Lecture 17 – Theorems in A* (admissibility, Better performance of more informed heuristic, Effect of Monotone Restriction or Triangular Inequality)

[Main Ref: Principle of AI by N.J. Nilsson]
General Graph search Algorithm

Graph $G = (V, E)$
1) Open List : S \((\varnothing, 0)\)
 Closed list : \(\varnothing\)

2) OL : A\(^{(S,1)}\), B\(^{(S,3)}\), C\(^{(S,10)}\)
 CL : S

3) OL : B\(^{(S,3)}\), C\(^{(S,10)}\), D\(^{(A,6)}\)
 CL : S, A

4) OL : C\(^{(S,10)}\), D\(^{(A,6)}\), E\(^{(B,7)}\)
 CL : S, A, B

5) OL : D\(^{(A,6)}\), E\(^{(B,7)}\)
 CL : S, A, B, C

6) OL : E\(^{(B,7)}\), F\(^{(D,8)}\), G\(^{(D,9)}\)
 CL : S, A, B, C, D

7) OL : F\(^{(D,8)}\), G\(^{(D,9)}\)
 CL : S, A, B, C, D, E

8) OL : G\(^{(D,9)}\)
 CL : S, A, B, C, D, E, F

9) OL : \(\varnothing\)
 CL : S, A, B, C, D, E, F, G
Steps of GGS
(*principles of AI, Nilsson,*)

- 1. Create a search graph G, consisting solely of the start node S; put S on a list called $OPEN$.
- 2. Create a list called $CLOSED$ that is initially empty.
- 3. Loop: if $OPEN$ is empty, exit with failure.
- 4. Select the first node on $OPEN$, remove from $OPEN$ and put on $CLOSED$, call this node n.
- 5. if n is the goal node, exit with the solution obtained by tracing a path along the pointers from n to s in G. (Pointers are established in step 7).
- 6. Expand node n, generating the set M of its successors that are not ancestors of n. Install these memes of M as successors of n in G.
GGS steps (contd.)

7. Establish a pointer to \(n \) from those members of \(M \) that were not already in \(G \) (i.e., not already on either \textit{OPEN} or \textit{CLOSED}). Add these members of \(M \) to \textit{OPEN}. For each member of \(M \) that was already on \textit{OPEN} or \textit{CLOSED}, decide whether or not to redirect its pointer to \(n \). For each member of \(M \) already on \textit{CLOSED}, decide for each of its descendents in \(G \) whether or not to redirect its pointer.

8. Reorder the list \textit{OPEN} using some strategy.

9. Go \textit{LOOP}.
Algorithm A

- A function f is maintained with each node
 \[f(n) = g(n) + h(n), \quad n \text{ is the node in the open list} \]
- Node chosen for expansion is the one with least f value
Algorithm A*

- One of the most important advances in AI
- \(g(n) \) = least cost path to \(n \) from \(S \) found so far
- \(h(n) \leq h^*(n) \) where \(h^*(n) \) is the actual cost of optimal path to \(G \) (node to be found) from \(n \)

“Optimism leads to optimality”
A* Algorithm - Properties

- **Admissibility**: An algorithm is called admissible if it always terminates and terminates in optimal path.
- **Theorem**: A* is admissible.
- **Lemma**: Any time before A* terminates there exists on OL a node n such that $f(n) \leq f^*(s)$
- **Observation**: For optimal path $s \rightarrow n_1 \rightarrow n_2 \rightarrow ... \rightarrow g$
 1. $h^*(g) = 0$, $g^*(s)=0$ and
 2. $f^*(s) = f^*(n_1) = f^*(n_2) = f^*(n_3)... = f^*(g)$
A* Properties (contd.)

\[f^*(n_i) = f^*(s), \quad n_i \neq s \text{ and } n_i \neq g \]

Following set of equations show the above equality:

\[f^*(n_i) = g^*(n_i) + h^*(n_i) \]
\[f^*(n_{i+1}) = g^*(n_{i+1}) + h^*(n_{i+1}) \]
\[g^*(n_{i+1}) = g^*(n_i) + c(n_i, n_{i+1}) \]
\[h^*(n_{i+1}) = h^*(n_i) - c(n_i, n_{i+1}) \]

Above equations hold since the path is optimal.
Admissibility of A*

A* always terminates finding an optimal path to the goal if such a path exists.

