Enhancing Fine-grained parallelism

By -
Rajarshi Rakshit (05305024)
Dhananjay Muli (05305906)
Ashish Gudhe (05305028)

FINE-GRAINED PARALLELISM

- After Allen-Kennedy's codegen algo., what's next?

Can we fine-grain the parallelism?
Here we will look at some transformations that support it.

Loop Interchange

DO I=1,N
DO J=1,M
S: $\quad A(I, J+1)=A(I, J)+B$
ENDDO
ENDDO

-The transformed code after loop interchange can be vectorised

Loop Interchange

Here we interchange the loop I and loop J.

$$
\begin{aligned}
& \mathrm{DO} \mathrm{I}=1, \mathrm{~N} \\
& \mathrm{DO} \mathrm{~J}=1, \mathrm{M} \\
& \mathrm{~S}: \quad \mathrm{A}(\mathrm{I}, \mathrm{~J}+1)=\mathrm{A}(\mathrm{I}, \mathrm{~J})+\mathrm{B} \\
& \mathrm{ENDDO} \\
& \text { ENDDO }
\end{aligned}
$$

-The transformed code after loop interchange can be vectorised

Loop Interchange

$$
\begin{aligned}
& \text { DO I=1,N } \quad \text { DO } \mathrm{J}=\mathrm{I}, \mathrm{M} \\
& \text { DO } \mathrm{J}=1, \mathrm{M} \quad \mathrm{DO} \text { I=1,N } \\
& \text { S: } \quad A(I, J+1)=A(I, J)+B \longrightarrow S: \quad A(I, J+1)=A(I, J)+B \\
& \text { ENDDO } \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

The transformed code after loop interchange, vectorised

DO J=I,M
S: $\quad(1: N, J+1)=A(1: N, J)+B$
ENDDO

Safety of Loop Interchange

Not all the loops can be interchanged

DO I=1,M
DO J=1,N
S:
$A(1+1, J)=A(1, J+1)+B \quad S:$ ENDDO
ENDDO

DO J=1,N

Safety of Loop Interchange(cont.)

```
    DO I=1,N
    DO J=1,M
    DO K=1,L
S: }\quad\textrm{A}(\textrm{I}+1,\textrm{J}+1,\textrm{K})=A(I, J,K) + A(I, J+1, K+1
    ENDDO
```

 ENDDO
 ENDDO

SOURCE : A(I+1, J+1,K)
SINK :
A(I, J,K)
D.V. :
$<,<,=$

SOURCE: A(I+1, J+1,K)
SINK : $\quad A(1, J+1, K+1)$
D.V.: <, = , >

Safety of Loop Interchange(cont.)

DO I=1,N
DO J=1,N
DO K=1,N
S: $\quad A(I, J)=A(I, J)+B(I, K)+C(K, J)$ ENDDO
ENDDO
ENDDO

Safety of Loop Interchange(cont.)

```
DO I=1,N
    DO J=1,N
    DO K=1,L
S: \(\quad A(I, J)=A(I, J)+B(I, K)+C(K, J)\)
    ENDDO
        ENDDO
ENDDO
DO I=1,N
    FORALL (J=1,N)
\(\mathrm{S}: \quad \mathrm{A}(1: \mathrm{N}, \mathrm{J})=\mathrm{A}(1: \mathrm{N}, \mathrm{J})+\mathrm{B}(1: \mathrm{N}, \mathrm{K})+\mathrm{C}(\mathrm{K}, \mathrm{J})\)
        END FORALL
ENDDO
```


Scalar Expansion

Example - Swapping of two vectors:
DO I =1, N

S1 T = A(I)
$\mathrm{S} 2 \quad \mathrm{~A}(\mathrm{I})=\mathrm{B}(\mathrm{I})$
S3 $\quad B(I)=T$
ENDDO

Scalar Expansion

Code produced by scalar expansion :
DO I =1, N
S1 $\quad \mathrm{T}(\mathrm{I})=\mathrm{A}(\mathrm{l})$
S2 $\quad A(I)=B(I)$
S3 $B(I)=T \$(1)$
ENDDO
Vectorized code :

