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Abstract 

An algorithm for transforming sequential programs into equivalent parallel programs is presented. 
The method concentrates on finding loops whose separate iterations can be run in parallel without syn- 
chronization. Although a simple version of the method can be shown to be optimal, the problem of 
generating optimal code when loop interchange is employed is shown to be intractable. These methods 
are implemented in an experimental translation system developed at Rice University. 

1. Introduction 

If scientific programs can be effectively partitioned 
into regions that may be executed in parallel, significant 
gains should be possible by the use of large numbers of 
processors. At present, development efforts are begin- 
ning on machines with the capability of employing a 
thousand processors. The NYU Ultracomputer IGGKM 831, 
the Illinois Cedar system [GKLS 841, the Cosmic Cube 
[&it z~], and the IBM FE’3 [PBGH ss] have all been designed 
with the specific intent of effectively utilizing large 
numbers of processors. But without some mechanism for 
bringing the power of parallel processing to bear on 
practical problems, its benefits may be lost. We cannot 
simply shift the burden of parallel processing to the pro- 
grammer. Programming for parallel machines is difficult 
and we must provide powerful software tools to assist 
the application developer if parallel processing is to be 
effective. 

This paper develops the conceptual foundations of 
an automatic scheme for uncovering implicitly parallel 
operations within sequential Fortran programs, The 
goal of this approach is the detection of DO loops whose 
iterations can be run independently in parallel. While 
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recognition of parallelism in its fullest context is an 
undecidable problem @a eel, the limited scheme we 
employ can be efficiently implemented. 

The methods described in this paper are imple- 
mented in an experimental translator, called PFC, in use 
at Rice University. 

2. Parallelism Model 

We assume a large number of processors are avail- 
able to work on a single application. Each processor has 
some local memory and access to a shared global 
memory. Access to a global memory location is not 
automatically synchronized by the hardware; instead, 
synchronization primitives are available to ensure that 
shared data is accessed in a desired sequence. 

If we are to effectively use a machine of this type, 
we must keep a large number of processors busy. This 
requires a sufficient number of independent computation 
units of comparable running time. If we need more than 
a handful of such units, it seems reasonable to look for 
them in DO loops, because the body of a DO loop is exe- 
cuted many times with only slight variations among the 
iterations; hence the running times should be roughly 
equivalent. 

We prefer to identify loops for which no inter- 
iteration synchronization is required. In such loops we 
can block load the inputs into processor local memories 
and compute independently until all the iterations are 
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done. Of course, we are still faced with the problem of 
making sure that each iteration represents a computa- 
tion of sufficient size to justify the synchronization over- 
head of a parallel computation @KES]. This issue wit1 
not be treated in detail here. 

We will present an algorithm that translates pro 
grams written in a sequential language, like Fortran, to 
parallel programs in the same language augmented with 
simple constructs to manage multiple processors. The 
principal method for expressing parallelism will be 
through a variant of the fork-join construct. All proces- 
sors simultaneously begin executing a collection of code 
blocks, some of which are derial blocks to be executed by 
a single processor and some of which are parallel 00’8, 

whose separate iterations can be executed concurrently 
by different processors. Each serial block and each itera- 
tion of a, parallel Do can be viewed as an independent 
task; tasks are assigned to processors non- 
deterministically at execution time. When a processor 
completes a task, it is reassigned to another task that is 

ready for execution. This process continues so long as 
there are tasks remaining. When there are no more 
tasks to be assigned, the processors wait until all other 
tasks are complete before beginning the next task set. 

Our examples use an enhanced version of Fortran 
to express parallelism. The wait at the end of a task set 
is specified by a BARRIER statement, which must be exe 
cuted by all processors before any can continue on. 
Serial blocks are enclosed between SERIAL and ENDSERIAL 

delimiters. The first processor to reach a serial block 
executes it; all others fall through. A parallel Do is indi- 
cated by a DOALL keyword. If there are more processors 
available than DOALL iterations, surplus processors fall 
through. While these constructs are inadequate for 
expressing all forms of parallelism, they are sufficient for 
discussing the central issues in parallel code generation. 

Parallel code generation can be viewed as two 
stages: decomposition and recombination. The input pro 

gram is decomposed into blocks of code that are either 
serial (to be executed by a single processor) or parallel (a 

parallel Do). These blocks are then recombined into 
fork-join constructs as described above. The output pro- 
gram consists of clusters of independent tasks separated 
by barrier synchronization points. 

Our goal is to convert as many serial Do loops as 
possible into parallel loops to exploit the multiple pro- 
cessors in the target machine while minimizing that 

amount of synchronization overhead. The primary con- 
straint on parallelism is that certain accesses to shared 
variables must be explicitly serialized to ensure 
equivalence with the original source program. This 
requirement can be stated formally as 

(Pl) If two processes access a shared memory 
location and if at least one of those processes 
modifies that location, then accesses to that lc- 
cation must be serialized (by a barrier syn- 
chronization point) to preserve the access ord- 
er of the original program. 

Thus we have three problems: detection of loops that 
can be parallelized, detection of shared variable access 
which must be explicitly synchronized, and translation of 
the original program to parallel form. The approach 
taken here is to break the original program into serial 
blocks and parallel loops and then insert barrier syn- 
chronization points as necessary. Whether a transforma- 
tion is profitable depends strongly on the architecture of 
the target machine. To avoid unnecessary restriction of 
the machine class, we select optimality conditions that 
are independent of machine size and memory 
configuration. Initially, we will use the following 
optimality criteria. 

(01) If a statement inaide a Do loop can be eze- 
cuted in parallel, then some loop containing it 
will be parallelized. 

