CS344: Principles of Artificial Intelligence

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay

Lecture 7, 8, 9: Monotonicity
16, 17 and 19th Jan, 2012
Steps of GGS
(Principles of AI, Nilsson,)

1. Create a search graph G, consisting solely of the start node S; put S on a list called $OPEN$.
2. Create a list called $CLOSED$ that is initially empty.
3. Loop: if $OPEN$ is empty, exit with failure.
4. Select the first node on $OPEN$, remove from $OPEN$ and put on $CLOSED$, call this node n.
5. if n is the goal node, exit with the solution obtained by tracing a path along the pointers from n to s in G. (Pointers are established in step 7).
6. Expand node n, generating the set M of its successors that are not ancestors of n. Install these memes of M as successors of n in G.
GGS steps (contd.)

- 7. Establish a pointer to \(n \) from those members of \(M \) that were not already in \(G \) (i.e., not already on either \(OPEN \) or \(CLOSED \)). Add these members of \(M \) to \(OPEN \). For each member of \(M \) that was already on \(OPEN \) or \(CLOSED \), decide whether or not to redirect its pointer to \(n \). For each member of \(M \) already on \(CLOSED \), decide for each of its descendents in \(G \) whether or not to redirect its pointer.
- 8. Reorder the list \(OPEN \) using some strategy.
- 9. Go \(LOOP \).
Example of Parent pointer redirection of descendents in closed list
Monotonicity
Definition

- A heuristic $h(p)$ is said to satisfy the monotone restriction, if for all $'p'$,

 $h(p) \leq h(p_c) + cost(p, p_c)$,

 where $'p_c'$ is the child of $'p'$.
Theorem

- If monotone restriction (also called triangular inequality) is satisfied, then for nodes in the closed list, redirection of parent pointer is not necessary. In other words, if any node 'n' is chosen for expansion from the open list, then \(g(n) = g^*(n) \), where \(g(n) \) is the cost of the path from the start node 's' to 'n' at that point of the search when 'n' is chosen, and \(g^*(n) \) is the cost of the optimal path from 's' to 'n'.
Grounding the Monotone Restriction

\[h(n) : \text{number of displaced tiles} \]

Is \(h(n) \) monotone?

\[h(n) = 8 \]
\[h(n') = 8 \]
\[C(n, n') = 1 \]

Hence monotone
Monotonicity of # of Displaced Tile Heuristic

- $h(n) \leq h(n') + c(n, n')$
- Any move changes $h(n)$ by at most 1
- $c = 1$
- Hence, $h(\text{parent}) \leq h(\text{child}) + 1$
- If the empty cell is also included in the cost, then h need not be monotone (try!)
Monotonicity of Manhattan Distance Heuristic (1/2)

- *Manhattan distance* = X-dist + Y-dist from the target position
- Refer to the diagram in the first slide:
 - $h_{mn}(n) = 1 + 1 + 1 + 2 + 1 + 1 + 2 + 1 = 10$
 - $h_{mn}(n') = 1 + 1 + 1 + 3 + 1 + 1 + 2 + 1 = 11$
 - *Cost* = 1
 - Again, $h(n) \leq h(n') + c(n, n')$
Monotonicity of Manhattan Distance Heuristic (2/2)

- Any move can either increase the h value or decrease it by \textbf{at most 1}.
- Cost again is 1.
- Hence, this heuristic also satisfies Monotone Restriction
- If empty cell is also included in the cost then manhattan distance does not satisfy monotone restriction (try!)
- Apply this heuristic for Missionaries and Cannibals problem
Relationship between Monotonicity and Admissibility

- Observation: Monotone Restriction \rightarrow Admissibility but not vice-versa

- Statement: If $h(n_i) \leq h(n_j) + c(n_i, n_j)$ for all i, j
 then $h(n_i) \leq h^*(n_i)$ for all i
Proof of Monotonicity \rightarrow admissibility

Let us consider the following as the optimal path starting with a node $n = n_1 \rightarrow n_2 \rightarrow n_3 \ldots n_i - \ldots n_m = g_i$

Observe that

$$h^*(n) = c(n_1, n_2) + c(n_2, n_3) + \ldots + c(n_{m-1}, g_i)$$

Since the path given above is the optimal path from n to g_i

Now,

$$h(n_1) \leq h(n_2) + c(n_1, n_2) \quad \text{------ Eq 1}$$

$$h(n_2) \leq h(n_3) + c(n_2, n_3) \quad \text{------ Eq 2}$$

$$\vdots$$

$$h(n_{m-1}) = h(g_i) + c(n_{m-1}, g_i) \quad \text{------ Eq (m-1)}$$

Adding Eq 1 to Eq (m-1) we get

$$h(n) \leq h(g_i) + h^*(n) = h^*(n)$$

Hence proved that MR \rightarrow (h \leq h*)
Proof (continued...)

