The Perceptron Model

\[y = 1 \text{ for } \sum w_i x_i \geq \theta \]
\[= 0 \text{ otherwise} \]
Perceptron Training Algorithm

1. Start with a random value of w ex: $<0,0,0...>$
2. Test for $wx_i > 0$
 If the test succeeds for $i=1,2,...n$
 then return w
3. Modify w, $w_{next} = w_{prev} + x_{fail}$
Feedforward Network
Example - XOR

$\theta = 0.5$
$w_1 = 1$
$w_2 = 1$

Calculation of XOR

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_1x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Calculation of x_1x_2

$\theta = 1$
$w_1 = -1$
$w_2 = 1.5$

$0 < \Theta$
$w_2 \geq \Theta$
$w_1 < \Theta$
$w_1 + w_2 < \Theta$
Example - XOR

\[w_1 = 1\]

\[w_2 = 1\]

\[\theta = 0.5\]
Can Linear Neurons Work?

\[y = m_3x + c_3 \]

\[y = m_2x + c_2 \]

\[y = m_1x + c_1 \]

\[h_1 = m_1(w_1x_1 + w_2x_2) + c_1 \]

\[h_1 = m_1(w_1x_1 + w_2x_2) + c_1 \]

\[\text{Out} = (w_5h_1 + w_6h_2) + c_3 \]

\[= k_1x_1 + k_2x_2 + k_3 \]
Note: The whole structure shown in earlier slide is reducible to a single neuron with given behavior

\[Out = k_1x_1 + k_2x_2 + k_3 \]

Claim: A neuron with linear I-O behavior can’t compute X-OR.

Proof: Considering all possible cases:

- [assuming 0.1 and 0.9 as the lower and upper thresholds]
 \[m(w_1.0 + w_2.0 - \theta) + c < 0.1 \]
 For (0,0), Zero class: \[\Rightarrow c - m.\theta < 0.1 \]

- \[m(w_2.1 + w_1.0 - \theta) + c > 0.9 \]
 For (0,1), One class: \[\Rightarrow m.w_1 - m.\theta + c > 0.9 \]
For (1,0), One class: \[m.w_1 - m.\theta + c > 0.9 \]

For (1,1), Zero class: \[m.w_1 - m.\theta + c > 0.9 \]

These equations are inconsistent. Hence X-OR can’t be computed.

Observations:

1. A linear neuron can’t compute X-OR.
2. A multilayer FFN with linear neurons is collapsible to a single linear neuron, hence no a additional power due to hidden layer.
3. Non-linearity is essential for power.
Multilayer Perceptron
Gradient Descent Technique

- Let E be the error at the output layer

$$E = \frac{1}{2} \sum_{j=1}^{p} \sum_{i=1}^{n} (t_i - o_i)^2_j$$

- $t_i = \text{target output}; \ o_i = \text{observed output}$

- i is the index going over n neurons in the outermost layer
- j is the index going over the p patterns (1 to p)
- Ex: XOR: $p=4$ and $n=1$
Weights in a FF NN

- \(w_{mn} \) is the weight of the connection from the \(n^{th} \) neuron to the \(m^{th} \) neuron.
- \(E \) vs \(\overline{W} \) surface is a complex surface in the space defined by the weights \(w_{ij} \).
- \(-\frac{\delta E}{\delta w_{mn}} \) gives the direction in which a movement of the operating point in the \(w_{mn} \) coordinate space will result in maximum decrease in error.

\[
\Delta w_{mn} \propto -\frac{\delta E}{\delta w_{mn}}
\]
Sigmoid neurons

- Gradient Descent needs a derivative computation - not possible in perceptron due to the discontinuous step function used!
 → Sigmoid neurons with easy-to-compute derivatives used!

- Computing power comes from non-linearity of sigmoid function.

\[y \to 1 \text{ as } x \to \infty \]
\[y \to 0 \text{ as } x \to -\infty \]
Derivative of Sigmoid function

\[y = \frac{1}{1 + e^{-x}} \]

\[\frac{dy}{dx} = -\frac{1}{(1 + e^{-x})^2} (-e^{-x}) = \frac{e^{-x}}{(1 + e^{-x})^2} \]

\[= \frac{1}{1 + e^{-x}} \left(1 - \frac{1}{1 + e^{-x}} \right) = y(1 - y) \]
Training algorithm

- Initialize weights to random values.
- For input \(x = \langle x_n, x_{n-1}, \ldots, x_0 \rangle\), modify weights as follows:

 Target output = \(t\), Observed output = \(o\)

 \[
 \Delta w_i \propto -\frac{\delta E}{\delta w_i}
 \]

 \[
 E = \frac{1}{2} (t - o)^2
 \]

- Iterate until \(E < \delta\) (threshold)
Calculation of Δw_i

$$\frac{\delta E}{\delta w_i} = \frac{\delta E}{\delta net} \times \frac{\delta net}{\delta w_i} \left(\text{where: net} = \sum_{i=0}^{n-1} w_i x_i \right)$$

$$= \frac{\delta E}{\delta o} \times \frac{\delta o}{\delta net} \times \frac{\delta net}{\delta w_i}$$

$$= -(t - o) o (1 - o) x_i$$

$$\Delta w_i = -\eta \frac{\delta E}{\delta w_i} \left(\eta = \text{learning constant}, \ 0 \leq \eta \leq 1 \right)$$

$$\Delta w_i = \eta (t - o) o (1 - o) x_i$$
Observations

Does the training technique support our intuition?

- The larger the x_i, larger is Δw_i
 - Error burden is borne by the weight values corresponding to large input values