
Automatic Decomposition of Scientific Programs
for Parallel Execution+

Randy Allen
David Callahan

Ken Kennedy

Department of Computer Science
Rice University

Houston, Texas 77251 Received 1 l/5/86

Abstract

An algorithm for transforming sequential programs into equivalent parallel programs is presented.
The method concentrates on finding loops whose separate iterations can be run in parallel without syn-
chronization. Although a simple version of the method can be shown to be optimal, the problem of
generating optimal code when loop interchange is employed is shown to be intractable. These methods
are implemented in an experimental translation system developed at Rice University.

1. Introduction

If scientific programs can be effectively partitioned
into regions that may be executed in parallel, significant
gains should be possible by the use of large numbers of
processors. At present, development efforts are begin-
ning on machines with the capability of employing a
thousand processors. The NYU Ultracomputer IGGKM 831,
the Illinois Cedar system [GKLS 841, the Cosmic Cube
[&it z~], and the IBM FE’3 [PBGH ss] have all been designed
with the specific intent of effectively utilizing large
numbers of processors. But without some mechanism for
bringing the power of parallel processing to bear on
practical problems, its benefits may be lost. We cannot
simply shift the burden of parallel processing to the pro-
grammer. Programming for parallel machines is difficult
and we must provide powerful software tools to assist
the application developer if parallel processing is to be
effective.

This paper develops the conceptual foundations of
an automatic scheme for uncovering implicitly parallel
operations within sequential Fortran programs, The
goal of this approach is the detection of DO loops whose
iterations can be run independently in parallel. While

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or speck
permission.

recognition of parallelism in its fullest context is an
undecidable problem @a eel, the limited scheme we
employ can be efficiently implemented.

The methods described in this paper are imple-
mented in an experimental translator, called PFC, in use
at Rice University.

2. Parallelism Model

We assume a large number of processors are avail-
able to work on a single application. Each processor has
some local memory and access to a shared global
memory. Access to a global memory location is not
automatically synchronized by the hardware; instead,
synchronization primitives are available to ensure that
shared data is accessed in a desired sequence.

If we are to effectively use a machine of this type,
we must keep a large number of processors busy. This
requires a sufficient number of independent computation
units of comparable running time. If we need more than
a handful of such units, it seems reasonable to look for
them in DO loops, because the body of a DO loop is exe-
cuted many times with only slight variations among the
iterations; hence the running times should be roughly
equivalent.

We prefer to identify loops for which no inter-
iteration synchronization is required. In such loops we
can block load the inputs into processor local memories
and compute independently until all the iterations are

+ Support for this research wan provided by IBM Cor-
poration.

0 1987 O-89791-215-2/87/0100-0063 754
63

done. Of course, we are still faced with the problem of
making sure that each iteration represents a computa-
tion of sufficient size to justify the synchronization over-
head of a parallel computation @KES]. This issue wit1
not be treated in detail here.

We will present an algorithm that translates pro
grams written in a sequential language, like Fortran, to
parallel programs in the same language augmented with
simple constructs to manage multiple processors. The
principal method for expressing parallelism will be
through a variant of the fork-join construct. All proces-
sors simultaneously begin executing a collection of code
blocks, some of which are derial blocks to be executed by
a single processor and some of which are parallel 00’8,

whose separate iterations can be executed concurrently
by different processors. Each serial block and each itera-
tion of a, parallel Do can be viewed as an independent
task; tasks are assigned to processors non-
deterministically at execution time. When a processor
completes a task, it is reassigned to another task that is

ready for execution. This process continues so long as
there are tasks remaining. When there are no more
tasks to be assigned, the processors wait until all other
tasks are complete before beginning the next task set.

Our examples use an enhanced version of Fortran
to express parallelism. The wait at the end of a task set
is specified by a BARRIER statement, which must be exe
cuted by all processors before any can continue on.
Serial blocks are enclosed between SERIAL and ENDSERIAL

delimiters. The first processor to reach a serial block
executes it; all others fall through. A parallel Do is indi-
cated by a DOALL keyword. If there are more processors
available than DOALL iterations, surplus processors fall
through. While these constructs are inadequate for
expressing all forms of parallelism, they are sufficient for
discussing the central issues in parallel code generation.

Parallel code generation can be viewed as two
stages: decomposition and recombination. The input pro

gram is decomposed into blocks of code that are either
serial (to be executed by a single processor) or parallel (a

parallel Do). These blocks are then recombined into
fork-join constructs as described above. The output pro-
gram consists of clusters of independent tasks separated
by barrier synchronization points.

Our goal is to convert as many serial Do loops as
possible into parallel loops to exploit the multiple pro-
cessors in the target machine while minimizing that

amount of synchronization overhead. The primary con-
straint on parallelism is that certain accesses to shared
variables must be explicitly serialized to ensure
equivalence with the original source program. This
requirement can be stated formally as

(Pl) If two processes access a shared memory
location and if at least one of those processes
modifies that location, then accesses to that lc-
cation must be serialized (by a barrier syn-
chronization point) to preserve the access ord-
er of the original program.

Thus we have three problems: detection of loops that
can be parallelized, detection of shared variable access
which must be explicitly synchronized, and translation of
the original program to parallel form. The approach
taken here is to break the original program into serial
blocks and parallel loops and then insert barrier syn-
chronization points as necessary. Whether a transforma-
tion is profitable depends strongly on the architecture of
the target machine. To avoid unnecessary restriction of
the machine class, we select optimality conditions that
are independent of machine size and memory
configuration. Initially, we will use the following
optimality criteria.

(01) If a statement inaide a Do loop can be eze-
cuted in parallel, then some loop containing it
will be parallelized.

(02) Subject to (Ol), the number o/barrier uyn-
chronization points will be minimized.

A more precise and effective definition of optimality will
be given in the next section.

