Dept. of Compter Sc. \& Engineering, Indian Institute of Technology Bombay
CS 350 End-Semester Examination SOLUTION Roll_No.: sak
20.4.05. 0930-1230 hrs.

Instructions:- 1. QuestionPaper-cum-Answer Sheet : Answer only in the space provided;
2. You may refer to notes in your own handwriting;
3. In True(T)/False(F) questions, cancel out by a /what you consider inadmissible.

Q 1. Short Questions. Negative mark (-0.5) for each incorrect answer.
(a) A problem with the "Big-M" method for solving a linear program could be numerical instability
(b) A stopping criterion in the Interior Point Method is based on duality gap.
(c) If a totally unimodular square matrix A is invertible, its inverse is unimodular: T / \neq

Why? Because (i) Each element of $A_{\text {inv }}$ is $0, \pm 1$ because |cofactors| are $0, \pm 1$
(ii) $\left|A_{\text {inv }}\right|= \pm 1$, since $|A|= \pm 1$
(d) Saddle point always exists for a two-person zero-sum game: T/f
(e) The dual to the LP: $\{\operatorname{Min} z \mid c x-z \leq 0, A x=b, x \geq 0\}$ is: $\left\{\operatorname{Maxp} p \cdot b \mid p e R^{n}, q \in R, p A+q c \leq 0,-q=1\right)$
which is the same as the dual of : $\{\operatorname{Min} c x \mid A x=b, x \geq 0\}$
(f) Prove that if an ($m \times n$) matrix A with $m<n$ has full row rank, then rank $\left(A A^{\top}\right)=m$

Suppose that $\operatorname{rank}\left(A A^{\top}\right)<m \Rightarrow$ There exists a non-zero vector say y^{\top} s.t. $A A^{\top} y^{\top}=0$
Therefore, $y A A^{\top} y^{\top}=0$ which is a contradiction since $y A$ can not be zero (why?)
Hence, $\operatorname{rank}\left(A A^{\top}\right)=m$
(a) A fragment of a network $<\mathrm{N}, \mathrm{A} \mid 0, \mathrm{k}, \mathrm{c}>$ is given below. Let $\mathrm{f}^{*}{ }_{i j}(1)$ and $\mathrm{f}^{*} \mathrm{ij}(2)$ be an optimal set of flow assignments on the upper and lower (i, j) arcs whose capacities are $\mathrm{k}_{\mathrm{ij}}(1)$ and $\mathrm{k}_{\mathrm{ij}}(2)$. Assume that
$\mathrm{C}_{\mathrm{ij}}(1)<\mathrm{C}_{\mathrm{ij}}(2)$.Then fill in the blanks with justification:- an optimal assignment on the (i, j) arcs has the property:-

$$
\begin{aligned}
& f^{*}{ }_{i j}(1)<k_{i j}(1) \quad \Rightarrow \quad f_{i j}^{*}(2)=0 \\
& f^{*}(2)>0 \quad \Rightarrow \quad f_{i j}^{*}(1)=k_{i i}(1)
\end{aligned}
$$

Justification (you can show by flow adjustment):- Suppose the * solution does not satisfy the above conditions; then make flow adjustment of ? at node i , maintaining conservation and decreasing the cost of pushing flow from i to j , contradiction as the flow assignment had been assumed to be optimal.
(b) Given the closed network below, find an optimal flow assignment
(Note:- obtain a feasible flow assignment if it exists by solving max flow problem on the modified network)

Transformed network with zero lower bounds, flow assignments and sat cut-sets

In the diagram below, the init labels in bold are the pi's at nodes and states on the edges.

Select the OK arc $(1,2)$ and try flow re-routing; cut-set: $X=\{1,3,4\}$ gives $d=1$; new labels in italics at nodes and where changed on edges. Again no-rerouting possible, $X=\{1,3,4\}$ with $\mathrm{d}=3 ;(2,3)$ and $(5,4)$ changed labels given in ordinary bold. Again no flow readjustment possible, X same with $d=1$. New changed labels are given in italics. One arc (1,2) ok and again flow re-routing not possible with $X=\{1,3,4,5\}$ with $d=2$. aThe new node labels are shown in bold italics and the edge labels after the flow-adjustment now possible shown also in bold italics with updated flows.
All arcs in kilter and optimum reached. Check:- Is the duality gap=0? Primal Obj = 14; Dual Obj (determine the phi values, psi being zero, why?) = 14 (phi values given on the edges adj. to the final edge state after the semi-colon for non-beta states).
(a) Show that in an ($n \times n$) optimal assignment problem, at least one candidate is assigned to the job for which he is best qualified.

Suppose not. (Note that considering it as a LP, there are ($2 n-1$) constraints and $n^{\wedge} 2$ variables with a high degree of degeneracy.) Let, as usual, u be the dual variable vector corresponding to the "persons" and v the dual variable vector corresponding to the $m / c s$. Clearly there do not exist (u.v) such that the dual constraints are: $u+v \leq c$ for this solution, CS conditions do not hold, and hence the solution non-optimal.

(The last flow assignmen shown in bold italics. Shipping Cost = 34)

t

Q 4. Consider a two-person zero sum game with `m’ actions for the row player \(R\), ` n ' actions for the column player C , the ($\mathrm{m} \times n$) pay-off matrix $\mathrm{A}=\left(\mathrm{a}_{\mathrm{i}}\right)$ represents the pay-off to R by C , when R chooses action action i and C chooses action j , and the two players play conservatively. (You may assume that A has all non- negative entries if required.)

We say that for C , action ' k ' dominates action ' j ' if $\mathrm{a} \mathrm{a}_{\mathrm{ik}} \leq \mathrm{a}_{\mathrm{ij}}$ for all i; i.e., C will not be worse off whatever strategy R employs. Similarly, for R, action ${ }^{r}$ ' dominates action $a_{r j} \geq a_{i j}$ for all j.
(a) Show that there exist optimal actions of the row and column players of an original game A which is the same as the game A^{\prime} in which the dominated columns and rows (as defined) are deleted.

Let D_{R} and D_{C} be the sets of dominated rows and columns, respectively. Then, consider the expected pay-off expressions as in the Von Neumann's Theorem discussed in the class:-

Note:- Check with the selection of pure strategies
(b) Given

$$
\mathrm{A}=\left|\begin{array}{lll}
4 & 6 & 6 \\
3 & 5 & 5 \\
6 & 4 & 4 \\
6 & 4 & 0
\end{array}\right| \quad \begin{gathered}
\mathrm{D}_{\mathrm{C}}=\{2\} \\
\mathrm{D}_{\mathrm{R}}=\{2,4\} \\
\end{gathered}
$$

$$
A^{\prime} \quad=\left|\begin{array}{cc}
4 & 6 \\
6 & 4
\end{array}\right|
$$

(i) obtain the undominated matrix
(ii) Solve the game on A', first verifying whether or not saddle point exists for A'.

Saddle point does NOT exist - check.
It can be easily seen that for the prime problem: $x^{\prime}=(1 / 2,1 / 2), y^{\prime}=(1 / 2,1 / 2)$ is optimal to R^{\prime} and C^{\prime} From the preceding, $\mathrm{x}=(1 / 2,0,1 / 2,0), \mathrm{y}=(1 / 2,0,1 / 2)$ is optimal to R and C with value $=5$ Note:- Check the two LPs

