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In this lecture, we complete the proof of a theorem stating that all points in the set Ax ≤ b can be
expressed as a convex combination of its extreme points. We then prove that a linear function on such
a set is maximized at an extreme point, and show how that is used to construct the Simplex algorithm.

Theorem 1 Let p1, p2, p3, . . . , pt be the extreme points of the convex set S = {x : Ax ≤ b} Then every

point in S can be represented as

t∑
i=1

λipi, where

t∑
i=1

λi = 1 and 0 ≤ λi ≤ 1

Proof: Proof is by induction on the dimension.
Consider p ∈ S. Join p1 to p and extend to meet q on the boundary. For the point q, we must then have

A1q = b1 (1)

A
′′
q < b

′′
(2)

(where A
′′

is the rest of A), because q is on the boundary, and A1q > b1 outside the feasible region
(having crossed the hyperplane). From the first equality, we solve for one variable, say xn and replace
it throughout in A

′′
. This allows us to construct a new convex set S

′
= {x : Cx ≤ d}, in one less

dimension.

By the induction hypothesis, q can be written as a convex combination of extreme points in this object,
S

′
. Hence,

p = βp1 + (1− β)q (3)

= βp1 + (1− β)
t
′∑

i=1

γiqi (4)

This however is in terms of the extreme points q1, q2, q3, . . . , qt′ of S
′
. We show that the extreme points

of S
′
are also extreme points of S. Suppose they were not. Let p

′
be an extreme point of S

′
but not of

S. Then ∃ p
′

1, p
′

2 ∈ S such that p
′
= λp

′

1 + (1− λ)p
′

2. By construction of points in S
′
,

b1 = A1p
′

(5)

= λA1p
′

1 + (1− λ)A1p
′

2 (6)

But since we have A1p
′

1 ≤ b1 and A1p
′

2 ≤ b1 (both p1 and p2 are in S), we must have the equality holding
in both for the above equality (6) to be true. Therefore p

′

1 and p
′

2 must also be in S
′
. p

′
can not then

be extreme in S
′
, as it is the convex combination of two points in the same set.

For the base case, take the dimension to be 0. This completes the proof. �

The following theorem will put the last step in place to construct an algorithm for solving LP problems.

Theorem 2 A linear function on S = {x : Ax ≤ b} is maximized at an extreme point.

Proof: Let a linear function f attain its maximum at point p, where p =
t∑

i=1

λipi (This is a valid

assumption by the previous theorem). Then f(p) =
t∑

i=1

λif(pi). If all of the f(pi)’s were lesser than

f(p), their convex combination cannot sum to f(p). Therefore for at least one i, f(pi) = f(p). �
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After having proved this, we have a finite algorithm at our disposal now. An extreme point is an
intersection of n linearly independent hyperplanes. We just need to pick all combinations of n rows
from A (

(
m
n

)
in number), solve for x0 in A

′
x0 = b’ using Gaussian Elimination, verify that the solution

indeed satisfies all other inequalities, and then calculate cT x.

The verification part is important, as the n hyperplanes we choose may end up defining an infeasible
point. An example is 2-D is shown in Figure 1.

feasible region

point of intersection

Figure 1: Why we need to verify

A rather simple formulation of the algorithm could then be:

Start at an extreme point.
While a neighbour of higher cost exists, move to it.

Intuitively, this would work, as by a previous result a local maximum in such a problem is also a global
maximum. A more formal description of the Simplex algorithm and proof of its correctness is done in
subsequent lectures.
Questions raised at this juncture are:

1. How do we start the process? It is pointless to obtain all extreme points and then pick one from
among them.

2. How do we move to a neighbour?

3. Why are we guaranteed that the optimal is attained when we stop?