3. Dependence

A sequential DO loop provides a precise
specification of the order in which statements are to be
executed: statements within one iteration are executed in
the order in which they appear, while different iterations
are executed in an order specified by the control parame-

ters of the DO. In a parallel loop, any given iteration of
the loop is executed by a single processor, thereby
guaranteeing that the execution constraints imposed by
statement order will be preserved. However, a parallel
loop cannot guarantee that the order in which the loop
iterations are performed will be identical to that
specified by the control parameters. Thus, if the parallel
version is to compute the same result as the sequential
loop, the order of iterations must be immaterial to the

64

computation.

Dependence is a relation between the statements
of the program that can be used to preserve execution
order in transformation systems. The pair (S, Sd is a
member of the relation if and only if Sg must be executed
after Sz in order for the results of the program to be
correct. In other words, any transformation that merely
reorders the execution of statements is safe so long as it
preserves the dependence9 in the code. Since the conver-
sion of a sequential DO loop into a parallel DO loop
merely permutes the execution of different iterations,
dependence can be used to precisely determine when this
transformation is safe.

Kuck has identified three types of data depen-
dences that mu& be preserved if the meaning of a give
program is to be unchanged by transformations [Kuck 781:

(1) ttue dependence - SI stores into a variable which S2
later uses.

% x= *..
s, . ..=x

(2) antidependence - S1 fetches from a variable that SZ
later stores into.

s, ..,=x

S2
x- . . .

If S2 were to be executed before SL the value of X
used in S, would be that computed by 27% which is
not correct.

(3) output dependence - two statements both store into
the same variable.

S, x= . . .

S2
x= . . .

While neither S1 nor S2 are affected by a change in
execution order, later statements that use X would
receive the wrong value if S1 and S2 were reversed in
execution order.

Dependences may be further classified into two
categories: loop carried and loop independent. This
classification arises from the fundamental requirement
for a data dependence-the fact that two statements
must reference a common memory location, with control
flowing from one to the other. The required control flow
can occur in one of two ways:

(1) Control can flow from one statement to the second
within a single iteration of all the loops, following
sequential execution order, as in

Do1001=l, N

% A(I) = . . .

92
. * . = A(I)

100 CONTINUE

S, uses the value created by S1 on the same iteration,

thus creating a loop independent dependence.

(2) Control can flow from one statement to the second
because of the iteration of a loop, as in

DO100 1'1, N

% A(1) = *..

S2
. . . = A(I-1)

loo CONTINUE

Such a dependence is loop curried, since it will not
exist if the loop is not iterated.

The fundamental difference between loop carried
and loop independent dependences is easily understood
in the context of the program transformations that
preserve them we a]. Roughly speaking, a loop indepen-
dent dependence is preserved so long as the original
statement order is preserved. Thus, the loops surround-
ing a loop independent dependence may be permuted at
will, without changing the semantics of the statements.
A loop carried dependence, however, is strongly depen-
dent upon the order in which the loops are iterated, but
completely independent of statement order within the
IOOPS.

One final refinement is useful in the case of loop
carried dependence. A loop carried dependence arises
because of the iteration of one particular loop. For
instance, in the following

DO2001=1,N
DOlOOJ=l,N

S, A(1.J) = . . .

S2
. . . = A(I-1,J)

100 CONTINUE
200 CONTINUE

iteration of the outer loop gives rise to the dependence. ’
In this case, we say that the dependence is carried by the
loop at nesting level one. So long as the outer loop is
iterated sequentially, the dependence will be satisfied.
We say that the level of the dependence is equal to the ’
nesting level of the loop which gives rise to it.

Because of the importance of loop carried and loop
independent dependence9 to automatic vectorization,
there exists a number of fairly precise tests for detecting
the presence of these dependences for array variables
within loops [WOU 8% AUC 83, Kenn 80, BBM 74.

65

4. Psrsiiei Code Generation

4.1. Detecting Parallel Loops

Given the informal definitions of loop carried and
loop independent dependences, and the requirements for
parallel loops, it is not very hard to derive the following
theorem:

Theorem 1. The iterations of a loop can be
run on separate processors without synchroni-
zation if and only if that loop carries no
dependence.

Theorem 1 provides a very simple test for deter-
mining when the iterations of a loop may be run in
parallel without synchronization-that is, it determines
sequential loops which can be correctly run as DOALLs
[Kuck 7s). It would be straightforward to develop an alge
rithm for parallelization based upon this test, but the
resulting algorithm would probably not expose much
parallelism in practice, because many loops carry depen-
dences and would have to be run sequentially. As a
result, a more sophisticated strategy is desirable.

As Theorem 1 points out, loop carried dependences
imply a need for communication among processors. This
communication, in turns, requires synchronization, which
inhibits the type of parallel loops we desire. if this com-
munication can be removed from within a loop body,
parallelism can be restored. One transformation for
removing such communication is loop distribution
[Kuck 1. For instance, in the following code:

mlOOI=l.N

% C(I) = A(1) + B(1)

S2 D(I) = C(I-1) l B(1)
100 CONTINUE

the I loop carries a dependence from Sr to Sa thereby
prohibiting parallel execution of the loop. If the 1 loop is
distributed around the two statements

DO 100 I-1, N

81 C(1) = A(1) + 3(I)
100 CONTINUE

m tm I-1. N

62 D(1) = C(I-1) ' B(1)
200 CONTINUE

then the loop carried dependence between the two state-

ments is transformed into a loop independent depen-
dence. As a result, each of the two loops can be exe-
cuted in parallel, so long as all the processors synchron-
ize at the completion of the first loop. While this code

will not execute as fast as a single parallel loop would, it
will still execute much faster than the original sequential
loop.