(02) Subject to (Ol), the number o/barrier uyn- 
chronization points will be minimized. 

A more precise and effective definition of optimality will 
be given in the next section. 

3. Dependence 

A sequential DO loop provides a precise 
specification of the order in which statements are to be 
executed: statements within one iteration are executed in 
the order in which they appear, while different iterations 
are executed in an order specified by the control parame- 

ters of the DO. In a parallel loop, any given iteration of 
the loop is executed by a single processor, thereby 
guaranteeing that the execution constraints imposed by 
statement order will be preserved. However, a parallel 
loop cannot guarantee that the order in which the loop 
iterations are performed will be identical to that 
specified by the control parameters. Thus, if the parallel 
version is to compute the same result as the sequential 
loop, the order of iterations must be immaterial to the 

64 



computation. 

Dependence is a relation between the statements 
of the program that can be used to preserve execution 
order in transformation systems. The pair (S, Sd is a 
member of the relation if and only if Sg must be executed 
after Sz in order for the results of the program to be 
correct. In other words, any transformation that merely 
reorders the execution of statements is safe so long as it 
preserves the dependence9 in the code. Since the conver- 
sion of a sequential DO loop into a parallel DO loop 
merely permutes the execution of different iterations, 
dependence can be used to precisely determine when this 
transformation is safe. 

Kuck has identified three types of data depen- 
dences that mu& be preserved if the meaning of a give 
program is to be unchanged by transformations [Kuck 781: 

(1) ttue dependence - SI stores into a variable which S2 
later uses. 

% x= *.. 
s, . ..=x 

(2) antidependence - S1 fetches from a variable that SZ 
later stores into. 

s, ..,=x 

S2 
x- . . . 

If S2 were to be executed before SL the value of X 
used in S, would be that computed by 27% which is 
not correct. 

(3) output dependence - two statements both store into 
the same variable. 

S, x= . . . 

S2 
x= . . . 

While neither S1 nor S2 are affected by a change in 
execution order, later statements that use X would 
receive the wrong value if S1 and S2 were reversed in 
execution order. 

Dependences may be further classified into two 
categories: loop carried and loop independent. This 
classification arises from the fundamental requirement 
for a data dependence-the fact that two statements 
must reference a common memory location, with control 
flowing from one to the other. The required control flow 
can occur in one of two ways: 

(1) Control can flow from one statement to the second 
within a single iteration of all the loops, following 
sequential execution order, as in 

Do1001=l, N 

% A(I) = . . . 

92 
. * . = A(I) 

100 CONTINUE 

S, uses the value created by S1 on the same iteration, 

thus creating a loop independent dependence. 

(2) Control can flow from one statement to the second 
because of the iteration of a loop, as in 

DO100 1'1, N 

% A(1) = *.. 

S2 
. . . = A(I-1) 

loo CONTINUE 

Such a dependence is loop curried, since it will not 
exist if the loop is not iterated. 

The fundamental difference between loop carried 
and loop independent dependences is easily understood 
in the context of the program transformations that 
preserve them we a]. Roughly speaking, a loop indepen- 
dent dependence is preserved so long as the original 
statement order is preserved. Thus, the loops surround- 
ing a loop independent dependence may be permuted at 
will, without changing the semantics of the statements. 
A loop carried dependence, however, is strongly depen- 
dent upon the order in which the loops are iterated, but 
completely independent of statement order within the 
IOOPS. 

One final refinement is useful in the case of loop 
carried dependence. A loop carried dependence arises 
because of the iteration of one particular loop. For 
instance, in the following 

DO2001=1,N 
DOlOOJ=l,N 

S, A(1.J) = . . . 

S2 
. . . = A(I-1,J) 

100 CONTINUE 
200 CONTINUE 

iteration of the outer loop gives rise to the dependence. ’ 
In this case, we say that the dependence is carried by the 
loop at nesting level one. So long as the outer loop is 
iterated sequentially, the dependence will be satisfied. 
We say that the level of the dependence is equal to the ’ 
nesting level of the loop which gives rise to it. 

Because of the importance of loop carried and loop 
independent dependence9 to automatic vectorization, 
there exists a number of fairly precise tests for detecting 
the presence of these dependences for array variables 
within loops [WOU 8% AUC 83, Kenn 80, BBM 74. 
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4. Psrsiiei Code Generation 

4.1. Detecting Parallel Loops 

Given the informal definitions of loop carried and 
loop independent dependences, and the requirements for 
parallel loops, it is not very hard to derive the following 
theorem: 

Theorem 1. The iterations of a loop can be 
run on separate processors without synchroni- 
zation if and only if that loop carries no 
dependence. 

Theorem 1 provides a very simple test for deter- 
mining when the iterations of a loop may be run in 
parallel without synchronization-that is, it determines 
sequential loops which can be correctly run as DOALLs 
[Kuck 7s). It would be straightforward to develop an alge 
rithm for parallelization based upon this test, but the 
resulting algorithm would probably not expose much 
parallelism in practice, because many loops carry depen- 
dences and would have to be run sequentially. As a 
result, a more sophisticated strategy is desirable. 

