CS344: Introduction to Artificial Intelligence

(associated lab: CS386)

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay

Lecture–3: Fuzzy Inferencing: Inverted Pendulum
Inferencing

- Two methods of inferencing in classical logic
 - Modus Ponens
 - Given p and $p \rightarrow q$, infer q
 - Modus Tolens
 - Given $\sim q$ and $p \rightarrow q$, infer $\sim p$

- How is fuzzy inferencing done?
A look at reasoning

- Deduction: \(p, p \rightarrow q \mid - q \)
- Induction: \(p_1, p_2, p_3, \ldots \mid - \text{for_all } p \)
- Abduction: \(q, p \rightarrow q \mid - p \)
- Default reasoning: Non-monotonic reasoning: Negation by failure
 - If something cannot be proven, its negation is asserted to be true
 - E.g., in Prolog
Completeness and Soundness

- Completeness question
 - Provability - Is the machine powerful enough to establish a fact?

- Soundness – Anything that is proved to be true is indeed true
 - Truth - Is the fact true?
Fuzzy Modus Ponens in terms of truth values

- Given \(t(p)=1 \) and \(t(p \rightarrow q)=1 \), infer \(t(q)=1 \)
- In fuzzy logic,
 - given \(t(p) \geq a, \ 0 \leq a \leq 1 \)
 - and \(t(p \rightarrow >q)=c, \ 0 \leq c \leq 1 \)
- What is \(t(q) \)
- How much of truth is transferred over the channel

\[
p \quad \rightarrow \quad q
\]
Lukasiewitz formula for Fuzzy Implication

- \(t(P) \) = truth value of a proposition/predicate. In fuzzy logic \(t(P) = [0,1] \)
- \(t(P \rightarrow Q) = \min[1, 1 - t(P) + t(Q)] \)

Lukasiewitz definition of implication
Use Lukasiewicz definition

- $t(p \rightarrow q) = \min[1, 1 - t(p) + t(q)]$
- We have $t(p \rightarrow q) = c$, i.e., $\min[1, 1 - t(p) + t(q)] = c$
- Case 1:
 - $c = 1$ gives $1 - t(p) + t(q) \geq 1$, i.e., $t(q) \geq a$
 - Otherwise, $1 - t(p) + t(q) = c$, i.e., $t(q) \geq c + a - 1$
- Combining, $t(q) = \max(0, a + c - 1)$
- This is the amount of truth transferred over the channel $p \rightarrow q$
ANDING of Clauses on the LHS of implication

\[t(P \land Q) = \min(t(P), t(Q)) \]

Eg: If pressure is high then Volume is low

\[t(\text{high}(\text{pressure}) \rightarrow \text{low}(\text{volume})) \]
Fuzzy Inferencing

Core

The Lukasiewicz rule

\[t(P \rightarrow Q) = \min[1, 1 + t(P) - t(Q)] \]

An example

Controlling an inverted pendulum

\[\dot{\theta} = \frac{d\theta}{dt} = \text{angular velocity} \]

[Diagram of an inverted pendulum with a motor labeled as 'Motor' and current 'i' indicated]
The goal: To keep the pendulum in vertical position ($\theta=0$) in dynamic equilibrium. Whenever the pendulum departs from vertical, a torque is produced by sending a current ‘i’

Controlling factors for appropriate current

Angle θ, Angular velocity θ^\prime

Some intuitive rules

If θ is +ve small and θ^\prime is –ve small
then current is zero

If θ is +ve small and θ^\prime is +ve small
then current is –ve medium
Control Matrix

<table>
<thead>
<tr>
<th></th>
<th>-ve med</th>
<th>-ve small</th>
<th>Zero</th>
<th>+ve small</th>
<th>+ve med</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ve med</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-ve small</td>
<td>+ve med</td>
<td>+ve small</td>
<td>Zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero</td>
<td>+ve small</td>
<td>Zero</td>
<td>-ve small</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ve small</td>
<td>Zero</td>
<td>-ve small</td>
<td>-ve med</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ve med</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Each cell is a rule of the form