From this discussion, it should be evident that a
more viable approach to parallel code generation is to
convert loop carried dependences into loop independent
dependences by distributing loops around the depen-
dences. Not all loop carried dependence3 can be
“spread” across two loops. For instance, the following
example

rnwiI=l.N

Sl C(I) = A(1) + B(1)

62 B(I+l) = C(I-1) l A(1)
100 CONTINUE

contains loop carried dependences from Sr to Ss (due to
C) and from S2 to Sr (due to B). Distribution of the loop
around the two statements in this example changes the
semantics of the code, because it causes the use of B in
Sr to get the values that were extant before the loop was
entered, rather than the updated values computed by Se.
As a result, the loop cannot be correctly run in parallel
without some form of synchronization.

In general, a loop can be distributed around the
statements in its body so long as the bodies of individual
strongly connected regions are kept together within a sin-
gle loop copy \Kuck 78). A strongly connected component
of a directed graph is simply a maximal set of nodes and
edges contained in a cycle; thus, the strongly connected
component which contains a particular node includes all
nodes and edges which occur on any path from that node
to itself. Using an algorithm developed by Tarjan, a
directed graph can be partitioned into strongly con-
nected regions in time that is linear in the number of
nodes and edges in the graph. Because strongly con-
nected regions are the “basic blocks” of loop distribu-
tion, they are often called piblocb [Kuck 781.

From the above discussion, it should be apparent
that the only loop carried edges which can be “broken”
by loop distribution are those that cross from one
strongly connected component to another. Loop carried
edges which connect statements in the same piblock can-
not be broken by distributing loops. Thus, the pibkocks
comprising a loop can be separated into two categories:
ectial piblocks (piblocks which contain an internal edge
carried by the loop) and parallel piblocks (piblocks which
do not have internal edges carried by the loop). While a
straightforward algorithm can determine these

66

properties and can schedule loops accordingly, such an
algorithm would still not make the most effective use of
machines close to our model. In general, the larger
parallel regions are, the more likely the regions are to
make effective use of parallelism on a large multiproces-
sor. As a result, fusing parallel piblocks together to
enhance the granularity of parallel regions should always
be profitable. Similarly, fusing serial regions together
reduces loop overhead, and should also be beneficial
when the serial blocks can not be executed concurrently.

The ideas presented so far in this section allow
condition (01) to be made precise by the following
definition

Definition. S is a parallel statement if it is
enclosed in k loops and for some ilk, S is not
part of a cycle in the dependence subgraph
consisting of loop independent dependences
and dependences carried at level i or deeper.
Such a statement is said to be parallel at
level i.

If statement S is parallel at level i, and if we execute
the outer i-l loops serially, then distribute the level i

loop so that S is in a loop at level i by itself, that loop
will not carry any dependences and hence can be paral-
lelized. Under this definition, optimality condition (01)
is precise and the optimality of the algorithm is made
dependent on the accuracy of the dependence analysis.

For the second problem - synchronizing shared
memory accesses - the only accesses which must be syn-
chronized are those between which there is a data depen-
dence. In particular, it is not necessary to consider refer-
ences related in the transitive closure of the dependence
graph since the serialization process haa a transitive
affect. The second problem can be addressed based on
where the endpoints of a data dependence are put after

the program is broken into seria1 and parallel regions
(i.e., DOALL’s).

(PZ) Both endpoints in the same serial or paral-
lel region.

Since only a single processor executes this region (or
iteration of the loop), condition (Pl) cannot be violated.

(P3) One endpoint in a serial region and the
other endpoint in a parallel region.

In this case, a barrier synchronization point will always
be needed between these two regions.

(P4) Endpoint8 are in difletent parallel regions.

Here a barrier synchronization point will only be needed
if the two loops associated with these parallel regions are
not combined.

An implication of (P2) is that all dependences con-
tained in a single region can be ignored by the algorithm
that orders regions and inserts barrier synchronization
points.

4.2. Greedy Code Generator

This section presents an algorithm for solving the
parallel code generation problem. Distinguishing parallel
from serial regions is based on the dependence analysis
discussed in the previous section. The primary task of
the algorithm presented here is to find an ordering of
these regions that minimizes the number of barrier syn-
chronization points needed between them.

The algorithm is shown in Figure 1. The first step
is to distinguish serial and parallel regions; from then on
it is basically a greedy algorithm. Beginning with a
region which has no incoming dependences, build a maxi-
mal set of serial and parailel regions such that barrier
synchronization points are not needed between them.
When a point is reached such that no additional region
can be included, generate code for this set of regions,
generate a barrier synchronization point and repeat.

As discussed above, a cycle of dependences defines
a basic set of statements which must be executed as a
unit. If no dependence in this cycle is carried at level k,
then the entire strongly connected region is a parallel
region, otherwise it is a serial region. Scalar statements
(i.e., statements enclosed in fewer than k loops) are also

serial’. The main loop is basically a topological sort,
modified to delay generating a barrier synchronization
point as long as possible.

The set ui8ited is the set of strongly connected
regions for which code has already been generated. The
set noprek is the set of strongly connected regions for
which code has not been generated but all of whose
immediate predecessors in Dp have been visited. Finally,
the set NotOk is the set of strongly connected regions
which cannot be fused with the current region without
violating (PZ), (P3) or (P4). Note that this set is reset to

’ If the statement modifies only variables stored in tht
private memory associated with each processor, than the state-

ment can be treated both as a strial and as a paralltl region.