As Theorem 1 points out, loop carried dependences 
imply a need for communication among processors. This 
communication, in turns, requires synchronization, which 
inhibits the type of parallel loops we desire. if this com- 
munication can be removed from within a loop body, 
parallelism can be restored. One transformation for 
removing such communication is loop distribution 
[Kuck 1. For instance, in the following code: 

mlOOI=l.N 

% C(I) = A(1) + B(1) 

S2 D(I) = C(I-1) l B(1) 
100 CONTINUE 

the I loop carries a dependence from Sr to Sa thereby 
prohibiting parallel execution of the loop. If the 1 loop is 
distributed around the two statements 

DO 100 I-1, N 

81 C(1) = A(1) + 3(I) 
100 CONTINUE 

m tm I-1. N 

62 D(1) = C(I-1) ' B(1) 
200 CONTINUE 

then the loop carried dependence between the two state- 

ments is transformed into a loop independent depen- 
dence. As a result, each of the two loops can be exe- 
cuted in parallel, so long as all the processors synchron- 
ize at the completion of the first loop. While this code 

will not execute as fast as a single parallel loop would, it 
will still execute much faster than the original sequential 
loop. 

From this discussion, it should be evident that a 
more viable approach to parallel code generation is to 
convert loop carried dependences into loop independent 
dependences by distributing loops around the depen- 
dences. Not all loop carried dependence3 can be 
“spread” across two loops. For instance, the following 
example 

rnwiI=l.N 

Sl C(I) = A(1) + B(1) 

62 B(I+l) = C(I-1) l A(1) 
100 CONTINUE 

contains loop carried dependences from Sr to Ss (due to 
C) and from S2 to Sr (due to B). Distribution of the loop 
around the two statements in this example changes the 
semantics of the code, because it causes the use of B in 
Sr to get the values that were extant before the loop was 
entered, rather than the updated values computed by Se. 
As a result, the loop cannot be correctly run in parallel 
without some form of synchronization. 

In general, a loop can be distributed around the 
statements in its body so long as the bodies of individual 
strongly connected regions are kept together within a sin- 
gle loop copy \Kuck 78). A strongly connected component 
of a directed graph is simply a maximal set of nodes and 
edges contained in a cycle; thus, the strongly connected 
component which contains a particular node includes all 
nodes and edges which occur on any path from that node 
to itself. Using an algorithm developed by Tarjan, a 
directed graph can be partitioned into strongly con- 
nected regions in time that is linear in the number of 
nodes and edges in the graph. Because strongly con- 
nected regions are the “basic blocks” of loop distribu- 
tion, they are often called piblocb [Kuck 781. 

From the above discussion, it should be apparent 
that the only loop carried edges which can be “broken” 
by loop distribution are those that cross from one 
strongly connected component to another. Loop carried 
edges which connect statements in the same piblock can- 
not be broken by distributing loops. Thus, the pibkocks 
comprising a loop can be separated into two categories: 
ectial piblocks (piblocks which contain an internal edge 
carried by the loop) and parallel piblocks (piblocks which 
do not have internal edges carried by the loop). While a 
straightforward algorithm can determine these 
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properties and can schedule loops accordingly, such an 
algorithm would still not make the most effective use of 
machines close to our model. In general, the larger 
parallel regions are, the more likely the regions are to 
make effective use of parallelism on a large multiproces- 
sor. As a result, fusing parallel piblocks together to 
enhance the granularity of parallel regions should always 
be profitable. Similarly, fusing serial regions together 
reduces loop overhead, and should also be beneficial 
when the serial blocks can not be executed concurrently. 

The ideas presented so far in this section allow 
condition (01) to be made precise by the following 
definition 

Definition. S is a parallel statement if it is 
enclosed in k loops and for some ilk, S is not 
part of a cycle in the dependence subgraph 
consisting of loop independent dependences 
and dependences carried at level i or deeper. 
Such a statement is said to be parallel at 
level i. 

If statement S is parallel at level i, and if we execute 
the outer i-l loops serially, then distribute the level i 

loop so that S is in a loop at level i by itself, that loop 
will not carry any dependences and hence can be paral- 
lelized. Under this definition, optimality condition (01) 
is precise and the optimality of the algorithm is made 
dependent on the accuracy of the dependence analysis. 

For the second problem - synchronizing shared 
memory accesses - the only accesses which must be syn- 
chronized are those between which there is a data depen- 
dence. In particular, it is not necessary to consider refer- 
ences related in the transitive closure of the dependence 
graph since the serialization process haa a transitive 
affect. The second problem can be addressed based on 
where the endpoints of a data dependence are put after 

the program is broken into seria1 and parallel regions 
(i.e., DOALL’s). 

(PZ) Both endpoints in the same serial or paral- 
lel region. 

Since only a single processor executes this region (or 
iteration of the loop), condition (Pl) cannot be violated. 

(P3) One endpoint in a serial region and the 
other endpoint in a parallel region. 

In this case, a barrier synchronization point will always 
be needed between these two regions. 

(P4) Endpoint8 are in difletent parallel regions. 

Here a barrier synchronization point will only be needed 
if the two loops associated with these parallel regions are 
not combined. 

An implication of (P2) is that all dependences con- 
tained in a single region can be ignored by the algorithm 
that orders regions and inserts barrier synchronization 
points. 

4.2. Greedy Code Generator 

This section presents an algorithm for solving the 
parallel code generation problem. Distinguishing parallel 
from serial regions is based on the dependence analysis 
discussed in the previous section. The primary task of 
the algorithm presented here is to find an ordering of 
these regions that minimizes the number of barrier syn- 
chronization points needed between them. 

The algorithm is shown in Figure 1. The first step 
is to distinguish serial and parallel regions; from then on 
it is basically a greedy algorithm. Beginning with a 
region which has no incoming dependences, build a maxi- 
mal set of serial and parailel regions such that barrier 
synchronization points are not needed between them. 
When a point is reached such that no additional region 
can be included, generate code for this set of regions, 
generate a barrier synchronization point and repeat. 