If \(\theta \) is \(<> \) and \(\theta' \) is \(<> \)

then \(i \) is \(<> \)

4 “Centre rules”

1. if \(\theta = Zero \) and \(\theta' = Zero \) then \(i = Zero \)
2. if \(\theta \) is +ve small and \(\theta' = Zero \) then \(i \) is –ve small
3. if \(\theta \) is –ve small and \(\theta' = Zero \) then \(i \) is +ve small
4. if \(\theta = Zero \) and \(\theta' \) is +ve small then \(i \) is –ve small
5. if \(\theta = Zero \) and \(\theta' \) is –ve small then \(i \) is +ve small
Linguistic variables

1. Zero
2. +ve small
3. -ve small

Profiles
Inference procedure

1. Read actual numerical values of θ and θ^\prime.
2. Get the corresponding μ values μ_{Zero}, $\mu_{(\text{+ve small)}}$, $\mu_{(\text{-ve small)}}$. This is called FUZZIFICATION.
3. For different rules, get the fuzzy i values from the R.H.S of the rules.
4. “Collate” by some method and get ONE current value. This is called DEFUZZIFICATION.
5. Result is one numerical value of i.
if θ is Zero and $d\theta/dt$ is Zero then i is Zero
if θ is Zero and $d\theta/dt$ is +ve small then i is –ve small
if θ is +ve small and $d\theta/dt$ is Zero then i is –ve small
if θ +ve small and $d\theta/dt$ is +ve small then i is -ve medium

Rules Involved
Suppose θ is 1 radian and $d\theta/dt$ is 1 rad/sec

- $\mu_{\text{zero}}(\theta = 1) = 0.8$ (say)
- $\mu_{\text{+ve-small}}(\theta = 1) = 0.4$ (say)
- $\mu_{\text{zero}}(d\theta/dt = 1) = 0.3$ (say)
- $\mu_{\text{+ve-small}}(d\theta/dt = 1) = 0.7$ (say)
Fuzzification

Suppose \(\theta \) is 1 radian and \(\frac{d\theta}{dt} \) is 1 rad/sec

- \(\mu_{\text{zero}}(\theta = 1) = 0.8 \) (say)
- \(\mu_{\text{+ve-small}}(\theta = 1) = 0.4 \) (say)
- \(\mu_{\text{zero}}(\frac{d\theta}{dt} = 1) = 0.3 \) (say)
- \(\mu_{\text{+ve-small}}(\frac{d\theta}{dt} = 1) = 0.7 \) (say)

if \(\theta \) is Zero and \(\frac{d\theta}{dt} \) is Zero then i is Zero

\[\min(0.8, 0.3) = 0.3 \]

hence \(\mu_{\text{zero}}(i) = 0.3 \)

if \(\theta \) is Zero and \(\frac{d\theta}{dt} \) is +ve small then i is –ve small

\[\min(0.8, 0.7) = 0.7 \]

hence \(\mu_{\text{-ve-small}}(i) = 0.7 \)

if \(\theta \) is +ve small and \(\frac{d\theta}{dt} \) is Zero then i is –ve small

\[\min(0.4, 0.3) = 0.3 \]

hence \(\mu_{\text{-ve-small}}(i) = 0.3 \)

if \(\theta \) +ve small and \(\frac{d\theta}{dt} \) is +ve small then i is -ve medium

\[\min(0.4, 0.7) = 0.4 \]

hence \(\mu_{\text{-ve-medium}}(i) = 0.4 \)
Finding i

Possible candidates:
- $i=0.5$ and -0.5 from the "zero" profile and $\mu=0.3$
- $i=-0.1$ and -2.5 from the "-ve-small" profile and $\mu=0.3$
- $i=-1.7$ and -4.1 from the "-ve-small" profile and $\mu=0.3$
Defuzzification: Finding \(i \) by the *centroid* method

Possible candidates:

\(i \) is the x-coord of the centroid of the areas given by the *blue trapezium*, the *green trapeziums* and the *black trapezium*.