Communication Network Analysis in Wide Area Measurement System

Kedar Khandeparkar Gelli Ravikumar Udhav Arote (Group 8)

May 3, 2013

A ■

Table of contents

æ

・ロト ・回ト ・ヨト

< ≣ >

Motivation

• Every power system application(SE, Transient Stabilty etc.) has its own time requirements to process and respond

< ∃⇒


- Every power system application(SE, Transient Stabilty etc.) has its own time requirements to process and respond
 - In wide area measurement system (WAMS) the motive is to achieve fast and dynamic response for various applications

- Every power system application(SE, Transient Stabilty etc.) has its own time requirements to process and respond
 - In wide area measurement system (WAMS) the motive is to achieve fast and dynamic response for various applications
- System operators must perform an action according to the grid disturbance within its threshold time

- Every power system application(SE, Transient Stability etc.) has its own time requirements to process and respond
 - In wide area measurement system (WAMS) the motive is to achieve fast and dynamic response for various applications
- System operators must perform an action according to the grid disturbance within its threshold time
 - Threshold time includes end-to-end delay of communication network, power system applications processing time, decision time

- Every power system application(SE, Transient Stabilty etc.) has its own time requirements to process and respond
 - In wide area measurement system (WAMS) the motive is to achieve fast and dynamic response for various applications
- System operators must perform an action according to the grid disturbance within its threshold time
 - Threshold time includes end-to-end delay of communication network, power system applications processing time, decision time
- In this project the significant artifact is the end-to-end delay
 - Need to ensure the latency requirements of applications are met

Contd.

Communication architecture for WAMS

Э

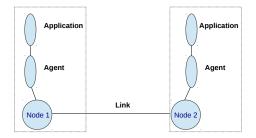
・ロン ・回と ・ヨン ・ヨン

Motivation

Approach Case Studies Conclusion

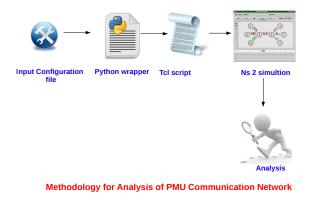
Project Timeline

		10	10	10	10	10	10
Plan	Plan phases and implementaion	davs	davs	davs	davs	davs	davs
Plan	Understanding architecutre,	uays	uays	uays	uays	uays	uays
	components, and its existing						
	input-output interfaces		_				
	Creating sample models for dive						
	more into NS 2		_				
	Modeling of generic						
	communication components in						
Study of NS 2 Simulator	the NS 2						
	Design of input configuration						
	format where WAMS						
	communication can be modeled						
	without interation with simulation						
	software						
	Design of python scripts where						
	it import config and exports						
	system needed .tcl scripts						
Creating generalize NS 2 wrapper	Validation and testing of the						
for WAMS	wrapper						
	Literature survey on WAMS						
	communciaiton systems and						
	prepare the exaustive list of its						
	protocals, components, and						
	other network elements						
Model WAMS communication	Model IEEE 14 bus system						
scenarios through developed NS 2	through wrapper						
wrapper	Validate and test the system						
	Get the BaL for the designed						
	model						
	Analysis of the model: as						
Observe the Bandwidth and	varying communication						
Latency (BaL) requirements, and	parameters and traffics						
its analysis on few WAMS	Document the project with all						
applications	above scenarios and results						
applications	above scenarios and results						


Kedar KhandeparkarGelli RavikumarUdhav Arote(Group 8)

Abbrev.Title

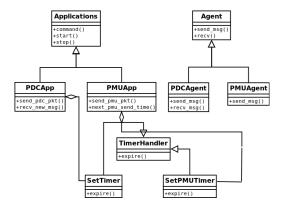
・ロト ・回ト ・ヨト ・ヨト


æ

Two node communication in Ns 2 (phase 1)

Basic Components in modeling communication between two nodes

Methodology (phase 2)



æ

Structure of configuration file

Distribution: name,id,parameters
Processing_delay: id,distribution_id
Traffic: traffic_id,type_of_traffic,flow_id,rate, packet size
Agent: agent_id,agent_type,traffic_id
Node: id,node_type,agent_id
Link: link_id,src_id,dst_id,bandwidth,propagation_delay,
queuing principle, queue size

UML class diagram for Ns2 patch

Э

・ロト ・回ト ・ヨト ・ヨト

NS 2 patch

- Implemented two classes, *PMUApp* and *PDCApp* that extend *Application* class of ns 2
- *PDCApp* maintains a fixed size timestamp buffer(TSB)
- The timeout and processing delay of PMU packet is modeled as a normal distribution.