S1	$T \$(1: N)=A(1: N)$
S2	$A(1: N)=B(1: N)$
S3	$B(1: N)=T \$(1: N)$

Scalar Expansion

- Profitability of scalar expansion
- Deletable edges in the dependence graph
- Covering definition of a scalar

Scalar Expansion

- Edges that are deletable in the dependce graph by scalar expansion :
- Backward carried antidependences
- Forward carried output dependences
- Loop independent antidependences into the covering definition
- Loop carried true dependences from a covering definition

Scalar Renaming

Example :

\[

\]

Scalar Renaming

Example :

$$
\begin{aligned}
& \text { DO I = 1,100 } \\
& \text { S1 } \quad \mathrm{T}=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I}) \\
& \text { S2 } \quad C(I)=T+2 \\
& \text { S3 } \mathrm{T}=\mathrm{B}(\mathrm{I})+3 \text { * } \mathrm{A}(\mathrm{I}) \\
& \text { S4 } \quad \mathrm{B}(\mathrm{l}+1)=\mathrm{T}-4 \\
& \text { ENDDO }
\end{aligned}
$$

After scalar renaming :
DO I = 1,100
S1 $\quad \mathrm{T} 1=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I})$
S2 $\quad \mathrm{C}(\mathrm{I})=\mathrm{T} 1+2$
S3 $\quad \mathrm{T} 2=\mathrm{B}(\mathrm{I})+\mathrm{D}(\mathrm{I})$
S4 $\quad \mathrm{C}(\mathrm{I}+1)=\mathrm{T} 2-4$
ENDDO

Array Renaming

- Similar to Scalar Renaming.
- Idea is to remove loop independent anti-dependence and output dependence.
- Identify a define-use pair and rename it.

DO I = $1, \mathrm{~N}$
S1: A[l] $=\mathrm{A}[1-1]+\mathrm{X}$
S2: $\mathrm{Y}[1]=\mathrm{A}[1]+\mathrm{Z}$
S3: A[l] = B[l] + C ENDDO

DO I = $1, \mathrm{~N}$
S1: A\$[l] = A[l-1]+X
S2: $\mathrm{Y}[1]=\mathrm{A} \$[1]+\mathrm{Z}$
S3: $A[1]=B[1]+C$ ENDDO

Vector code after array renaming :-

$$
\begin{aligned}
& S 3: A(1: N)=B(1: N)+C \\
& S 1: A \$(1: N)=A(0: N-1)+X \\
& S 2: Y(1: N)=A \$(1: N)+Z
\end{aligned}
$$

Index Set Splitting

- Dependence pattern in the iteration space.
- Idea is to split the loop based on the dependence.
- By splitting loop we are splitting the index of the array.

3 Methods of Index Set Splitting:-

- Threshold Analysis
- Loop peeling
- Section based splitting

Threshold Analysis

- Compute the threshold(dependence distance) for a reference pair.
- Breaks the loop into sizes smaller than the threshold.

Example for constant threshold.

DO I = 1, 20
$\mathrm{A}(\mathrm{I}+5)=\mathrm{A}(\mathrm{I})+\mathrm{B}$
ENDDO

Threshold Analysis(cont)

Example for crossing threshold.

DO I = 1, 100

$$
\mathrm{A}[101-\mathrm{I}]=\mathrm{A}[1]+\mathrm{B}
$$

ENDDO;

DO I $=1,100,50$ DO J=I I I + 49
$A[101-\mathrm{J}]=\mathrm{A}[\mathrm{J}]+\mathrm{B}$
ENDDO
ENDDO;

Vector code generated :-
DO I = 1, 100, 50 A(101-l:51-I) = A(I:l+49) + B
ENDDO

Loop Peeling

- Idea is to peel the loop or remove certain iterations outside the loop

Example which peels out a single iteration

DO J = $1, \mathrm{~N}$
$\mathrm{A}(\mathrm{J})=\mathrm{A}(\mathrm{J})+\mathrm{A}(1)$
ENDDO

$$
\begin{aligned}
& A(1)=A(1)+A(1) \\
& D O J=2, N \\
& A(J)=A(J)+A(1)
\end{aligned}
$$

ENDDO

Vector Code generated :-
$\mathrm{A}(1)=\mathrm{A}(1)+\mathrm{A}(1)$
$A(2: N)=A(2: N)+A(1)$

Loop Peeling(cont..)