As discussed above, a cycle of dependences defines 
a basic set of statements which must be executed as a 
unit. If no dependence in this cycle is carried at level k, 
then the entire strongly connected region is a parallel 
region, otherwise it is a serial region. Scalar statements 
(i.e., statements enclosed in fewer than k loops) are also 

serial’. The main loop is basically a topological sort, 
modified to delay generating a barrier synchronization 
point as long as possible. 

The set ui8ited is the set of strongly connected 
regions for which code has already been generated. The 
set noprek is the set of strongly connected regions for 
which code has not been generated but all of whose 
immediate predecessors in Dp have been visited. Finally, 
the set NotOk is the set of strongly connected regions 
which cannot be fused with the current region without 
violating (PZ), (P3) or (P4). Note that this set is reset to 

’ If the statement modifies only variables stored in tht 
private memory associated with each processor, than the state- 

ment can be treated both as a strial and as a paralltl region. 
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procedure Codegen (S,D,k); 

{ S is a collection of statements and } 
{ D is the level A dependence graph of S } 
break S into strongly-connected regions P-Pt . . . , Pb ; 
let Dp be the dependence graph induced on P by D; 
{ prcds(p) is the set of direct predecessors of p in Dp } 
noptcds c { PEP 1 preda(p) - Qj }; 
visited c 0; 
while -empty (noprcds) do begin 

R to; 
NotOK t 0; 
while noprcds-NotOK+@ do begin 

remove any node p from nopreds-NotOK; 
add p to visited and R; 
crll CheekSons( 

end; 

{ generate parallel code or drop down one level } 
for each connected region TER do begin 

if the nodes in r are serial then begin 

let D, be the level k+l dependence graph restrict- 
ed to t 

call Codegen(r,D,,k+l); 
end; 

else fuss nodes in r into a single parallel loop; 
end; 

if -remptg(nopreds) 
then generate a barrier synchronization point; 

end; 

Figure 1. Parallel code generation routine. 

empty each time a barrier synchronization point is gen- 
erated. The subroutine CAcckSons marks successors of a 

strongly connected region as NotOk when they can not 
be fused with the node being examined. 

The process of generating code includes fusing con- 
nected components so that rule (P2) applies and recurs- 
ing on serial regions to look for parallelism at deeper 
nesting levels. Many details, such as the need to main- 
tam the topological order as connected components are 
fused and correct handling of scalar statements, have 
been omitted for simplicity. 

procedure CheckSon (v); 
{ see if successors can be fused with u } 
for each dependence e-( v,w) in D, do begin 

{ check if u and w must be serialized ) 
if both u and UJ are parallel 

then if u and w cannot be fused or e is loop carried 
at level k 
then add w to NotOK; 

else if either u or w is parallel 
then add w to NotOK; 

if preda(w)Cui&ed 
then add w to nopreds; 

end; 

Figure 2. Check successors. 

The second optimality constraint, that every 
parallel statement be in a loop which is parallelized, is 
achieved. If a statement S is parallel at level i, then 
either it is part of a parallel region at a level less than i, 
or Codegen will be called with a set of statements includ- 
ing S and level equal to i. In this case, S will be found 
to be a parallel region and a parallel loop will be gen- 
erated around it. 

The number of barrier synchronization points 
needed depends only on the order of the parallel and 
serial regions in the sequence generated. The ordering 
generated by the above algorithm is one which needs a 

minimal number of barrier synchronization points. To 
prove this, we first abstract away some of the details of 
the algorithms and examine a more general graph prob- 
lem. 

Definition. Let G-(V,E) be a directed acy- 
clic graph and # a relation called Incon- 
&tent defined on VXV. Thus, v#w is read; 
“u is inconsistent with w”. A consistent par- 
tition of G is a partition P-PL . . . , P, of V 
such that the following two condition8 hold /or 
each vEP, and WEPj: 

a. If <v,w>~E then i<j 

b. If u#w then i+j 

The mapping of the code generation problem to 
the problem of finding consistent partitions is clear: V is 
the set of strongly connected regions of the dependence 
graph restricted to loop independent edges and loop 
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carried edges that are carried at levels deeper than k. E 

is the set of inter-region edges of this restricted depen- 
dence graph. Two nodes are inconsistent if they must be 
separated by a barrier synchronization point according 
to rules (P3) and (P4). A consistent partition is a partial 
ordering on the nodes in V that does not violate the par- 
tial ordering induced by E and that respects the require- 
ments of (P3) and (P4). 

Any consistent partition for the code generation 
problem will induce a valid ordering of the parallel and 
seriaf regions and clearly, the greedy algorithm above 
generates a consistent partition, from now on called the 
greedy partition. The minimal number of barrier syn- 
chronization points needed for a code generation prob- 
lem is thus equal to one less than the number of ele- 
ments in a consistent partition with the fewest number 
of elements. We will show that the greedy partition has 
the fewest number of elements and hence minimizes the 
number of barrier synchronization points at the outer- 
most level. 

Theorem 2. The greedy partition of G has a 
minimal number of elements. 

Proofi Let GP-GI,...,G, be the greedy partition of 
G-( V,E) and let P=PI,...,Pm by any other consistent 
partition of G. We show that nlm by induction on 
IVi. If /Vi-l, th en n-l and the result is immediate 
since any partition must have at least one element. 
Assume that the greedy partition is minimal for all 
graphs with fewer than ) nodes and that 1 V 1-k 

An important property of the greedy algorithm is 
that Ga...,G. is the greedy partition of G restricted to 
the nodes in V-G,. This follows from the fact that the 
set NotOK is reset to empty each time a new element of 
the partition is started, thus the algorithm is effectively 
applied recursively to the reduced graph and so the par- 
tition generated for the reduced graph is also a greedy 
partition. If PICG1 then PrG,...,P,-G, is a con- 
sistent partition of G restricted to V-Cl. By the induc- 
tion hypothesis, we know that Ga...,G, is minimal for 
that restricted graph and so n-llm-1 and the 
theorem follows. 