67

procedure Codegen (S,D,k);

{ S is a collection of statements and }
{ D is the level A dependence graph of S }
break S into strongly-connected regions P-Pt . . . , Pb ;
let Dp be the dependence graph induced on P by D;
{ prcds(p) is the set of direct predecessors of p in Dp }
noptcds c { PEP 1 preda(p) - Qj };
visited c 0;
while -empty (noprcds) do begin

R to;
NotOK t 0;
while noprcds-NotOK+@ do begin

remove any node p from nopreds-NotOK;
add p to visited and R;
crll CheekSons(

end;

{ generate parallel code or drop down one level }
for each connected region TER do begin

if the nodes in r are serial then begin

let D, be the level k+l dependence graph restrict-
ed to t

call Codegen(r,D,,k+l);
end;

else fuss nodes in r into a single parallel loop;
end;

if -remptg(nopreds)
then generate a barrier synchronization point;

end;

Figure 1. Parallel code generation routine.

empty each time a barrier synchronization point is gen-
erated. The subroutine CAcckSons marks successors of a

strongly connected region as NotOk when they can not
be fused with the node being examined.

The process of generating code includes fusing con-
nected components so that rule (P2) applies and recurs-
ing on serial regions to look for parallelism at deeper
nesting levels. Many details, such as the need to main-
tam the topological order as connected components are
fused and correct handling of scalar statements, have
been omitted for simplicity.

procedure CheckSon (v);
{ see if successors can be fused with u }
for each dependence e-(v,w) in D, do begin

{ check if u and w must be serialized)
if both u and UJ are parallel

then if u and w cannot be fused or e is loop carried
at level k
then add w to NotOK;

else if either u or w is parallel
then add w to NotOK;

if preda(w)Cui&ed
then add w to nopreds;

end;

Figure 2. Check successors.

The second optimality constraint, that every
parallel statement be in a loop which is parallelized, is
achieved. If a statement S is parallel at level i, then
either it is part of a parallel region at a level less than i,
or Codegen will be called with a set of statements includ-
ing S and level equal to i. In this case, S will be found
to be a parallel region and a parallel loop will be gen-
erated around it.

The number of barrier synchronization points
needed depends only on the order of the parallel and
serial regions in the sequence generated. The ordering
generated by the above algorithm is one which needs a

minimal number of barrier synchronization points. To
prove this, we first abstract away some of the details of
the algorithms and examine a more general graph prob-
lem.

Definition. Let G-(V,E) be a directed acy-
clic graph and # a relation called Incon-
&tent defined on VXV. Thus, v#w is read;
“u is inconsistent with w”. A consistent par-
tition of G is a partition P-PL . . . , P, of V
such that the following two condition8 hold /or
each vEP, and WEPj:

a. If <v,w>~E then i<j

b. If u#w then i+j

The mapping of the code generation problem to
the problem of finding consistent partitions is clear: V is
the set of strongly connected regions of the dependence
graph restricted to loop independent edges and loop

68

carried edges that are carried at levels deeper than k. E

is the set of inter-region edges of this restricted depen-
dence graph. Two nodes are inconsistent if they must be
separated by a barrier synchronization point according
to rules (P3) and (P4). A consistent partition is a partial
ordering on the nodes in V that does not violate the par-
tial ordering induced by E and that respects the require-
ments of (P3) and (P4).

Any consistent partition for the code generation
problem will induce a valid ordering of the parallel and
seriaf regions and clearly, the greedy algorithm above
generates a consistent partition, from now on called the
greedy partition. The minimal number of barrier syn-
chronization points needed for a code generation prob-
lem is thus equal to one less than the number of ele-
ments in a consistent partition with the fewest number
of elements. We will show that the greedy partition has
the fewest number of elements and hence minimizes the
number of barrier synchronization points at the outer-
most level.

Theorem 2. The greedy partition of G has a
minimal number of elements.

Proofi Let GP-GI,...,G, be the greedy partition of
G-(V,E) and let P=PI,...,Pm by any other consistent
partition of G. We show that nlm by induction on
IVi. If /Vi-l, th en n-l and the result is immediate
since any partition must have at least one element.
Assume that the greedy partition is minimal for all
graphs with fewer than) nodes and that 1 V 1-k

An important property of the greedy algorithm is
that Ga...,G. is the greedy partition of G restricted to
the nodes in V-G,. This follows from the fact that the
set NotOK is reset to empty each time a new element of
the partition is started, thus the algorithm is effectively
applied recursively to the reduced graph and so the par-
tition generated for the reduced graph is also a greedy
partition. If PICG1 then PrG,...,P,-G, is a con-
sistent partition of G restricted to V-Cl. By the induc-
tion hypothesis, we know that Ga...,G, is minimal for
that restricted graph and so n-llm-1 and the
theorem follows.

Otherwise, select wEPrG1 such that
prede(w)CG1. Since w is not in Gr, at some point w
was put into the set NotOK. This occurs only if there
exists uEpreda(w) such that W#V. By property (a) of a
consistent partition, u must be in PI since w is, but then

we have a contradiction of property (b) which prohibits
u and w being in the same element of P. Therefore
PICGl and the theorem follows.

A key factor in this proof is the fact preds(w)CG1

and w$Gr imply that w is inconsistent with at least one
of its predecessors. When we add the ability to inter-
change loop levels, we lose this property and the algo-
rithm is no longer optimal.

4.3. Modifications for the Multi-Loop Case

In the presence of nested loops, the simple greedy
algorithm is non-optimal due to the fact that serial
regions which have deeper parallelism need to be treated
differently from serial regions without deeper parallelism.
The greedy algorithm minimizes the number of parti-
tions at the outer level but does not minimize the total
number of barrier synchronization points expected.

To correctly handle the multi-loop case, each
serial region must be examined for deeper parallelism
before deciding which partition to put it in. Thus, the
first step after breaking a loop into strongly connected
regions is to recursively generate parallel code for each
serial region that has statements at a deeper nesting
level than k. If a serial region, r, has any parallelism
deeper, then it is flagged as such: deeper(r)+true if r

has parallelism at a deeper level; otherwise

procedure CheckSons (u);

{ see if successors can be fused with u }
for each dependence e-(u,w) in D, do begin

{ check if u and w must be serialized)
if both u and w are parallel

then if u and w cannot be fused or c is loop carried
at level k

then add w to NotOK;

else if either u or w is parallel
then add w to NotOK;

else if neither u nor w is scalar and one is deeper
then add w to NotOK;

if preds(w)Cuisited
then add w to nopreds;

end;

Figure 3. Modification for Nested Loops.

