RollNo.:
QuestionPaper-cum-Answer Sheet : Answer only in the space provided
Solution (Grading Algo. given in italics in each question)
Q 1. Given the LP:- Min. $-2 x_{1}-3 x_{2}-\quad x_{3}$
s.t.

$$
\begin{aligned}
& \frac{1}{3} x_{1}+\frac{1}{3} x_{2}+\frac{1}{3} x_{3} \leq 1 \\
& \frac{1}{3} x_{1}+\frac{4}{3} x_{2}+\frac{7}{3} x_{3} \leq 3
\end{aligned}
$$

(a) The Dual LP is:-

Let $p=\left(p_{1}, p_{2}\right)$ be the vector of dual variables. Each primal variable gives rise to a dual constraint.
The Dual LP (DP) is:- Max.
$p_{1}+3 p_{2}$
$\left(p_{1,} p_{2}\right) \leq 0 \ldots 1$
s.t.

3 const. +1 obj. ... $4 \times 1 / 2=2$
$\frac{1}{3} p_{1}+\frac{1}{3} p_{2} \leq-2$
$\frac{1}{3} p_{1}+\frac{4}{3} p_{2} \leq-3$
$\frac{1}{3} p_{1}+\frac{7}{3} p_{2} \leq-1$
$\left(p_{1}, p_{2}\right) \leq 0$
(b) Using the Weak Duality Theorem, a lower bound to (P) is: $\underline{-9} \quad$ (corr. to feasible $p=(-9,0)$)
(c) Verify using CS conditions on (P) and (DP) that $x=(1,2,0)^{\top}$ is optimal.

$c x^{*}=-2-6=-8 ; \quad p^{*} b=-5-3=-8$, exhibiting that for this $\left(x^{*}, p^{*}\right)$ the resp. optimal values are equal which also demonstrates the use of the Duality Theorem.
(d) Let $b_{1}=1+y_{1}$ and $b_{2}=3+y_{2}$. Plot in 2 dimensions the values for which the basis optimal in part (c) is still optimal.
$\left.B=\begin{array}{ll}\left(\begin{array}{ll}1 / 3 & 2 / 3\end{array}\right) \\ (1 / 3 & 4 / 3\end{array}\right) \quad \mathrm{B}_{\text {inv }}=\left(\begin{array}{rr}4 & -1) \\ (-1 & 1\end{array}\right) \quad \mathrm{B}_{\text {inv }} \mathrm{b}=\begin{array}{r}\left(4+4 \mathrm{y}_{1}-3-\mathrm{y}_{2}\right) \\ \left(-1-\mathrm{y}_{1}+3+\mathrm{y}_{2}\right)\end{array} \quad=\begin{array}{r}\left(1+4 \mathrm{y}_{1}-\mathrm{y}_{2}\right) \\ \left(2-\mathrm{y}_{1}+\mathrm{y}_{2}\right)\end{array} \quad \geq 0$
$4 y_{1}-y_{2} \geq-1$ and $y_{1}-y_{2} \geq-2$
$B_{\text {inv }} \ldots 1 / 2, B_{\text {inv }} b \ldots 1$, plot... 1/2

Q 2 Given the following network $<N, A \mid 0, k>$ where node 1 is the source and 6 the sink, all arc lower bounds are zero and their respective upper bounds given adjacent to the arcs, and v the flow through the network:-

(a) Find the max flow through the network using the labeling algorithm. Show the successive labels on the above diagram itself, as well as a min-cut set.
(b) Now we are permitted to increase the upper bound of (only) one arc by any amount so as to increase max v the most: (i) identify the subset of arcs and why? $\{(4,6),(5,6)\}$, because this is the saturated min cut-set
(ii) which arc and by how much? Note: You can start from the final set of labels obtained under (a).
$v^{*}\left(k_{46}=\right.$ inf $)-v^{*}\left(k_{46}=4\right)=1 \quad$ (Note that the min cut-set is:\{(2,4),(1,4),(1,5),(3,5)\}
$v^{*}\left(k_{56}=\right.$ inf $)-v^{*}\left(k_{56}=12\right)=1$ (Note that the min cut-set is again:\{(2,4),(1,4),(1,5),(3,5)\}
Hence, we can increase either of the two arcs $(4,6)$ or $(5,6)$ by 1 unit.