Otherwise, select wEPrG1 such that 
prede(w)CG1. Since w is not in Gr, at some point w 
was put into the set NotOK. This occurs only if there 
exists uEpreda(w) such that W#V. By property (a) of a 
consistent partition, u must be in PI since w is, but then 

we have a contradiction of property (b) which prohibits 
u and w being in the same element of P. Therefore 
PICGl and the theorem follows. 

A key factor in this proof is the fact preds(w)CG1 

and w$Gr imply that w is inconsistent with at least one 
of its predecessors. When we add the ability to inter- 
change loop levels, we lose this property and the algo- 
rithm is no longer optimal. 

4.3. Modifications for the Multi-Loop Case 

In the presence of nested loops, the simple greedy 
algorithm is non-optimal due to the fact that serial 
regions which have deeper parallelism need to be treated 
differently from serial regions without deeper parallelism. 
The greedy algorithm minimizes the number of parti- 
tions at the outer level but does not minimize the total 
number of barrier synchronization points expected. 

To correctly handle the multi-loop case, each 
serial region must be examined for deeper parallelism 
before deciding which partition to put it in. Thus, the 
first step after breaking a loop into strongly connected 
regions is to recursively generate parallel code for each 
serial region that has statements at a deeper nesting 
level than k. If a serial region, r, has any parallelism 
deeper, then it is flagged as such: deeper(r)+true if r 

has parallelism at a deeper level; otherwise 

procedure CheckSons (u); 

{ see if successors can be fused with u } 
for each dependence e-(u,w) in D, do begin 

{ check if u and w must be serialized ) 
if both u and w are parallel 

then if u and w cannot be fused or c is loop carried 
at level k 

then add w to NotOK; 

else if either u or w is parallel 
then add w to NotOK; 

else if neither u nor w is scalar and one is deeper 
then add w to NotOK; 

if preds(w)Cuisited 
then add w to nopreds; 

end; 

Figure 3. Modification for Nested Loops. 
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deeper(r )+false . With the additional information in 
the deeper flags, we modify the procedure CheckSons t,o 

prevent fusing deeper regions with other regions (see Fig- 
ure 3). Note that if a serial region has no statements at a 
deeper nesting level, then it can be fused with a region 
with deeper parallelism since the barrier synchronization 
between them is at the outermost nesting level regard- 
less. A serial region with no statements at a deeper 
nesting level is said to be scalar. 

Finally, the code to fuse connected regions must 
be modified. If two deeper regions are in the same parti- 
tion, they must be completely independent, so we can 
merge them together so that they share barrier syn- 
chronization points. For example, the two loops 

DO I = 1.N 
DOALL J = 1.N 

A(J,J) = A(I-l,J)+A(I,J) 
ENDDO 
IF (1.LT.N) BARRJER 

ENDDO 
DO I = 1.N 

DOALL J =l,N . 
B(1.J) = B(I-l.J)+B(I,J) 

ENDDO 
IF (1.LT.N) BARRIER 

ENDDO 

can be merged together into 

DO I = 1.N 
DOALL J = l.N 

A(1.J) = A(I-l,J)+A(I,J) 
B(1.J) = B(I-l,J)*B(I,J) 

ENDW 
IF (1.LT.N) BARRIER 

ENDDO 

The algorithm to perform this merge is straightforward 
since the two regions are completely independent. 

I-Ienceforth, the greedy partition in the nested loop 
case will refer to the partition built by the greedy algo 
rithm as modified in this section. The proof of optimal- 
ity in this case can be found in Callahan’s dissertation 
[Call 871. 

5. Alignment and Replication 

Whenever a value is created on one loop iteration 
(processor) and used on a different iteration (processor), 
as in 

DOlOOI-1, N 

=1 AU) = B(1) + C(1) 

S2 D(I) = I*A(I-1) 

100 CONTINUE 

codegen creates parallel loops by making the dependence 
loop independent using loop distribution. While the 
parallelism is enhanced by this transformation, there is 
still an undesirable synchronization point between the 
two loops. Note that the need for this synchronization 
point arises because each iteration of the loop creates a 
value fetched by another iteration of the loop. If the 
fetches can be “aligned” by one iteration, so that they 
occur on the same iteration (and therefore the same pro- 
cessor), as in 

DO1OOI=O,N 
IF (I.CT.0) A(I) = B(I)+C(I) 
IF (1.LT.N) D(I+l) = 2’A(I) 

100 CONTINUE 

the need for synchronization will be eliminated, and the 
whole loop may be run in parallel. This transformation, 
called loop alignment, has been utilized in other contexts 
for multiprocessor machines [Padu 791. The transforma- 
tion eliminates the need for a synchronization point by 
moving the offending references to a single processor, 
where the synchronization will be provided naturally by 
the sequential execution on the individual processor. It 
would be nice if loop alignment were applicable in ail 
cases. Unfortunately, it is not. Consider, for instance, 
the following example: 

DOlOOI-1.N 
A(I) = B(1) + C(1) 
D(I) = A(I) + A(I-1) 

100 CONTINUE 

Once again, codegen would split this fragment into two 
parallel loops. In this case however, loop alignment can- 
not be directly applied because the second statement 
requires not only the value computed by the first on the 
previous iteration, but also the value computed on the 
present iteration. Aligning the statement for one use 
throws the other use out of alignment. One way to solve 
this problem is to compute both the necessary values on 
each processor by replicating the first statement, as in 

DOlOOI=l,N 
A(1) = B(1) + C(1) 
Al (1) = B(1) + C(1) 

D(I) = Al(I) + A(I-1) 
100 CONTINUE 

In this replicated form, loop alignment can be applied to 
achieve a single parallel loop. Note that the array Al is 
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temporary to this loop and after alignment, each proces- 
sor iteration accesses a different element. Hence AI can 
be realized as a scalar variable kept in the local memory 
of each processor. 