Counter example for vice-versa

\[h^*(n_1) = 3 \quad h(n_1) = 2.5 \]
\[h^*(n_2) = 2 \quad h(n_2) = 1.2 \]
\[h^*(n_3) = 1 \quad h(n_3) = 0.5 \]
\[\vdots \quad \vdots \quad \vdots \quad \vdots \]
\[h^*(g_l) = 0 \quad h(g_l) = 0 \]

\[h < h^* \] everywhere but MR is not satisfied
Proof of MR leading to optimal path for every expanded node (1/2)

Let $S-N_1-N_2-N_3-N_4...N_m...N_k$ be an optimal path from S to N_k (all of which might or might not have been explored). Let N_m be the last node on this path which is on the open list, i.e., all the ancestors from S up to N_{m-1} are in the closed list.

For every node N_p on the optimal path,

$$g^*(N_p)+h(N_p) \leq g^*(N_p)+C(N_p, N_{p+1})+h(N_{p+1}), \text{ by monotone restriction}$$
$$g^*(N_p)+h(N_p) \leq g^*(N_{p+1})+h(N_{p+1}) \text{ on the optimal path}$$
$$g^*(N_m)+h(N_m) \leq g^*(N_k)+h(N_k) \text{ by transitivity}$$

Since all ancestors of N_m in the optimal path are in the closed list,

$$g(N_m) = g^*(N_m).$$
$$\Rightarrow f(N_m) = g(N_m)+h(N_m) = g^*(N_m)+h(N_m) \leq g^*(N_k)+h(N_k)$$
Proof of MR leading to optimal path for every expanded node (2/2)

Now if N_k is chosen in preference to N_m,

\[f(N_k) \leq f(N_m) \]
\[g(N_k) + h(N_k) \leq g(N_m) + h(N_m) \]
\[= g^*(N_m) + h(N_m) \]
\[\leq g^*((N_k) + h(N_k) \]
\[g(N_k) \leq g^*(N_k) \]

But $g(N_k) \geq g^*(N_k)$, by definition

Hence $g(N_k) = g^*(N_k)$

This means that if N_k is chosen for expansion, the optimal path to this from S has already been found

TRY proving by induction on the length of optimal path
Monotonicity of $f(.)$ values

Statement:

f values of nodes expanded by A* increase monotonically, if h is monotone.

Proof:

Suppose n_i and n_j are expanded with temporal sequentiality, i.e., n_j is expanded after n_i.
Proof (1/3)...

- n_i expanded before n_j
- n_i and n_j co-existing
- n_j comes to open list as a result of expanding n_i and is expanded immediately
- n_j's parent pointer changes to n_i and expanded
- n_i expanded after n_j
Proof (2/3)...

- All the previous cases are forms of the following two cases (think!)

- CASE 1:
 \[n_j \text{ was on open list when } n_i \text{ was expanded} \]
 Hence, \[f(n_i) \leq f(n_j) \] by property of A*

- CASE 2:
 \[n_j \text{ comes to open list due to expansion of } n_i \]
Proof (3/3)...

Case 2:
\[f(n_i) = g(n_i) + h(n_i) \quad \text{(Defn of } f) \]
\[f(n_j) = g(n_j) + h(n_j) \quad \text{(Defn of } f) \]

\[f(n_i) = g(n_i) + h(n_i) = g^*(n_i) + h(n_i) \quad \text{---Eq 1} \]

(since \(n_i \) is picked for expansion \(n_i \) is on optimal path)

With the similar argument for \(n_j \), we can write the following:
\[f(n_j) = g(n_j) + h(n_j) = g^*(n_j) + h(n_j) \quad \text{---Eq 2} \]

Also,
\[h(n_i) \leq h(n_j) + c(n_i, n_j) \quad \text{---Eq 3} \quad \text{(Parent- child relation)} \]
\[g^*(n_j) = g^*(n_i) + c(n_i, n_j) \quad \text{---Eq 4} \quad \text{(both nodes on optimal path)} \]

From Eq 1, 2, 3 and 4
\[f(n_i) \leq f(n_j) \]
Hence proved.
Better way to understand monotonicity of $f()$

- Let $f(n_1), f(n_2), f(n_3), f(n_4)... f(n_{k-1}), f(n_k)$ be the f values of k expanded nodes.

- The relationship between two consecutive expansions $f(n_i)$ and $f(n_{i+1})$ nodes always remains the same, i.e., $f(n_i) \leq f(n_{i+1})$

- This is because
 - $f(n_i) = g(n_i) + h(n_i)$ and
 - $g(n_i) = g^*(n_i)$ since n_i is an expanded node (proved theorem) and this value cannot change
 - $h(n_i)$ value also cannot change Hence nothing after n_i's expansion can change the above relationship.
A list of AI Search Algorithms

- A*
 - AO*
 - IDA* (Iterative Deepening)
- Minimax Search on Game Trees
- Viterbi Search on Probabilistic FSA
- Hill Climbing
- Simulated Annealing
- Gradient Descent
- Stack Based Search
- Genetic Algorithms
- Memetic Algorithms