

Fault Tolerance in Feed-Forward
Neural Networks

Course Seminar
Neural Networks (CS623)

Faraz Shahbazker Arindam Bose
<farazs@cse.iitb.ac.in> <arindam@cse.iitb.ac.in>

Indian Institute of Technology, Bombay
12th November, 2006.

Under: Prof. Pushpak Bhattacharya
<pb@cse.iitb.ac.in>

mailto:farazs@cse.iitb.ac.in
mailto:arindam@cse.iitb.ac.in

Development Cycle of ANN

Design Training

Testing

Deployment
(software)

Deployment
(Hardware)

Motivation
● NN Hardware is faster due to inherent

hardware-level parallelism

– Portable devices for speech recognition /
biometrics / image-processing / control
systems for safety-critical devices

● On-field deployment requires transparent
resilience to component failure

● Not possible to plug-in and modify

 network hardware on the fly

● For Neural Networks, fault tolerance in s/w
design is much cheaper than h/w redundancy

Agenda
● Great Expectations

● Ground Realities

● Defining Fault Tolerance

● Training to improve Fault Tolerance

– Training with Injected Faults
– Addition/Deletion Procedure (ADP)
– Constraint Back-propagation (CBP)

● Conclusion & References

Great Expectations

● ANN are widely considered fault-tolerant

● By virtue of Biological heritage

● Empirical data does NOT always support

● Potentially fault tolerant

● Redundancy != Fault Tolerance

Ground Realities

● Few proven mathematical model exist...

● Most results based on heuristics and

experimental observations

● Training procedures need to be modified

Defining Fault Tolerance

● No single point of failure

● Performance should degrade gracefully

● Quantified point of complete breakdown

Types of Failure in ANN

● Neuron Failure

● Link Failure

Types of Failure

● Neuron Failure
➔ Stuck at 0

➔ Neutral impact on
next layer

➔ Stuck at 1
➔ Maximum activation

/ inhibition for next
layer

Types of Failure

● Link Failure
➔ Stuck at MinVal

➔ Max Inhibition
➔ Stuck at MaxVal

➔ Max Activation
➔ Stuck at 0

➔ Neutral

 (Missing)

Training Algorithms

1. Training with Injected Faults

Training with Injected Faults
● Brute-force approach

● Assume that all components (links / neurons)
have equal importance.

● During training, randomly fail few neurons/links
for few iterations at regular intervals

● Training time increases drastically

● Network learns to be resilient to

 failures (hopefully!!)

Training Algorithms

1. Training with Injected Faults

2. Addition Deletion Procedure

Impact of Failure

● Are there any hot-spots in the network?

● Are there any singular point of failure?

● Failure of each neuron/link contributes to an
increase in system error (MSE/SSE).

● Failure of which neuron/link, contributes

 the most?

● Concept of Sensitivity ...

Impact of Failure

● Sensitivity: (of a neuron)
– The impact of failure of that neuron on

overall system error
– Simulate different types of failure of neuron

(stuck at 0 / stuck at 1)
– Calculate change in network error for each

failure over entire training set
– Add these and average over types

 of failures (in our case 2).

Impact of Failure
● W : vector of all weights

● E(W) : Sum error over all weights

● : error with neuron stuck at

● B : set of all possible faults () = {0, 1}

● Sensitivity:

E W ,on j= n j

sn
 n j = E W ,on j = − E W

Snn j = 1
∣B∣ ∑

 B
sn
 n j

Addition/Deletion Procedure(ADP)

● Smarter approach

● Train network with Back-propagation as usual

● At end of training, different components may
have different impact on network

● But we want them to have equal impact

● We will use our knowledge of sensitivity to

 distribute load equally across all

 neurons in a layer

Addition/Deletion Procedure(ADP)

● Rank neurons according to sensitivity

● Eliminate dead-spots by substituting the least
sensitive neuron with fresh neuron

● This step increases network error within limits

● Eliminate hot-spots by configuring new neuron
to share load of most sensitive neuron

● Retrain to remove chinks

 (very few iterations required).

Addition/Deletion Procedure(ADP)

● Load Sharing algorithm:

● Let n_max = most sensitive neuron
 n_new = freshly added neuron

● input weights to n_new =

input weights to n_max
● ouput weights from n_new =

1/2(output weights from n_max)
● ouput weights from n_max =

1/2(output weights from n_max)

Addition/Deletion Procedure(ADP)

Training Algorithms

1. Training with Injected Faults

2. Addition Deletion Procedure

 3. Constraint Backpropagation

Constraint Backpropagation

● Most sophisticated approach so far

● Fault-tolerance built-in into Back-prop

● In each training iteration:

– minimize Global error (as usual)
– minimize susceptibility to failure (called

Constraint Energy)
● Degree of fault-tolerance can be

 quantified

Ec

Constraint Backpropagation
● m : degree of fault tolerance

● R : Set of neurons in hidden layer

● : type of fault {0, 1}

● : subset of R of size m with output set to

● : net output with elements of set to

 Minimize :

For from R minimize :

E = 1
2
∑
i /p
∑
o/p

t−o2

EC =
1
2
∑
i /p
∑
o/p

t−o m
2

o m

× ∣R∣m

m

m

m

Constraint Backpropagation

● Trained network guarantees fault tolerance of
upto m neurons

● Degree of fault tolerance can be varied via
training parameter (m)

● We traverse a set of error surfaces

simultaneously

● What is the effect of varying m?

∣R∣m

Constraint Backpropagation
● Smaller m

– is small ⇒ fewer error surfaces

– small variations in error surfaces
● Medium m

– is large ⇒ more error surfaces

– significant variation in error surfaces
● Large m

– is small ⇒ fewer error surfaces

– Large variation across error surfaces

– CBP may never converge

∣R∣m

∣R∣m

∣R∣m

Conclusion

● Neural networks are not inherently fault-
tolerant - but potential exists!!

● Training procedures need to be modified

● Sometimes, redundancy helps

● No explicit fault-handling required

● Resilience comes implicitly by clever
design and training algorithms

● Guaranteed Fault-tolerance requires
extra effort in training stage

References

● Ching-Tai Chiu; Mehrotra, K.; Mohan, C.K.; Rankat, S.,
"Training techniques to obtain fault-tolerant neural networks".
Fault-Tolerant Computing, 1994. FTCS-24 .pp.360-369.

● Buh Yun Sher and Weng-Shong Hsieh, “Fault Tolerance
Training of Feedforward Neural Networks”. Proceedings of the
National Science Council, Republic of China, Vol-23, No.5,
1999, pp. 599-608.

● Carlo Sequin and Reed Clay, “Fault Tolerance in Feed-forward
Artificial Neural Networks”. Technical Report
TR-90-031, International Computer Science
Institute, UE Berkely, CA., July 1990.

● George Bolt, “Investigating Fault Tolerance in
Artificial Neural Networks”. Technical Report YCS-154,
University of York, Department of Computer Science, 1991.