Intuition

1) In the open list there always exists a node \(n \) such that \(f(n) \leq f^*(S) \).

2) If A* does not terminate, the \(f \) value of the nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate
Lemma
Any time before A* terminates there exists in the open list a node n' such that $f(n') \leq f^*(S)$

For any node n_i on optimal path,
\[f(n_i) = g(n_i) + h(n_i) \leq g^*(n_i) + h^*(n_i) \]
Also $f^*(n_i) = f^*(S)$
Let n' be the first node in the optimal path that is in OL. Since all parents of n' have gone to CL,
\[g(n') = g^*(n') \text{ and } h(n') \leq h^*(n') \]
\[\Rightarrow f(n') \leq f^*(S) \]
If A* does not terminate

Let e be the least cost of all arcs in the search graph.

Then $g(n) \geq e \cdot l(n)$ where $l(n) =$ # of arcs in the path from S to n found so far. If A* does not terminate, $g(n)$ and hence $f(n) = g(n) + h(n)$ [$h(n) \geq 0$] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.
2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof
Suppose the path formed is not optimal
Let G be expanded in a non-optimal path.
At the point of expansion of G,

\[f(G) = g(G) + h(G) \]
\[= g(G) + 0 \]
\[> g^*(G) = g^*(S) + h^*(S) \]
\[= f^*(S) \ [f^*(S) = \text{cost of optimal path}] \]

This is a contradiction
So path should be optimal
Better Heuristic Performs Better
Theorem

A version A_2^* of A^* that has a “better” heuristic than another version A_1^* of A^* performs at least “as well as” A_1^*

Meaning of “better”
$h_2(n) > h_1(n)$ for all n

Meaning of “as well as”
A_1^* expands at least all the nodes of A_2^*

For all nodes n, except the goal node
Proof by induction on the search tree of A_2^*.

A^* on termination carves out a tree out of G

Induction

on the depth k of the search tree of A_2^*. A_1^* before termination expands all the nodes of depth k in the search tree of A_2^*.

$k=0$. True since start node S is expanded by both

Suppose A_1^* terminates without expanding a node n at depth $(k+1)$ of A_2^* search tree.

Since A_1^* has seen all the parents of n seen by A_2^*

$g_1(n) \leq g_2(n) \quad (1)$
Since A_1^* has terminated without expanding n,
\[f_1(n) \geq f^*(S) \quad (2) \]

Any node whose f value is strictly less than $f^*(S)$ has to be expanded.

Since A_2^* has expanded n
\[f_2(n) \leq f^*(S) \quad (3) \]

From (1), (2), and (3)
\[h_1(n) \geq h_2(n) \] which is a contradiction. Therefore, A_1^* has to expand all nodes that A_2^* has expanded.

Exercise

If better means $h_2(n) > h_1(n)$ for some n and $h_2(n) = h_1(n)$ for others, then Can you prove the result?
Monotone Restriction or Triangular Inequality of the Heuristic Function

Statement:
if monotone restriction (also called triangular inequality) is satisfied, then for nodes in the closed list, redirection of parent pointer is not necessary.

In other words, if any node 'n' is chosen for expansion from the open list, then \(g(n) = g(n^*) \), where \(g(n) \) is the cost of the path from the start node 's' to 'n' at that point of the search when 'n' is chosen, and \(g(n^*) \) is the cost of the optimal path from 's' to 'n'.

A heuristic \(h(p) \) is said to satisfy the monotone restriction, if for all 'p', \(h(p) \leq h(p_c) + \text{cost}(p, p_c) \), where 'p_c' is the child of 'p'.

Proof

- Let $S-N_1- N_2- N_3- N_4... N_m ...N_k$ be an optimal path from S to N_k (all of which might or might not have been explored).
- Let N_m be the last node on this path which is on the open list, i.e., all the ancestors from S up to N_{m-1} are in the closed list.
Proof (contd.)