When can loop alignment and code replication be 
used to unify parallel regions? The answer is provided in 
Theorem 3. 

Theorem 3. Loop alignment and code repli- 
cation can be used to eliminate any loop car- 
ried true dependence that is not part of a re- 
currence consisting entirely of loop indepen- 
dent dependences and dependences carried by 
loops at the same or a deeper nesting level. 

The proof of this theorem requires notation which is too 
detailed to be introduced here, and may be found else- 
where [CSU sr]. The implications for the algorithm co&yen 
are very positive. Since codegen is only concerned with 
fusing parallel regions that are not part of a recurrence, 
alignment and replication should always permit two 
parallel regions to be fused. 

While Theorem 3 shows the utility of replication 
and alignment, it does not indicate the cost of employing 
those transformations. One unfortunate aspect of repli- 
cation and alignment is that their effects can chain 
backwards; that is, a replication created for one align- 
ment may introduce the need for another alignment 
farther back. Consider, for instance, the following exam- 

ple 
DC100 131, N 

C(I) = 2 ' P(1) 
A(I) = B(1) + C(1) 
D(I) = A(1) + A(I-1) 

100 CONTINUE 

Aligning as before on the dependence carried by A yields 

DO 100 I = l,N+l 

IF (1.LE.N) C(I)=2'F(I) 
IF (2.LE.I) A(I-1) = B(I-l)*C(I-1) 
IF (1.LE.N) Al(I) = B(I)+C(I) 
IF (1.LE.N) D(1) = Al(I)+A(I-1) 

100 CONTINUE 

While the alignment has eliminated the conflict with 
respect to A, it has introduced a new conflict with 
respect to C. As a result, the need for replication and 
alignment has simply moved farther back. 

These observations lead us to see that there exist 
graphs for which code replication sufficient to align the 
loop produces an exponential increase in the number of 
statements in the loop. Furthermore, even for cases not 

requiring exponential growth, generating optimal output 
loops may still take exponential time as Theorem 3 
shows. 

Theorem 4. The problem of finding the 
minimum amount of code replication sufficient 
to align a loop is NP-hard in the size of the in- 
put loop. 

The problem is not N&complete in general. A tight 
bound on the size of the minimum sufficient amount of 
replication is given (in [CM srf) by 1 V 1” emax 
{threshold(e) such that t is carried at level k} where V 
is the set of nodes in the dependence graph. Note that if 
the magnitude of thresholds of dependences carried at a 
given level is exponentially larger than IV I, then the 
minimum sufficient amount of replication can also be 
exponentially larger than i V I. 

The proof of Theorem 4 utilizes an interesting 
reduction from 3satisfiability (AIIHU 741. The following 
outlines the proof; more details may be found elsewhere 
psu 971. 

An important concept in the proof (and in replica- 
tion) is the concept of eink nodes, which are nodes in the 
dependence graph that have no successors. In the graph 
shown in Figure 4, if the same alignment value is chosen 
for both sink nodes (C and D), then node A need not be 
replicated but node B must be. On the other hand, if the 
alignment value for C is one more than for D, then node 
B need not be replicated but node A must be. Further, 

Figure 4. Choices During Replication. 
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if neither of these situations occurs, then both A and B 
must be replicated. The need to find relative alignments 
between sink nodes is the source of the combinatorial 
complexity for code replication. 

Proof (outline): From an instance, B, of 3 CNF 
Satisfiability, a graph will be constructed. This graph 
will have m+m(m-1)/2+7n nodes where a is the 
number of variables in the satisfiability problem and m 
is the number of clauses. The nodes in the constructed 
graph can be grouped into three categories. The first 
consists of all of the sink nodes; each sink node 
corresponds to one of the variables that appears in B. 
Assume these variables and nodes are labeled arbitrarily 
?Jb . . . ,v,. The choices in the 3 CNF satisfiability prob- 
lem are boolean values for the variables and the choices 
in the replication problem are alignment values for the 
sink nodes; the construction of the graph is designed to 
allow the following relationship between truth assign- 
ments that satisfy B and alignment value assignments 
corresponding to a minimum amount of replication 

I 

false f/node v; haa alignment value3’ 

Us - true if node v; has alignment value 2.3’ 

The second set of nodes is used to enforce the 
requirement that each sink node vi be assigned an align- 
ment value of 3’ or 2.3’. There is one node in this set 
for each unordered pair <vi,vi> and the edges leaving 
that node are shown in Figure 6. This node must be 
replicated three times unless the each sink node is 
assigned an appropriate alignment value, in which case 
in needs to be replicated only twice. 

Figure 5. Nodes vi, V, and Wii in Gs 

The final set of nodes is used to encode the infor- 
mation in each clause of B. For each clause F,=lr+le-+ls 
of B, where each 1, is a variable or its negation, there is 
a subgraph isomorphic to he one shown in Figure??. Each 

node / i,qr corresponds to one of the seven combinations 
of truth values of the literals that satisfy the clause F,. 
The thresholds on the edges are constructed so that a 
node must be replicated if a literal has a truth value 
different from the value needed for that node. For 
instance, one node will correspond to the combination 
where II and 1s are true but 1s is false. This node will be 
replicated if any of these three conditions is not met. If a 

truth assignment satisfies this clause, then exactly one of 
the non-sink nodes shown in Figure ?? will not be repli- 
cated, otherwise they all will be replicated at least once. 
If the clause is satisfied, this subgraph will be replicated 
to only 19 nodes, otherwise more nodes will be needed. 