Image: A matrix of the second seco

æ

< ≣ >

Case Study- 14 bus system (phase 3)

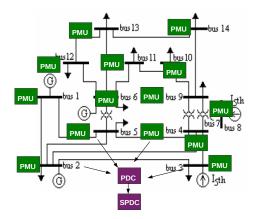
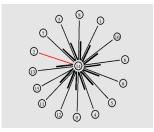
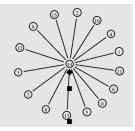


Image: A math a math


æ

< ≣⇒


Simulation Setup for 14 bus system

- 14 PMUs placed at each substation
- Link capacity between PMU-PDC and PDC-SPDC : 1Mb/s
- Propagation delay : 1ms
- Scenarios : link failure, node error
- Simulation duration : 10s
- Link Failure for 2 secs (6.0s to 8.0s)
- Error model : uniform distribution

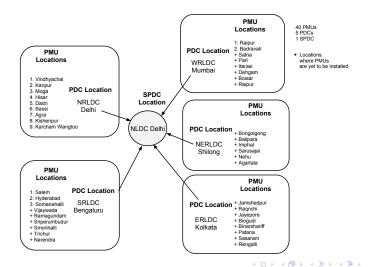
Contd.

Link failure between Node 2 & Node 14

Error modeling Node 14

・ロト ・回ト ・ヨト ・ヨト

æ


Results of 14 bus system simulation

$$Loss = (\frac{S_p - D_p}{S_p}) * 100$$

 S_p , D_p are the packets generated at source and received at the destination respectively

- < ∃ >

Case Study- Power Grid of India (Pilot projects)

Kedar KhandeparkarGelli RavikumarUdhav Arote(Group 8)

æ

Simulation Setup

- Nodes in the network : 40 PMUs, 5 PDCs and 1 SPDC
- Link bandwidth : OC-3 (155 Mb/s)
- Propagation delay : Based on geographical distances between the nodes
- Simulation duration : 10s
- Link Failure for 2 secs (6.0s to 8.0s)
- Error model : uniform distribution

Results (Indian Pilot projects)

Nodes	Average La-	Link Failure	Error Model		
	tency (ms)	(Loss %)	(Loss %)		
pmu-pdc	4.0	2.5	0		
pdc-spdc	7.2	0	12.0		

Table: Network simulation results for Indian Power Grid

æ

Conclusion

- The ns2 wrapper with ns 2 patch enables verifying the efficiency of any designed PMU communincation network without explicitly coding each scenario
- Multiple designs can then be compared with each other to come up with a robust and scalable network design that meet the latency requirements of the applications

- Study the impact of latency on the power system applications
- Verify the simulation results with realistic scenarios

æ

< ≣ >

< 4 1 →

References

- Kansal, P.; Bose, A., "Bandwidth and Latency Requirements for Smart Transmission Grid Applications," Smart Grid, IEEE Transactions on , vol.3, no.3, pp.1344,1352, Sept. 2012
- Kun Zhu; Ji Song; Chenine, M.; Nordstrom, L., "Analysis of Phasor Data Latency in Wide Area Monitoring and Control Systems," Communications Workshops (ICC), 2010 IEEE International Conference on , vol., no., pp.1,5, 23-27 May 2010
 - Zhu, Kun, Lars Nordstrom, and Ahmad T. Al-Hammouri. "Examination of data delay and packet loss for wide-area monitoring and control systems." Energy Conference and Exhibition (ENERGYCON), 2012 IEEE International. IEEE, 2012.
- Chenine, Moustafa, and Lars Nordstrom. "Modeling and simulation of wide-area communication for centralized PMU-based applications." Power Delivery, IEEE Transactions on 26.3 (2011): 1372-1380.
- Deng, Yi, et al. "Communication network modeling and simulation for wide area measurement applications." Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES. IEEE, 2012.

æ

<ロ> <同> <同> <同> < 同> < 同>