Lecture 10: $A x \leq b$ as a convex combination of its extreme points

Lecturer: Sundar Vishwanathan
Scribe: Hidayath Ansari
Computer Science \& Engineering
Indian Institute of Technology, Bombay

In this lecture, we complete the proof of a theorem stating that all points in the set $A x \leq \mathbf{b}$ can be expressed as a convex combination of its extreme points. We then prove that a linear function on such a set is maximized at an extreme point, and show how that is used to construct the Simplex algorithm.

Theorem 1 Let $p_{1}, p_{2}, p_{3}, \ldots, p_{t}$ be the extreme points of the convex set $S=\{x: A x \leq \mathbf{b}\}$ Then every point in S can be represented as $\sum_{i=1}^{t} \lambda_{i} p_{i}$, where $\sum_{i=1}^{t} \lambda_{i}=1$ and $0 \leq \lambda_{i} \leq 1$

Proof: Proof is by induction on the dimension.
Consider $p \in S$. Join p_{1} to p and extend to meet q on the boundary. For the point q, we must then have

$$
\begin{align*}
& A_{1} q=b_{1} \tag{1}\\
& A^{\prime \prime} q<\mathbf{b}^{\prime \prime} \tag{2}
\end{align*}
$$

(where $A^{\prime \prime}$ is the rest of A), because q is on the boundary, and $A_{1} q>b_{1}$ outside the feasible region (having crossed the hyperplane). From the first equality, we solve for one variable, say x_{n} and replace it throughout in $A^{\prime \prime}$. This allows us to construct a new convex set $S^{\prime}=\{x: C x \leq \mathbf{d}\}$, in one less dimension.

By the induction hypothesis, q can be written as a convex combination of extreme points in this object, S^{\prime}. Hence,

$$
\begin{align*}
p & =\beta p_{1}+(1-\beta) q \tag{3}\\
& =\beta p_{1}+(1-\beta) \sum_{i=1}^{t^{\prime}} \gamma_{i} q_{i} \tag{4}
\end{align*}
$$

This however is in terms of the extreme points $q_{1}, q_{2}, q_{3}, \ldots, q_{t^{\prime}}$ of S^{\prime}. We show that the extreme points of S^{\prime} are also extreme points of S. Suppose they were not. Let p^{\prime} be an extreme point of S^{\prime} but not of S. Then $\exists p_{1}^{\prime}, p_{2}^{\prime} \in S$ such that $p^{\prime}=\lambda p_{1}^{\prime}+(1-\lambda) p_{2}^{\prime}$. By construction of points in S^{\prime},

$$
\begin{align*}
b_{1} & =A_{1} p^{\prime} \tag{5}\\
& =\lambda A_{1} p_{1}^{\prime}+(1-\lambda) A_{1} p_{2}^{\prime} \tag{6}
\end{align*}
$$

But since we have $A_{1} p_{1}^{\prime} \leq b_{1}$ and $A_{1} p_{2}^{\prime} \leq b_{1}$ (both p_{1} and p_{2} are in S), we must have the equality holding in both for the above equality (6) to be true. Therefore p_{1}^{\prime} and p_{2}^{\prime} must also be in $S^{\prime} \cdot p^{\prime}$ can not then be extreme in S^{\prime}, as it is the convex combination of two points in the same set.
For the base case, take the dimension to be 0 . This completes the proof.
The following theorem will put the last step in place to construct an algorithm for solving LP problems.
Theorem 2 A linear function on $S=\{x: A x \leq \mathbf{b}\}$ is maximized at an extreme point.
Proof: Let a linear function f attain its maximum at point p, where $p=\sum_{i=1}^{t} \lambda_{i} p_{i}$ (This is a valid assumption by the previous theorem). Then $f(p)=\sum_{i=1}^{t} \lambda_{i} f\left(p_{i}\right)$. If all of the $f\left(p_{i}\right)$'s were lesser than $f(p)$, their convex combination cannot sum to $f(p)$. Therefore for at least one $i, f\left(p_{i}\right)=f(p)$.

After having proved this, we have a finite algorithm at our disposal now. An extreme point is an intersection of n linearly independent hyperplanes. We just need to pick all combinations of n rows from $A\left(\binom{m}{n}\right.$ in number), solve for x_{0} in $A^{\prime} x_{0}=\mathbf{b}^{\prime}$ using Gaussian Elimination, verify that the solution indeed satisfies all other inequalities, and then calculate $c^{T} x$.
The verification part is important, as the n hyperplanes we choose may end up defining an infeasible point. An example is 2-D is shown in Figure 1.

Figure 1: Why we need to verify
A rather simple formulation of the algorithm could then be:

Start at an extreme point.
While a neighbour of higher cost exists, move to it.

Intuitively, this would work, as by a previous result a local maximum in such a problem is also a global maximum. A more formal description of the Simplex algorithm and proof of its correctness is done in subsequent lectures.
Questions raised at this juncture are:

1. How do we start the process? It is pointless to obtain all extreme points and then pick one from among them.
2. How do we move to a neighbour?
3. Why are we guaranteed that the optimal is attained when we stop?