69

deeper(r)+false . With the additional information in
the deeper flags, we modify the procedure CheckSons t,o

prevent fusing deeper regions with other regions (see Fig-
ure 3). Note that if a serial region has no statements at a
deeper nesting level, then it can be fused with a region
with deeper parallelism since the barrier synchronization
between them is at the outermost nesting level regard-
less. A serial region with no statements at a deeper
nesting level is said to be scalar.

Finally, the code to fuse connected regions must
be modified. If two deeper regions are in the same parti-
tion, they must be completely independent, so we can
merge them together so that they share barrier syn-
chronization points. For example, the two loops

DO I = 1.N
DOALL J = 1.N

A(J,J) = A(I-l,J)+A(I,J)
ENDDO
IF (1.LT.N) BARRJER

ENDDO
DO I = 1.N

DOALL J =l,N .
B(1.J) = B(I-l.J)+B(I,J)

ENDDO
IF (1.LT.N) BARRIER

ENDDO

can be merged together into

DO I = 1.N
DOALL J = l.N

A(1.J) = A(I-l,J)+A(I,J)
B(1.J) = B(I-l,J)*B(I,J)

ENDW
IF (1.LT.N) BARRIER

ENDDO

The algorithm to perform this merge is straightforward
since the two regions are completely independent.

I-Ienceforth, the greedy partition in the nested loop
case will refer to the partition built by the greedy algo
rithm as modified in this section. The proof of optimal-
ity in this case can be found in Callahan’s dissertation
[Call 871.

5. Alignment and Replication

Whenever a value is created on one loop iteration
(processor) and used on a different iteration (processor),
as in

DOlOOI-1, N

=1 AU) = B(1) + C(1)

S2 D(I) = I*A(I-1)

100 CONTINUE

codegen creates parallel loops by making the dependence
loop independent using loop distribution. While the
parallelism is enhanced by this transformation, there is
still an undesirable synchronization point between the
two loops. Note that the need for this synchronization
point arises because each iteration of the loop creates a
value fetched by another iteration of the loop. If the
fetches can be “aligned” by one iteration, so that they
occur on the same iteration (and therefore the same pro-
cessor), as in

DO1OOI=O,N
IF (I.CT.0) A(I) = B(I)+C(I)
IF (1.LT.N) D(I+l) = 2’A(I)

100 CONTINUE

the need for synchronization will be eliminated, and the
whole loop may be run in parallel. This transformation,
called loop alignment, has been utilized in other contexts
for multiprocessor machines [Padu 791. The transforma-
tion eliminates the need for a synchronization point by
moving the offending references to a single processor,
where the synchronization will be provided naturally by
the sequential execution on the individual processor. It
would be nice if loop alignment were applicable in ail
cases. Unfortunately, it is not. Consider, for instance,
the following example:

DOlOOI-1.N
A(I) = B(1) + C(1)
D(I) = A(I) + A(I-1)

100 CONTINUE

Once again, codegen would split this fragment into two
parallel loops. In this case however, loop alignment can-
not be directly applied because the second statement
requires not only the value computed by the first on the
previous iteration, but also the value computed on the
present iteration. Aligning the statement for one use
throws the other use out of alignment. One way to solve
this problem is to compute both the necessary values on
each processor by replicating the first statement, as in

DOlOOI=l,N
A(1) = B(1) + C(1)
Al (1) = B(1) + C(1)

D(I) = Al(I) + A(I-1)
100 CONTINUE

In this replicated form, loop alignment can be applied to
achieve a single parallel loop. Note that the array Al is

70

temporary to this loop and after alignment, each proces-
sor iteration accesses a different element. Hence AI can
be realized as a scalar variable kept in the local memory
of each processor.

When can loop alignment and code replication be
used to unify parallel regions? The answer is provided in
Theorem 3.

Theorem 3. Loop alignment and code repli-
cation can be used to eliminate any loop car-
ried true dependence that is not part of a re-
currence consisting entirely of loop indepen-
dent dependences and dependences carried by
loops at the same or a deeper nesting level.

The proof of this theorem requires notation which is too
detailed to be introduced here, and may be found else-
where [CSU sr]. The implications for the algorithm co¥
are very positive. Since codegen is only concerned with
fusing parallel regions that are not part of a recurrence,
alignment and replication should always permit two
parallel regions to be fused.

While Theorem 3 shows the utility of replication
and alignment, it does not indicate the cost of employing
those transformations. One unfortunate aspect of repli-
cation and alignment is that their effects can chain
backwards; that is, a replication created for one align-
ment may introduce the need for another alignment
farther back. Consider, for instance, the following exam-

ple
DC100 131, N

C(I) = 2 ' P(1)
A(I) = B(1) + C(1)
D(I) = A(1) + A(I-1)

100 CONTINUE

Aligning as before on the dependence carried by A yields

DO 100 I = l,N+l

IF (1.LE.N) C(I)=2'F(I)
IF (2.LE.I) A(I-1) = B(I-l)*C(I-1)
IF (1.LE.N) Al(I) = B(I)+C(I)
IF (1.LE.N) D(1) = Al(I)+A(I-1)

100 CONTINUE

While the alignment has eliminated the conflict with
respect to A, it has introduced a new conflict with
respect to C. As a result, the need for replication and
alignment has simply moved farther back.

These observations lead us to see that there exist
graphs for which code replication sufficient to align the
loop produces an exponential increase in the number of
statements in the loop. Furthermore, even for cases not

requiring exponential growth, generating optimal output
loops may still take exponential time as Theorem 3
shows.

