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1 Formulation

A linear optimization problem can be formulated as

max cT x

Ax ≤ b (1)

where, A is an m× n matrix, c a n× 1 vector, b a m× 1 vector and x a n× 1 vector. We are
given as Input: c, A, b and desire as Output : x. Among all x that satisfies Ax ≤ b find one
which maximises cT x. The set Ax ≤ b is a set of points which have typical properties. Our
first goal is to understand them and be able to describe some of these.

2 Understanding the set of all solutions to Ax = b

Before considering the set of inequalities, Ax ≤ b, we consider the set of equalities Ax = b.
This is short hand notation for the following set of equalities given below.

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

We can solve such a system of equations using Gaussian Elimination. Here is an example.

Example 1

2x + 7y = 13 (I)
x + 3y = 4 (II)

Replacing II by -1
2 ·I + II gives

−7
2
y + 3y = −13

2
+ 4

y = 5 (2)
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3 Gaussian Elimination

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

a21x1 + a22x2 + a23x3 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + am3x3 + · · ·+ amnxn = bm

Assume that a11 6= 0. If this is not so we exchange the first row with some other row which has
a non-zero first co-ordinate. Then for each of the equations except the first, multiply the first
equation by a suitable constant and subtract from the respective equations to get rid of x1 in
the other equations.

We then do this with the other equations ignoring the first variable.

There are 2 operations used in Gaussian Elimination.

1. Exchange two rows.

2. Replace rowj with α · rowi + rowj , where α is some constant.

It is possible that using these two operations the co-efficients of some xi [for example x2] in all
rows except one are zeroed out.

a11x1 + a12x2 + a13x3 + · · ·+ a1nxn = b1

0 + 0 + a23x3 + · · ·+ a2nxn = b′2

0 + 0 + a33x3 + · · ·+ a3nxn = b′3
...

0 + 0 + am3x3 + · · ·+ amnxn = b′m

In such a case, assume that, some aij 6= 0 [for example a23 6= 0], then we repeat the process.

Finally, we get something like,

a11x1 + a12x2 + · · ·+ a1nxn = b1

0 + 0 + · · ·+ a2i1xi1 + · · ·+ a2nxn = b′′2
...

0 + 0 + · · ·+ 0 + akik−1
xik−1

+ · · ·+ aknxn = b′′k
...

0 + 0 + · · ·+ 0 + 0 + 0 + · · ·+ 0 = b′′l
...

0 + 0 + · · ·+ 0 + 0 + 0 + · · ·+ 0 = b′′m

Observations:

1. All zero rows occur after the non-zero rows.
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2. If, from the top, the first t rows are nonzero, and the first non-zero entry of the ith row
i = 1, . . . , t, is at the kith column, then ki > ki−1, i = 2, . . . , t. That is, the first non-zero
entries in the rows appear later and later from top to bottom.

3.1 Existence of a solution for Ax = b

Ax = b does not have a solution if in a particular row i, all coefficients aij = 0, but bi 6= 0. This
is both necessary and sufficient condition for non-existence of a solution for Ax = b as we shall
see later.

Once we have the matrix in this form, it is easy to get solutions to the set of equations, if one
exists. Except for x1, xi1 , . . . , xik−1

set any values to the other variables. Now solve for the
variables x1, xi1 , . . . , xik−1

in the reverse order.

If it has n non-zero rows then it has only one solution. Otherwise {x : Ax = b}, in general, has
many solutions.

3.2 Why is this procedure correct?

The procedure being correct means that the values of the variables obtained by the procedure
indeed satisfy the original set of equations. So to prove the correctness of the procedure, we
have to prove that the solution set does not change on applying the operations of Gaussian
Elimination. Clearly exchanging two rows does not change the solution set.

Theorem 1 Given a set of equations, suppose eqj is replaced by

α · eqi + eqj

then the solutions set does not change.

Proof: Let eqi be ai1x1 + ai2x2 + · · ·+ ainxn = bi and eqj be aj1x1 + aj2x2 + · · ·+ ajnxn = bj .
Consider the old and the new set of equations. Note that they differ only in the jth equation.
This proof consists of 2 parts.

Part 1: If the set of solutions satisfies original set of equations then it satisfies the new set.
Let < x′1, x

′
2, . . . , x

′
n > be the solution to the original set. Then < x′1, x

′
2, . . . , x

′
n > specifically

satisfies eqi and eqj . So,

ai1x
′
1 + ai2x

′
2 + · · ·+ ainx′n = bi

aj1x
′
1 + aj2x

′
2 + · · ·+ ajnx′n = bj

that is,

ai1x
′
1 + ai2x

′
2 + · · ·+ ainx′n − bi = 0

aj1x
′
1 + aj2x

′
2 + · · ·+ ajnx′n − bj = 0

So,

α(ai1x
′
1 + ai2x

′
2 + · · ·+ ainx′n − bi) + (aj1x

′
1 + aj2x

′
2 + · · ·+ ajnx′n − bj)

= α · 0 + 0
= 0
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Therefore,

α(ai1x
′
1 + ai2x

′
2 + · · ·+ ainx′n) + (aj1x

′
1 + aj2x

′
2 + · · ·+ ajnx′n) = α · bi + bj

Hence < x′1, x
′
2, . . . , x

′
n > satisfies α · eqi + eqj . Since rest of the equations in both the sets are

identical, < x′1, x
′
2, . . . , x

′
n > satisfies the new set.

Part 2: If the set of solutions satisfies new set of equations then it satisfies the original set. Let
< x′1, x

′
2, . . . , xn > be the solution to the new set. Then < x′1, x

′
2, . . . , x

′
n > specifically satisfies

α · eqi + eqj and eqi. So,

α(ai1x
′
1 + ai2x

′
2 + · · ·+ ainx′n) + (aj1x

′
1 + aj2x

′
2 + · · ·+ ajnx′n) = α · bi + bj

ai1x
′
1 + ai2x

′
2 + · · ·+ ainx′n = bi

that is,

α(ai1x
′
1 + ai2x

′
2 + · · ·+ ainx′n − bi) + (aj1x

′
1 + aj2x

′
2 + · · ·+ ajnx′n − bj) = 0

ai1x
′
1 + ai2x

′
2 + · · ·+ ainx′n − bi = 0

So,

α · 0 + (aj1x
′
1 + aj2x

′
2 + · · ·+ ajnx′n − bj) = 0

⇒ aj1x
′
1 + aj2x

′
2 + · · ·+ ajnx′n = bj

Hence < x′1, x
′
2, . . . , x

′
n > satisfies eqj . Since rest of the equations in both the sets are identical,

< x′1, x
′
2, . . . , x

′
n > satisfies the old set. �

4 Understanding Ax = b geometrically

Another way of looking at Ax = b is through geometry. The operation of adding a constant
times another equation to an equation rotates one of the hyperplanes in Rn. Fig. 1 illustrates
this as the case of rotation of lines (1-dimensional hyperplane) in a x-y plane (i.e. R2). Here
the solid lines are from example 1 and one of the dotted lines is obtained by rotating the line
corresponding to eq. II to the one corresponding to eq. 2. The other dotted line can be obtained
by similarly manipulating eq. I
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Figure 1: Geometrical way of looking at Ax = b