It is shown in [CM or] that minimum replication 
requires that alignment values be chosen for each sink 
node tti from the set 3’,2.3’ and that the graph resulting 
from a minimum replication has exactly 
m+3m(m-1)/2+16n nodes if and only if B is 
satisfiable. 

Replication interacts with the code generation 
process described earlier since the goal of replication is 
to reduce the number of barrier synchronization points. 
If replicating a particular node does not affect the 
number barrier synchronization points (i.e., each barrier 
synchronization point is required anyway) then there is 
no point in replicating the node. On the other hand, 
even if replicating a set of nodes reduces the number of 
barrier synchronization points, it may be that the 
increased execution time due to the replication is more 
than the expected cost of a barrier synchronization 
point. 

Since finding the cost of replication is NP-hard 
and potentially exponential, replication in our imple- 
mented depends on heuristics and a short-look ahead to 
determine whether replication is profitable. This also 
represents a part of the algorithm that is directly 
parameterized by the target machine: the cost of barrier 
synchronization is directly compared to the cost of repli- 
cation. 

0. Loop Interchange 

Loop interchange can be used to improve program 
performance by creating larger parallel regions For 
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Figure 6. Nodes V,,Vj and trk and part of a factor node set in Gs r F,-V,+~+vk 

example, in the following loop nest the I loop carries a 
recurrence and so must be executed serially, but the J 
loop can be parallelized. However, if we interchange the 
levels of the loops: 

DO I = 1, M 
DOJ=l, N 

A(1.J) = A(1.J) + A(I-1.J) 
ENDDO 

ENDDO 
DO J = 1, N 

DO I = 1, M 
A(1.J) = A(1.J) + A(I-1, J) 

ENDDO 
ENDDO 

then the outer loop can be parallelized and the expected 
speedup will be greater since the amount of synchroniza- 
tion is reduced and the amount of useful work done 
between synchronization points is larger. 

There may be more than one loop in a nest which 
could be parallelized when shifted to the outermost level. 
In the loop nest shown below, both the I loop and the .I 
loop could be shifted to the outermost level and parallel- 
ized: 

Do I = 1 .N 
DO J=l,N 

x(I,J) = X(I,J) + T*Y(I,J) 
ENDDO 

ENDDO 

The choice of which loop to shift to the outermost posi- 
tion and parallelize is affected by the context of the loop 
nest, Consider the case where only the J loop can be 
parallelized in the next loop nest (or strongly connected 

region in the same loop nest) in the source program, as 
in: 

DO I=l,N 
DO J=l,N 

X(1. J) = X(I,J) + T'Y(1.J) 
U(I, J) = U(I-l,J) + X(I,J) 

ENDDO 
ENDDO 

Note that if we distribute the I loop and interchange 
loops only around the first strongly connected region, 
then a fusion preventing dependence is introduced. To 
avoid a barrier synchronization point between these loop 
nests, it is necessary (by rule P4) that the outer loops be 
fused together. To fuse these loops together, the J loop 
must be in the outermost position for both strongly con- 
nected regions. 

To add loop interchange to the algorithm in sec- 
tion 4, a decision must be made regarding which level of 
each loop will be shifted to the outermost position and 
parallelized. It will be shown that an optimal decision is 
computationally intractable. The difference added by 
loop interchange to the consistent partition problem is 
that consistency of a member of a partition (which 
implies no barrier synchronization points are needed) is 
no longer implied by the pairwise consistency of the 
nodes in that partition. This leads to a generalized 
notion of consistency and to generalized consistent parti- 
tion problem. The following definition corresponds the 
loop interchange problem restricted to a single loop nest 
in which all dependences that cross between piblocks are 
loop independent. The function u corresponds to the 
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Figure 7. 

mapping of strongly connected region into the set of lev- 
els which can be parallclized in the outermost position. 

Definition. An instance of the Rcctrlctcd 
Con&tent PartWon Decision Problem 
(RCPDP) consists of a graph G-(V,E), a 
function u mapping V into (1-k) for some k 
and a positive integer N. The question is: does 
there exist a partition, P-PL...,PN, of V such 
that 

a. If <v,w>EE, wZP;, and WcPj, then 
i<j 

b. For each connected component R of 
each member P;, either u(u)-@ for all 
VCR or there exists an integer i such that 
jEu(u) for all oER. 

Under this new definition, the problem of minimiz- 
ing the number of barrier synchronization points will be 
shown to be NP-complete. This is not surprising since 
the question of whether a barrier synchronization ,point 
is needed bttwtcn two particular regions can no longer 
be answered only with information about the two regions 

involved. The problem will be shown to be NP-hard by 
showing the above decision problem, based on a restric- 
tion of the general problem of code generation with loop 
interchange, is NP-hard. The significance of the rtstric- 
tions on the input program is that two parallel regions 
can be fused if and only if they have the same loop at 
the outermost level. 

Theorem S. The Restricted Consistent Parti- 
tion Decision Problem is NP-Hard. 