Example where loop is split and loop carried dependency is converted into loop independent dependency.

DO I = $1, \mathrm{~N}$
$\mathrm{A}(\mathrm{I})=\mathrm{A}(\mathrm{N} / 2)+\mathrm{B}(\mathrm{I})$
ENDDO

$$
\begin{aligned}
& \mathrm{M}=\mathrm{N} / 2 \\
& \mathrm{DO} \mathrm{I}=1, \mathrm{M} \\
& \quad \mathrm{~A}(\mathrm{I})=\mathrm{A}(\mathrm{~N} / 2)+\mathrm{B}(\mathrm{I}) \\
& \mathrm{ENDDO} \\
& \mathrm{DO} \mathrm{I}=\mathrm{M}+1, \mathrm{~N} \\
& \mathrm{~A}(\mathrm{I})=\mathrm{A}(\mathrm{~N} / 2)+\mathrm{B}(\mathrm{I}) \\
& \mathrm{ENDDO}
\end{aligned}
$$

Section based splitting

- Variation of loop peeling where sections of loop involved in dependence are recognised.
- Loop is splitted to separate out the identified sections.
- Example :-

$$
\begin{aligned}
& \text { DO I }=1, \mathrm{~N} \\
& \text { DO } \mathrm{J}=1, \mathrm{~N} / 2 \\
& \text { S1: } \mathrm{B}(\mathrm{~J}, \mathrm{I})=\mathrm{A}(\mathrm{~J}, \mathrm{I})+\mathrm{C} \\
& \text { ENDDO } \\
& \text { DO } \mathrm{J}=1, \mathrm{~N} \\
& \text { S2: A(J,l+1) }=\mathrm{B}(\mathrm{~J}, \mathrm{I})+\mathrm{D} \\
& \text { ENDDO } \\
& \text { ENDDO }
\end{aligned}
$$

Section based splitting(cont)

Distributing the I-loop

```
DO I = 1 , N
    DO J = \(1, N / 2\)
    S1: \(\quad B(J, l)=A(J, l)+C\)
    ENDDO
    DO \(\mathrm{J}=1, \mathrm{~N} / 2\)
    S21: \(A(J, l+1)=B(J, l)+D\)
    ENDDO
    DO J = N/2+1, N
    S22: \(\mathrm{A}(\mathrm{J}, \mathrm{I}+1)=\mathrm{B}(\mathrm{J}, \mathrm{I})+\mathrm{D}\)
    ENDDO
ENDDO
```

Here S22 is independent of S1 and S12.
we get :-

DO I $=\mathrm{N} / 2+1, \mathrm{~N}$
DO J = N/2+1, N S22: $\mathrm{A}(\mathrm{J}, \mathrm{I}+1)=\mathrm{B}(\mathrm{J}, \mathrm{l})+\mathrm{D}$ ENDDO

- ENDDO

DO I = $1, \mathrm{~N}$
DO $\mathrm{J}=1, \mathrm{~N} / 2$
S1: $\mathrm{B}(\mathrm{J}, \mathrm{I})=\mathrm{A}(\mathrm{J}, \mathrm{I})+\mathrm{C}$
ENDDO
DO J = $1, N / 2$
S21: $\mathrm{A}(\mathrm{J}, \mathrm{I}+1)=\mathrm{B}(\mathrm{J}, \mathrm{l})+\mathrm{D}$ ENDDO
ENDDO

Reference

Chapter 5 of
Optimizing Compilers for modern architectures : a dependence-based approach. By Ken Kennedy and John R. Allen.

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