Theorem 4. The problem of finding the
minimum amount of code replication sufficient
to align a loop is NP-hard in the size of the in-
put loop.

The problem is not N&complete in general. A tight
bound on the size of the minimum sufficient amount of
replication is given (in [CM srf) by 1 V 1” emax
{threshold(e) such that t is carried at level k} where V
is the set of nodes in the dependence graph. Note that if
the magnitude of thresholds of dependences carried at a
given level is exponentially larger than IV I, then the
minimum sufficient amount of replication can also be
exponentially larger than i V I.

The proof of Theorem 4 utilizes an interesting
reduction from 3satisfiability (AIIHU 741. The following
outlines the proof; more details may be found elsewhere
psu 971.

An important concept in the proof (and in replica-
tion) is the concept of eink nodes, which are nodes in the
dependence graph that have no successors. In the graph
shown in Figure 4, if the same alignment value is chosen
for both sink nodes (C and D), then node A need not be
replicated but node B must be. On the other hand, if the
alignment value for C is one more than for D, then node
B need not be replicated but node A must be. Further,

Figure 4. Choices During Replication.

71

if neither of these situations occurs, then both A and B
must be replicated. The need to find relative alignments
between sink nodes is the source of the combinatorial
complexity for code replication.

Proof (outline): From an instance, B, of 3 CNF
Satisfiability, a graph will be constructed. This graph
will have m+m(m-1)/2+7n nodes where a is the
number of variables in the satisfiability problem and m
is the number of clauses. The nodes in the constructed
graph can be grouped into three categories. The first
consists of all of the sink nodes; each sink node
corresponds to one of the variables that appears in B.
Assume these variables and nodes are labeled arbitrarily
?Jb . . . ,v,. The choices in the 3 CNF satisfiability prob-
lem are boolean values for the variables and the choices
in the replication problem are alignment values for the
sink nodes; the construction of the graph is designed to
allow the following relationship between truth assign-
ments that satisfy B and alignment value assignments
corresponding to a minimum amount of replication

I

false f/node v; haa alignment value3’

Us - true if node v; has alignment value 2.3’

The second set of nodes is used to enforce the
requirement that each sink node vi be assigned an align-
ment value of 3’ or 2.3’. There is one node in this set
for each unordered pair <vi,vi> and the edges leaving
that node are shown in Figure 6. This node must be
replicated three times unless the each sink node is
assigned an appropriate alignment value, in which case
in needs to be replicated only twice.

Figure 5. Nodes vi, V, and Wii in Gs

The final set of nodes is used to encode the infor-
mation in each clause of B. For each clause F,=lr+le-+ls
of B, where each 1, is a variable or its negation, there is
a subgraph isomorphic to he one shown in Figure??. Each

node / i,qr corresponds to one of the seven combinations
of truth values of the literals that satisfy the clause F,.
The thresholds on the edges are constructed so that a
node must be replicated if a literal has a truth value
different from the value needed for that node. For
instance, one node will correspond to the combination
where II and 1s are true but 1s is false. This node will be
replicated if any of these three conditions is not met. If a

truth assignment satisfies this clause, then exactly one of
the non-sink nodes shown in Figure ?? will not be repli-
cated, otherwise they all will be replicated at least once.
If the clause is satisfied, this subgraph will be replicated
to only 19 nodes, otherwise more nodes will be needed.

It is shown in [CM or] that minimum replication
requires that alignment values be chosen for each sink
node tti from the set 3’,2.3’ and that the graph resulting
from a minimum replication has exactly
m+3m(m-1)/2+16n nodes if and only if B is
satisfiable.

Replication interacts with the code generation
process described earlier since the goal of replication is
to reduce the number of barrier synchronization points.
If replicating a particular node does not affect the
number barrier synchronization points (i.e., each barrier
synchronization point is required anyway) then there is
no point in replicating the node. On the other hand,
even if replicating a set of nodes reduces the number of
barrier synchronization points, it may be that the
increased execution time due to the replication is more
than the expected cost of a barrier synchronization
point.

Since finding the cost of replication is NP-hard
and potentially exponential, replication in our imple-
mented depends on heuristics and a short-look ahead to
determine whether replication is profitable. This also
represents a part of the algorithm that is directly
parameterized by the target machine: the cost of barrier
synchronization is directly compared to the cost of repli-
cation.

0. Loop Interchange

Loop interchange can be used to improve program
performance by creating larger parallel regions For

72

Figure 6. Nodes V,,Vj and trk and part of a factor node set in Gs r F,-V,+~+vk

example, in the following loop nest the I loop carries a
recurrence and so must be executed serially, but the J
loop can be parallelized. However, if we interchange the
levels of the loops:

DO I = 1, M
DOJ=l, N

A(1.J) = A(1.J) + A(I-1.J)
ENDDO

ENDDO
DO J = 1, N

DO I = 1, M
A(1.J) = A(1.J) + A(I-1, J)

ENDDO
ENDDO

then the outer loop can be parallelized and the expected
speedup will be greater since the amount of synchroniza-
tion is reduced and the amount of useful work done
between synchronization points is larger.

There may be more than one loop in a nest which
could be parallelized when shifted to the outermost level.
In the loop nest shown below, both the I loop and the .I
loop could be shifted to the outermost level and parallel-
ized:

Do I = 1 .N
DO J=l,N

x(I,J) = X(I,J) + T*Y(I,J)
ENDDO

ENDDO

The choice of which loop to shift to the outermost posi-
tion and parallelize is affected by the context of the loop
nest, Consider the case where only the J loop can be
parallelized in the next loop nest (or strongly connected

region in the same loop nest) in the source program, as
in:

DO I=l,N
DO J=l,N

X(1. J) = X(I,J) + T'Y(1.J)
U(I, J) = U(I-l,J) + X(I,J)

ENDDO
ENDDO

Note that if we distribute the I loop and interchange
loops only around the first strongly connected region,
then a fusion preventing dependence is introduced. To
avoid a barrier synchronization point between these loop
nests, it is necessary (by rule P4) that the outer loops be
fused together. To fuse these loops together, the J loop
must be in the outermost position for both strongly con-
nected regions.

