	Dept. of Compter Sc. & Engineering, Indian Institute of Technology BombayCS 350End-Semester ExaminationSOLUTION20.4.05. 0930-1230 hrs.	Roll_No.: sak	/50
Instructions:- 1. QuestionPaper-cum-Answer Sheet : Answer only in the space provided; 2. You may refer to notes in your own handwriting; 3. In True(T)/False(F) questions, <i>cancel</i> out by a _/what you consider inadmissible.			
	Q 1. Short Questions. Negative mark (- 0.5) for each incorrect answer.		/ <u>11</u>
	(a) A problem with the "Big-M" method for solving a linear program could be numerical i	<u>nstability</u>	/1
	(b) A stopping criterion in the Interior Point Method is based on duality gap.		/1
	 (c) If a totally unimodular square matrix A is invertible, its inverse is unimodular: T / Why? Because (i) Each element of A_{inv} is 0, <u>+</u> 1 because cofactors are 0, <u>+</u> (ii) A_{inv} = <u>+</u> 1, since A = <u>+</u> 1 	7 <i>≢</i> 1	/3
	(d) Saddle point always exists for a two-person zero-sum game: T/		/1
	(e) The dual to the LP: {Min z $cx - z \le 0$, A x = b, x ≥ 0 } is : {Max p.b p e R ⁿ , q e R	, pA + q c ≤0, -q = 1)	/2
	which is the same as the dual of : {Min cx $A x = b, x \ge 0$ }		
	(f) Prove that if an (m x n) matrix A with m < n has full row rank, then rank(AA^{T}) = m Suppose that rank(AA^{T}) < m => There exists a non-zero vector say y ^T s.t. A Therefore, yAA ^T y ^T = 0 which is a contradiction since yA can not be zero (<i>why?</i>) Hence, rank(AA^{T}) = m	$A^{T}y^{T} = 0$	/3

(a) A fragment of a network $\langle N, A | 0, k, c \rangle$ is given below. Let $f^*_{ij}(1)$ and $f^*_{ij}(2)$ be an optimal set of flow /4 assignments on the upper and lower (i,j) arcs whose capacities are $k_{ij}(1)$ and $k_{ij}(2)$. Assume that $C_{ij}(1) < C_{ij}(2)$. Then fill in the blanks with justification:- an optimal assignment on the (i,j) arcs has the property:-

Justification (you can show by flow adjustment):- Suppose the * solution does not satisfy the above conditions; then make flow adjustment of ? at node i, maintaining conservation and decreasing the cost of pushing flow from i to j, contradiction as the flow assignment had been assumed to be optimal.

(b) Given the closed network below, find an optimal flow assignment (Note:- obtain a feasible flow assignment if it exists by solving max flow problem on the modified network)

Transformed network with zero lower bounds, flow assignments and sat cut-sets

In the diagram below, the **init labels in bold** are the pi's at nodes and states on the edges.

All arcs in kilter and optimum reached. **Check**:- Is the duality gap=0? Primal Obj = 14; Dual Obj (determine the phi values, psi being zero, why?) = 14 (phi values given on the edges adj. to the final edge state after the semi-colon for non-beta states).

Q 2.

/5+4

/13

(a) Show that in an (n x n) optimal assignment problem, at least one candidate is assigned to the job for which he is best qualified. / 4

Suppose not. (Note that considering it as a LP, there are (2n-1) constraints and n^2 variables with a high degree of degeneracy.) Let, as usual, u be the dual variable vector corresponding to the "persons" and v the dual variable vector corresponding to the m/cs. Clearly there do not exist (u.v) such that the dual constraints are: $u + v \le c$ for this solution, CS conditions do not hold, and hence the solution non-optimal.

Q 4. Consider a two-person zero sum game with `m' actions for the row player R, `n' actions for the column <u>/13</u> player C, the (mxn) pay-off matrix A = (a_{ij}) represents the pay-off to R by C, when R chooses action action i and C chooses action j, and the two players play conservatively. (You may assume that A has all non- negative entries if required.)

We say that for C, action 'k' dominates action 'j' if a $a_{ik} \leq a_{ij}$ for all i; i.e., C will not be worse off whatever strategy R employs. Similarly, for R, action 'r' dominates action 'i' if $a_{rj} \ge a_{ij}$ for all j.

(a) Show that there exist optimal actions of the row and column players of an original game A which is the same as the game A' in which the dominated columns and rows (as defined) are deleted. 14

Let D_R and D_C be the sets of dominated rows and columns, respectively. Then, consider the expected pay-off expressions as in the Von Neumann's Theorem discussed in the class:-

Similar to the preceding

/ 9

Note:- Check with the selection of pure strategies

(b) Given

(i) obtain the undominated matrix

(ii) Solve the game on A', first verifying whether or not saddle point exists for A'.

Saddle point does NOT exist - check.

It can be easily seen that for the prime problem: $x' = (\frac{1}{2}, \frac{1}{2})$, $y' = (\frac{1}{2}, \frac{1}{2})$ is optimal to R' and C' From the preceding, $x = (\frac{1}{2}, 0, \frac{1}{2}, 0)$, $y = (\frac{1}{2}, 0, \frac{1}{2})$ is optimal to R and C with value = 5 Note: - Check the two LPs