- For every node \(N_p \) on the optimal path,
 - \(g^*(N_p) + h(N_p) \leq g^*(N_p) + C(N_p, N_{p+1}) + h(N_{p+1}) \), by monotone restriction
 - \(g^*(N_p) + h(N_p) \leq g^*(N_{p+1}) + h(N_{p+1}) \) on the optimal path
 - \(g^*(N_m) + h(N_m) \leq g^*(N_k) + h(N_k) \) by transitivity

- Since all ancestors of \(N_m \) in the optimal path are in the closed list,
 - \(g(N_m) = g^*(N_m) \)
 - \(f(N_m) = g(N_m) + h(N_m) = g^*(N_m) + h(N_m) \leq g^*(N_k) + h(N_k) \)
Proof (contd.)

- For every node N_p on the optimal path,
 - $g^*(N_p) + h(N_p) \leq g^*(N_p) + C(N_p, N_{p+1}) + h(N_{p+1})$, by monotone restriction
 - $g^*(N_p) + h(N_p) \leq g^*(N_{p+1}) + h(N_{p+1})$ on the optimal path
 - $g^*(N_m) + h(N_m) \leq g^*(N_k) + h(N_k)$ by transitivity

- Since all ancestors of N_m in the optimal path are in the closed list,
 - $g(N_m) = g^*(N_m)$
 - $f(N_m) = g(N_m) + h(N_m) = g^*(N_m) + h(N_m) \leq g^*(N_k) + h(N_k)$
Proof (contd.)

- Now if N_k is chosen in preference to N_m,
 - $f(N_k) \leq f(N_m)$
 - $g(N_k) + h(N_k) \leq g(N_m) + h(N_m)$
 - $= g^*(N_m) + h(N_m)$
 - $\leq g^*((N_k) + h(N_k)$
 - Hence, $g(N_k) \leq g^*(N_k)$
- But $g(N_k) \geq g^*(N_k)$, by definition
- Hence $g(N_k) = g^*(N_k)$ -- proved
Relationship between Monotone Restriction and Admissibility

- MR => Admissibility, but not vice versa
 - i.e., if a heuristic $h(p)$ satisfies the monotone restriction, for all p', $h(p) \leq h(p_c) + \text{cost}(p, p_c)$, where p_c is the child of p', then $h^*(p) \leq h^*(p)$, for all p
Forward proof

- Let $p \rightarrow n_1 \rightarrow n_2 \rightarrow n_3 \rightarrow \ldots n_{k-1} \rightarrow G = n_k$, be the optimal path from p to G
- By definition, $h(G) = 0$
- Since $p \rightarrow n_1 \rightarrow n_2 \rightarrow n_3 \rightarrow \ldots n_{k-1} \rightarrow G = n_k$ is the optimal path from p to G,
- $C(n_1, n_2) + c(n_2, n_3) + \ldots + c(n_{k-1}, n_k) = h^*(p)$
Forward proof (contd.)

Now by M.R.

\[h(p) \leq h(n_1) + c(p, n_1) \]
\[h(n_1) \leq h(n_2) + c(n_1, n_2) \]
\[h(n_2) \leq h(n_3) + c(n_2, n_3) \]
\[h(n_3) \leq h(n_4) + c(n_3, n_4) \]

... \[h(n_{k-1}) \leq h(G) + c(n_{k-1}, G) \]

\[h(G) = 0; \text{ summing the inequalities,} \]
\[h(p) \leq C(n_1, n_2) + c(n_2, n_3) + ... + c(n_{k-1}, n_k) = h^*(p); \text{ proved} \]

Backward proof, by producing a counter example.
Lab assignment

- Implement A* algorithm for the following problems:
 - 8 puzzle
 - Missionaries and Cannibals
 - Robotic Blocks world

- Specifications:
 - Try different heuristics and compare with baseline case, *i.e.*, the breadth first search.
 - Violate the condition $h \leq h^*$. See if the optimal path is still found. Observe the speedup.