To add loop interchange to the algorithm in sec-
tion 4, a decision must be made regarding which level of
each loop will be shifted to the outermost position and
parallelized. It will be shown that an optimal decision is
computationally intractable. The difference added by
loop interchange to the consistent partition problem is
that consistency of a member of a partition (which
implies no barrier synchronization points are needed) is
no longer implied by the pairwise consistency of the
nodes in that partition. This leads to a generalized
notion of consistency and to generalized consistent parti-
tion problem. The following definition corresponds the
loop interchange problem restricted to a single loop nest
in which all dependences that cross between piblocks are
loop independent. The function u corresponds to the

73

Figure 7.

mapping of strongly connected region into the set of lev-
els which can be parallclized in the outermost position.

Definition. An instance of the Rcctrlctcd
Con&tent PartWon Decision Problem
(RCPDP) consists of a graph G-(V,E), a
function u mapping V into (1-k) for some k
and a positive integer N. The question is: does
there exist a partition, P-PL...,PN, of V such
that

a. If <v,w>EE, wZP;, and WcPj, then
i<j

b. For each connected component R of
each member P;, either u(u)-@ for all
VCR or there exists an integer i such that
jEu(u) for all oER.

Under this new definition, the problem of minimiz-
ing the number of barrier synchronization points will be
shown to be NP-complete. This is not surprising since
the question of whether a barrier synchronization ,point
is needed bttwtcn two particular regions can no longer
be answered only with information about the two regions

involved. The problem will be shown to be NP-hard by
showing the above decision problem, based on a restric-
tion of the general problem of code generation with loop
interchange, is NP-hard. The significance of the rtstric-
tions on the input program is that two parallel regions
can be fused if and only if they have the same loop at
the outermost level.

Theorem S. The Restricted Consistent Parti-
tion Decision Problem is NP-Hard.

Proof: This theorem will be proved by demonstrating a
polynomial reduction from the 3 Conjunctive Normal
Form Satisfiability Problem (3SAT). An instance of the
3SAT consists of a boolean expression in conjunctive
normal form:

where

and each literal f! is a variable in the set {u,, . . . , w,,} or
tht negation of a variable in that set. The answer to a
3SAT problem is YES if there exists an assignment of
logical values true and false to the variables that
satisfies I?. A graph, Gs, is constructed from an instance
of 3SAT as follows: for each logical variable 4, there is a
node labeled Vi and none of these nodes have any incom-
ing edges; for each clause of three littrals, there is a
sub-graph isomorphic to the one shown in Figure 7; each
node is annotated with a subset of {1,2}. The nodes
labeled vi art each labeled with (1,2}, and every node
below the second row is labeled as in Figure 7. The
labels of the nodes in the second row depend on the
literals in the clause: if I,* is an unnegattd instance of
variable Vi, then the node corresponding to that literal is
annotated with the set (2). Otherwise, when the literal
is a negated variable, the node is labeled with the set
{ 1). Figure 7 illustrates for the example clause
Fi-vj+Cb+v,.

The sets annotating the nodes define a function us
from the nodes of Gs into {1,2} and let N-7, and so an
instance of RCPDP has been constructtd from an
instance of 3SAT in polynomial time. The next step is to
establish that the 3SAT instance is satisfiable if and
only if <Gs,ue> has a consistent partition with seven
members. The only real choices in selecting a consistent
partition for the graph Gs and function oe are which
‘loops’ to select as the outermost loops for the nodes

74

labeled Vi. The effect of these choices is whether or not
any of the nodes in the second row of the subgraphs
corresponding to the clauses (see Figure 8) can be part of
the first member of the partition

If none of the nodes on the second row can be put
in the first partition, then the minimal consistent parti-
tion for the subgraph containing that node will have
eight members. This is illustrated in Figure 8(b). How-
ever, if any of the nodes on the second row can be put in
the first partition, then the subgraph containing that
node will have a consistent seven partition, as illustrated
in Figure 8(a) (the other two case are similar).

A node 1 on the second row can be put in the first
partition if and only if the loop chosen for the variable
node that is its immediate ancestor is the same as the
loop in the singleton set labeling 1. If. different loops are
selected for a literal node and its ancestor, the two
parallel regions they represent can not be fused and so
rule P4 will prevent the nodes from being in the same

Figure

(1) 0)

9 tL2)

8.

(‘4

pkrtition.

Let T:{vb . . . , v.} be a truth assignment that
satisfies B. This truth assignment is a guide to selecting
outermost loops for the nodes in GB labeled with vari-
ables: if T assigns true to v,, then select loop 2 for the
node vi, otherwise, select loop 1. Let F, be a clause of B
and Gpi be the subgraph corresponding to Fi. Fi is

satisfied by T and so some literal l! is satisfied. If f’ is
the unnegated variable vk, then T assigns true to vi and
so loop 2 is ielected for ndde vt. Loop 2 is the only
choice for the node corresponding to lj and hence the
node corresponding to 1: can be consistently put in the
first partition and hence the subgraph Gli has a con-

sistent seven partition. On the other hand, if 1: is the
negation of variable vt, then T assigns false to oh and so

l loop 1 is selected for node wk. k~p 1 is the only choice
for the node corresponding to l! and hence the node
corresponding to 1; can be consistently put in the first
partition and again the subgraph Cpi has a consistent

seven partition. Since each clause is sati&ed, the entire
graph as a consistent seven partition.

