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Lecture 10: Az < b as a convex combination of its extreme points

Lecturer: Sundar Vishwanathan Scribe: Hidayath Ansari
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In this lecture, we complete the proof of a theorem stating that all points in the set Ax < b can be
expressed as a convex combination of its extreme points. We then prove that a linear function on such
a set is maximized at an extreme point, and show how that is used to construct the Simplex algorithm.

THEOREM 1 Let p1,pa,ps,-..,p: be the extreme points of the convex set S = {x : Az < b} Then every
t t

point in S can be represented as Z Aip;, where Z NM=land0< \; <1
i=1 i=1

PROOF: Proof is by induction on the dimension.
Consider p € S. Join p; to p and extend to meet ¢ on the boundary. For the point ¢, we must then have

Alq = b1 (1)
A//q < b// (2)
(where A" is the rest of A), because ¢ is on the boundary, and A;q > by outside the feasible region
(having crossed the hyperplane). From the first equality, we solve for one variable, say z, and replace

it throughout in A”. This allows us to construct a new convex set S = {z : Cz < d}, in one less
dimension.

By the induction hypothesis, ¢ can be written as a convex combination of extreme points in this object,
S’. Hence,

p=0Bp1+(1-P)q (3)
/
=Bpr+ (1= P)>_ v (4)
i=1
This however is in terms of the extreme points ¢1, g2, ¢s, ..., gy of S". We show that the extreme points

of §" are also extreme points of S. Suppose they were not. Let p/ be an extreme point of S" but not of
S. Then 3 py,py € S such that p = Ap; + (1 — A)py. By construction of points in S,

b1 = Alp/ (5)
= Mipy + (1= \)Aip, (6)
But since we have Ay pll < b; and Alp; < by (both p; and py are in S), we must have the equality holding

in both for the above equality (6) to be true. Therefore p,1 and p/z must also be in S’ p/ can not then
be extreme in S, as it is the convex combination of two points in the same set.

For the base case, take the dimension to be 0. This completes the proof. ]
The following theorem will put the last step in place to construct an algorithm for solving LP problems.
THEOREM 2 A linear function on S = {z : Az < b} is maximized at an extreme point.

t
PROOF: Let a linear function f attain its maximum at point p, where p = Z)\,;pi (This is a valid
i=1

t
assumption by the previous theorem). Then f(p) = Z Aif(pi). If all of the f(p;)’s were lesser than
i=1

f(p), their convex combination cannot sum to f(p). Therefore for at least one 4, f(pi) = f(p). O



After having proved this, we have a finite algorithm at our disposal now. An extreme point is an
intersection of n linearly independent hyperplanes. We just need to pick all combinations of n rows
from A ((ZL) in number), solve for zy in A zy = b’ using Gaussian Elimination, verify that the solution
indeed satisfies all other inequalities, and then calculate ¢’ z.

The verification part is important, as the n hyperplanes we choose may end up defining an infeasible

point. An example is 2-D is shown in Figure 1.
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Figure 1: Why we need to verify

A rather simple formulation of the algorithm could then be:

Start at an extreme point.
While a neighbour of higher cost exists, move to it.

Intuitively, this would work, as by a previous result a local maximum in such a problem is also a global
maximum. A more formal description of the Simplex algorithm and proof of its correctness is done in
subsequent lectures.

Questions raised at this juncture are:

1. How do we start the process? It is pointless to obtain all extreme points and then pick one from
among them.

2. How do we move to a neighbour?

3. Why are we guaranteed that the optimal is attained when we stop?



