the trees obtained so far is 
depth-first, left-to-right 

- Since clauses that appear first (reading top to bottom) in 
the program have been drawn on the left, this search rule 
selects clauses in order of appearance in the program 

� Most logic programs are executed using the 
following:

- Computation rule. Leftmost literal first 

- Search rule. Depth first search for clauses in order of 
appearance 



Inference in First-Order Logic

� Traditionally done by theorem proving
� E.g.: Prolog uses resolution

� More recently…..
� Propositionalization followed by model checking turns out to 

be much faster

� Comes as a surprise, because expected to be inefficient, 
since not “lifted”

� However, in many domains, it is very fast. 

� Model checking: Satisfiability testing
� Two main families of satisfiability solvers:

� Backtracking (Typical example is DPLL)

� Stochastic local search (Typical example is WalkSAT)



Satisfiability

� Input:

� Set of clauses

� Convert KB to conjunctive normal form (CNF) after 
propositionalization

� Every propositional formula can be converted into an equivalent
formula that is in CNF using rules about logical equivalences: 
� The Double Negative Law

� The De Morgan's laws

� The distributive Law. 

� Output:

� Truth assignment that satisfies all clauses, OR 

� Failure (if no truth assignment exists)

� The paradigmatic NP-complete problem

� Solution: Search



Satisfiability

� Parameters:
� #Clauses: More clauses give more constraints

� #Variables: More variables give more freedom

� Key point:
� Most SAT problems are under-constrained and actually 

easy

� In many cases, any random solution satisfies all clauses

� Though exponentially hard in worst case

� Hard region: Over-constrained
� Small region of parameter space

� Narrow range of #Clauses / #Variables 

� For random 3-sat problems, the hard region is approx for 
#Clauses / #Variables > 4 (area of research)



Backtracking

� Basic Idea:

� Assign truth values by depth-first search

1. Start off with no truth values assigned

� Assigning a variable deletes false literals
and satisfied clauses

� Empty set of clauses: Success

� Empty clause: Failure

� Additional improvements:

� Unit propagation (unit clause forces truth value)

� Pure literals (same truth value everywhere)



a

DPLL example

C1:(a ∨ b)    
C2:(¬a ∨ ¬b)  
C3:(a ∨ ¬c)     
C4:(c ∨ d ∨ e)
C5:(d ∨ ¬e)   
C6:(¬d ∨ ¬f)  
C7:(f ∨ e)
C8:(¬f ∨ ¬e)

false

true

a

a

a=false by branching

a=false by pure symbol

a=true by an unit clause

Legend



DPLL example

C1:(a ∨ b)    
C2:(¬a ∨ ¬b)  
C3:(a ∨ ¬c)     
C4:(c ∨ d ∨ e)
C5:(d ∨ ¬e)   
C6:(¬d ∨ ¬f)  
C7:(f ∨ e)
C8:(¬f ∨ ¬e)

a

false

true

Pure Symbol ?

Yes, b in C1 is pureb No pure symbol

Unit Clause?

Yes C3 is an unit 
clause

c

No unit clause

d

C4 is a unit clause

e

C5 is unsatisfied, 
Early termination

Backtrack upto the
last branching:     

d = false
branching

pure symbol

unit clause



DPLL example

C1:(a ∨ b)    
C2:(¬a ∨ ¬b)  
C3:(a ∨ ¬c)     
C4:(c ∨ d ∨ e)
C5:(d ∨ ¬e)   
C6:(¬d ∨ ¬f)  
C7:(f ∨ e)
C8:(¬f ∨ ¬e)

a

b

c

d C6 is an unit 
clausef

e is pure

e

Formula
Satisfied!

false

true

branching

pure symbol

unit clause



Exercise

� Find a satisfying assignment using DPLL

(¬a ∨ b) (¬a∨ ¬b ∨ c)

(¬c ∨ d ∨ ¬e) (a ∨ c)

(¬d ∨ ¬f) (a ∨ c)

(e ∨ ¬f)    



The DPLL Algorithm

if CNF is empty then
return true

else if CNF contains an empty clause then
return false

else if CNF contains a pure literal x then
return DPLL(CNF(x))

else if CNF contains a unit clause {u} then
return DPLL(CNF(u))

else
choose a variable x that appears in CNF

if DPLL(CNF(x)) = true then return true
else return DPLL(CNF(¬x))



Stochastic Local Search

� Uses complete assignments instead of partial

� Start with random state

� Flip variables in unsatisfied clauses

� Hill-climbing: Minimize # unsatisfied clauses

� Avoid local minima: Random flips

� Multiple restarts



The WalkSAT Algorithm

for i ← 1 to max-tries do
solution = random truth assignment
for j ← 1 to max-flips do

if all clauses satisfied then
return solution

c ← random unsatisfied clause
with probability p

flip a random variable in c
else

flip variable in c that maximizes
number of satisfied clauses

return failure



Rule Induction



Rule Induction

� Given: Set of positive and negative examples of 
some concept
� Example: (x1, x2, … , xn, y)

� y: concept (Boolean)

� x1, x2, … , xn: attributes (assume Boolean)

� Goal: Induce a set of rules that cover all positive 
examples and no negative ones
� Rule: xa ^ xb ^ … ⇒⇒⇒⇒ y (xa: Literal, i.e., xi or its negation)

� Same as Horn clause:  Body ⇒⇒⇒⇒ Head

� Rule r covers example x iff x satisfies body of r

� Eval(r): Accuracy, info. gain, coverage, support, etc.



Learning a Single Rule

head ← y

body ← Ø

repeat
for each literal x

rx ← r with x added to body

Eval(rx)

body ← body ^ best x
until no x improves Eval(r)

return r



Learning a Set of Rules

R ← Ø
S ← examples

repeat
learn a single rule r

R ← R U { r }
S ← S − positive examples covered by r

until S = Ø
return R



First-Order Rule Induction

� y and xi are now predicates with arguments
E.g.: y is Ancestor(x,y), xi is Parent(x,y)

� Literals to add are predicates or their negations

� Literal to add must include at least one variable
already appearing in rule

� Adding a literal changes # groundings of rule
E.g.: Ancestor(x,z) ^ Parent(z,y) ⇒⇒⇒⇒ Ancestor(x,y)

� Eval(r) must take this into account
E.g.: Multiply by # positive groundings of rule

still covered after adding literal



“Inductive” Logic Programming



More “Interesting” ILP



Induction by inverting deduction

� First investigated in depth mathematically by the 19th century 
political economist and philosopher of science Stanley Jevons

� From Jevons' book on inductive inference:

� Induction is, in fact, the inverse operation of deduction, and 
cannot  be conceived to exist without the corresponding 
operation, so that the question of relative importance cannot 
arise. Who thinks of asking whether addition or subtraction is the 
more important process in arithmetic? But at the same time much 
difference in difficulty may exist between a direct and inverse 
operation; the integral calculus, for instance, is infinitely more 
difficult than the differential calculus of which it is the inverse. 
Similarly, it must be allowed that inductive investigations are of a 
far higher degree of difficulty and complexity than any questions 
of deduction; ... 



Hypothesis formation 
and justification 

� Abduction. Process of hypothesis formation. 

� Justification. The degree of belief assigned 
to a hypothesis given a certain amount of 
evidence. 



Specific logical setting for abduction 



Acknowledgement

Some Slides borrowed from 

� Ashwin Srinivasan

� Pedro Domingos tutorial on Statistical Relational 

Learning at ICML’07