Assume that CD has a consistent seven partition,
then in each clause subgraph, GF,, at least one node, ff

on the second row is contained in the 6rst partition.
Define a truth assignment as follows:. if the node 1:
corresponds to a literal consisting of the unnegated vari-
able vt, then assign true to vk, otherwise, l! corresponds
to a literal consisting of the negated variable ut and so
assign the value false to vk. If any variable is not
assigned a value by this rule, assign that variable true.
This assignment is well defined, otherwise, for some vari-
able ut, nodes corresponding to literals consisting of both
negated and unnegated instance of ub occur in the first
partition and hence the first partition would not be con-
sistent. To show that this truth assignment satisfies B,
note that for each clause F,, there is a literal 1: that is
true under the above truth assignment and hence Fi is
true. Since each clause is satisfied, B is satisfied.

The last two paragraphs have established that B
is satisfiable if and only if GB with or, has a consistent
seven partition.

Theorem 6. The Code Generation Problem
with Loop Interchange is NP-Complete.

Prool: The previous theorem shows the general problem
has a subproblem which is NP-hard, this theorem then
follows if we can show that the general problem is in NP.

75

This is straightforward: for each regions that has more
than one choice for outermost parallel loop, non-
deterministically select one. Based on this choice for
outermost loop, apply the algorithm of the Section 3 to
obtain a minimal consistent partition in linear time.

7. Conclusiona

This paper discusses alg&ithms for detecting and
enhancing parallelism in a sequential program. These
algorithms are based on the concept of loop carried
dependence and should be quite effective at detecting
implicit parallelism while remaining reasonably efficient
for most programs.

We have implemented these methods in a parallel
code generation system derived from PFC, a vectorizer
written at Rice m ~41. The new system analyzes FOR-
TRAN programs, employing all the transformations
described in this abstract, and generates parallel Fortran
code, similar to that used in the examples, for execution
on the IBM RP3 [GQKM 831. The system also incorporates
a complete interprocedural analysis of flow insensitive
side effects and performs interprocedural constant propa-
gation \ccIcr 80).

References

A.V. Aho, J.E. Hopcroft and J.D. Ullman, The
design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass. 1974.

J.R. Allen, “Dependence analysis for sub-
scripted variables and its application to pro-
gram transformations,” Ph.D. Dissertation,
Department of Mathematical Sciences, Rice
University, Houston, TX, April 1983.

J.R. Allen and K. Kennedy, “PFC: a program
to convert Fortran to parallel form,” Super-
computers: Design and Applications, K. Hwang,
cd., IEEE Computer Society Press, Silver
Spring, MD, 1984, 186-203.

J.R. Allen and K. Kennedy, “A parallel pro-
gramming environment,” IEEE Software 2(d),
July 1985, 21-29.

U. Bancrjoe, “Data dependence in ordinary
programs,” Report 76-837, Dept. of Computer
Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois, November 1976.

A. J. Bernstein, “Analysis of programs for
parallel processing,” IEEE Trans. Electronic
Computers 15(5), October 1966.

[ml 871

[CCKT 861

[FlaK 861

[GGKh4 881

[QKLS 841

\Kenn 801

[Kuck 781

padu 791

(PBGI~ 861

pit 86)

[WOU 8!2]

D.CalIahan “A Global Approach to Detection
of Parallelism,” Ph.D. Dissertation, Dept. of
Computer Science, Rice University, Houston,
TX, January 1987.

D.Callahan, K.Cooper, K Kennedy, and
L.Torczan, “Interprocedural Constant Propa-
gation” Proceedings SIGPLAN ‘86 Symp. on
Compiler Construction, SIGPLAN Notices
V21,No. 7, July 1986

R. Cytron, “Compile-time scheduling and
optimization for asynchronous machines,”
Ph.D. Dissertation, University of Illinois at
Urbana-Champaign, August 1982.

H.P. Flatt and K. Kennedy, “Performance of
Parallel Processors,” Rice COMP TR85-22,
Department of Computer Science, Rice Univer-
sity, Houston, Texas, June 1985.

A. Gottlieb, R. Grishman, C.P. Kruskal, K.P.
McAuliffe, L. Rudolph, and M. Snir, “The
NYU ultracomputer -- designing an MIMD
shared memory parallel computer,” IEEE
Trans. on Computer8 c-32(2), February 1983,
175-189.

D. Gajski, D. Kuck, D. Lawrie and A. Sameh,
“Cedar,” Supercomputers: Design and Applica-
tions, K. Hwang, ed., IEEE Computer Society
Press, Silver Spring, MD, 1984, 251-275.

K. Kennedy, “Automatic translation of For-
tran programs to vector form,” Rice Technical
Report 476-029-4, Rice University, October
1980.

D.J. Kuck, The Structure oj Computere and
Computations \.ulume 1, John Wiley and Sons,
New York, 1978.

D.A. Padua, “Multiprocessors: discussion of
some theoretical and practical problems,” TR
UIUCDCS-R-79-90, University of Illinois at
Urbana-Champaign, Urbana, III., November
1979.

G.F. PEster, W.C. Brantley, D.A. George, S.L.
Harvey, W.J.Kleinfelder, K.P. McAuliffe, E.A.
Melton, V.A. Norton and J. Weiss, “The IBM
research parallel processor prototype (RP3):
introduction and architecture,” RC 11060,
IBM T.J. Watson Research Center, Yorktown
Heights, NY, March 1985.

C.L. Seitz, “The Cosmic Cube,” Comm. ACM
.28(l), January 1985, pp. 22-33.

M. J. Wolfe, “Optimizing supercompilers for
supercomputers,” TR UIUCDCS-R-82-1105,
Department of Computer Science, University
of Illinois at Urbana-Champaign, October
1982.

74