Proof: This theorem will be proved by demonstrating a 
polynomial reduction from the 3 Conjunctive Normal 
Form Satisfiability Problem (3SAT). An instance of the 
3SAT consists of a boolean expression in conjunctive 
normal form: 

where 

and each literal f! is a variable in the set {u,, . . . , w,,} or 
tht negation of a variable in that set. The answer to a 
3SAT problem is YES if there exists an assignment of 
logical values true and false to the variables that 
satisfies I?. A graph, Gs, is constructed from an instance 
of 3SAT as follows: for each logical variable 4, there is a 
node labeled Vi and none of these nodes have any incom- 
ing edges; for each clause of three littrals, there is a 
sub-graph isomorphic to the one shown in Figure 7; each 
node is annotated with a subset of {1,2}. The nodes 
labeled vi art each labeled with (1,2}, and every node 
below the second row is labeled as in Figure 7. The 
labels of the nodes in the second row depend on the 
literals in the clause: if I,* is an unnegattd instance of 
variable Vi, then the node corresponding to that literal is 
annotated with the set (2). Otherwise, when the literal 
is a negated variable, the node is labeled with the set 
{ 1). Figure 7 illustrates for the example clause 
Fi-vj+Cb+v,. 

The sets annotating the nodes define a function us 
from the nodes of Gs into {1,2} and let N-7, and so an 
instance of RCPDP has been constructtd from an 
instance of 3SAT in polynomial time. The next step is to 
establish that the 3SAT instance is satisfiable if and 
only if <Gs,ue> has a consistent partition with seven 
members. The only real choices in selecting a consistent 
partition for the graph Gs and function oe are which 
‘loops’ to select as the outermost loops for the nodes 
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labeled Vi. The effect of these choices is whether or not 
any of the nodes in the second row of the subgraphs 
corresponding to the clauses (see Figure 8) can be part of 
the first member of the partition 

If none of the nodes on the second row can be put 
in the first partition, then the minimal consistent parti- 
tion for the subgraph containing that node will have 
eight members. This is illustrated in Figure 8(b). How- 
ever, if any of the nodes on the second row can be put in 
the first partition, then the subgraph containing that 
node will have a consistent seven partition, as illustrated 
in Figure 8(a) (the other two case are similar). 

A node 1 on the second row can be put in the first 
partition if and only if the loop chosen for the variable 
node that is its immediate ancestor is the same as the 
loop in the singleton set labeling 1. If. different loops are 
selected for a literal node and its ancestor, the two 
parallel regions they represent can not be fused and so 
rule P4 will prevent the nodes from being in the same 

Figure 

(1) 0) 

9 tL2) 

8. 

(‘4 

pkrtition. 

Let T:{vb . . . , v.} be a truth assignment that 
satisfies B. This truth assignment is a guide to selecting 
outermost loops for the nodes in GB labeled with vari- 
ables: if T assigns true to v,, then select loop 2 for the 
node vi, otherwise, select loop 1. Let F, be a clause of B 
and Gpi be the subgraph corresponding to Fi. Fi is 

satisfied by T and so some literal l! is satisfied. If f’ is 
the unnegated variable vk, then T assigns true to vi and 
so loop 2 is ielected for ndde vt. Loop 2 is the only 
choice for the node corresponding to lj and hence the 
node corresponding to 1: can be consistently put in the 
first partition and hence the subgraph Gli has a con- 

sistent seven partition. On the other hand, if 1: is the 
negation of variable vt, then T assigns false to oh and so 

l loop 1 is selected for node wk. k~p 1 is the only choice 
for the node corresponding to l! and hence the node 
corresponding to 1; can be consistently put in the first 
partition and again the subgraph Cpi has a consistent 

seven partition. Since each clause is sati&ed, the entire 
graph as a consistent seven partition. 

Assume that CD has a consistent seven partition, 
then in each clause subgraph, GF,, at least one node, ff 

on the second row is contained in the 6rst partition. 
Define a truth assignment as follows:. if the node 1: 
corresponds to a literal consisting of the unnegated vari- 
able vt, then assign true to vk, otherwise, l! corresponds 
to a literal consisting of the negated variable ut and so 
assign the value false to vk. If any variable is not 
assigned a value by this rule, assign that variable true. 
This assignment is well defined, otherwise, for some vari- 
able ut, nodes corresponding to literals consisting of both 
negated and unnegated instance of ub occur in the first 
partition and hence the first partition would not be con- 
sistent. To show that this truth assignment satisfies B, 
note that for each clause F,, there is a literal 1: that is 
true under the above truth assignment and hence Fi is 
true. Since each clause is satisfied, B is satisfied. 

The last two paragraphs have established that B 
is satisfiable if and only if GB with or, has a consistent 
seven partition. 

Theorem 6. The Code Generation Problem 
with Loop Interchange is NP-Complete. 

Prool: The previous theorem shows the general problem 
has a subproblem which is NP-hard, this theorem then 
follows if we can show that the general problem is in NP. 
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This is straightforward: for each regions that has more 
than one choice for outermost parallel loop, non- 
deterministically select one. Based on this choice for 
outermost loop, apply the algorithm of the Section 3 to 
obtain a minimal consistent partition in linear time. 

7. Conclusiona 

This paper discusses alg&ithms for detecting and 
enhancing parallelism in a sequential program. These 
algorithms are based on the concept of loop carried 
dependence and should be quite effective at detecting 
implicit parallelism while remaining reasonably efficient 
for most programs. 

We have implemented these methods in a parallel 
code generation system derived from PFC, a vectorizer 
written at Rice m ~41. The new system analyzes FOR- 
TRAN programs, employing all the transformations 
described in this abstract, and generates parallel Fortran 
code, similar to that used in the examples, for execution 
on the IBM RP3 [GQKM 831. The system also incorporates 
a complete interprocedural analysis of flow insensitive 
side effects and performs interprocedural constant propa- 
gation \ccIcr 80). 
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