Fault Tolerance In Feed- Forward
Neural Networks

Course Seminar
Neural Networks (CS623)

Faraz Shahbazker Arindam Bose
<farazs@cse.iitb.ac.in> <arindam@ocse.iitb.ac.in>

Indian Institute of Technology, Bombay
12 November, 2006. /
Under: Prof. Pushpak Bhattacharya

<pb@cse.iitb.ac.in>

mailto:farazs@cse.iitb.ac.in
mailto:arindam@cse.iitb.ac.in

Development Cycle of ANN

DesigN ———————————p Training

/

Testing

Deployment Deployment
(software) (Hardware)

Motivation

NN Hardware iIs faster due to inherent
hardware-level parallelism

- Portable devices for speech recognition /
biometrics / image-processing / control
systems for safety-critical devices

On-field deployment requires transparent
resilience to component failure

Not possible to plug-in and modify

network hardware on the fly

For Neural Networks, fault tolerance in s/w
design is much cheaper than h/w redundancy

Agenda

Great Expectations
Ground Realities
Defining Fault Tolerance

Training to improve Fault Tolerance

- Training with Injected Faults

- Addition/Deletion Procedure (ADP)

- Constraint Back-propagation (CBP
Conclusion & References

/

Great Expectations

ANN are widely considered fault-tolerant
By virtue of Biological heritage
Empirical data does NOT always support

Potentially fault tolerant

Redundancy != Fault Tolerance /

Ground Realities

e Few proven mathematical model exist...

e Most results based on heuristics and

experimental observations

 Training procedures need to be modified

. - g

Defining Fault Tolerance

B * No single point of failure
e Performance should degrade gracefully
 Quantified point of complete breakdown

4 Accu racy

= PTF PoF # Failures

Types of Failure in ANN

* Neuron Fallure

 « Link Failure

Types of Failure

e Neuron Failure

> Stuck at O
> Neutral impact on
! W3

R T T e i s
-

next layer
> Stuck at 1

> Maximum activation i
/ inhibition for next
layer

L — g

*‘} Output

/:*. T' ,‘\(Stuck at 0/1)

Types of Failure

e | Ink Fallure

> Stuck at MinVal

: > Max Inhibition
: > Stuck at MaxVal

w2 (Stuck at 0/
MinVal/MaxVal) > Max Activation

> Stuck at O

> Neutral
(Missing)

Training Algorithms

1. Training with Injected Faults

Training with Injected Faults

Brute-force approach

Assume that all components (links / neurons)
have equal importance.

During training, randomly fail few neurons/links
for few iterations at regular intervals

Training time increases drastically

Network learns to be resilient to
faillures (hopefully!!)

Training Algorithms

1. Training with Injected Faults

2. Addition Deletion Procedure

Impact of Failure

Are there any hot-spots in the network?
Are there any singular point of failure?

Failure of each neuron/link contributes to an
Increase in system error (MSE/SSE).

Failure of which neuron/link, contributes

the most? /
Concept of Sensitivity ...

Impact of Failure

e Sensitivity: (of a neuron)

- The impact of failure of that neuron on
overall system error

- Simulate different types of failure of neuron
(stuck at O / stuck at 1)

- Calculate change in network error for each
faillure over entire training set
- Add these and average over types/

of failures (in our case 2).

Impact of Failure

W : vector of all weights

E(W) : Sum error over all weights
E(W,o(n;)=«) : error with neuron n; stuck at «
B : set of all possible faults (x) = {0, 1}
Sensitivity:

Addition/Deletion Procedure(ADP)

Smarter approach

Train network with Back-propagation as usual

At end of training, different components may
have different impact on network

But we want them to have equal impact
We will use our knowledge of sensitivity to

distribute load equally across all /
neurons in a layer

=

ar

Addition/Deletion Procedure(ADP)

Rank neurons according to sensitivity

Eliminate dead-spots by substituting the least
sensitive neuron with fresh neuron

This step increases network error within limits

Eliminate hot-spots by configuring new neuron
to share load of most sensitive neuron

Retrain to remove chinks
(very few iterations required).

Addition/Deletion Procedure(ADP)

Load Sharing algorithm:

Let n_maXx = most sensitive neuron
n_new = freshly added neuron

iInput weights to n_ new =

Input weights to n_max
ouput weights from n_new =

1/2(output weights from n_max)
ouput weights from n_max =

1/2(output weights from n_max)

o

Addition/Deletion Procedure(ADP) ||

Training Algorithms

1. Training with Injected Faults
2. Addition Deletion Procedure

3. Constraint Backpropagation

/

Constraint Backpropagation

Most sophisticated approach so far
Fault-tolerance built-in into Back-prop
In each training iteration:

- minimize Global error (as usual)

- minimize susceptibility to failure (called
Constraint Energy E_)

Degree of fault-tolerance can be
quantified

e TR

e S e

Constraint Backpropagation

* m : degree of fault tolerance
e R: Set of neurons in hidden layer
o : type of fault {0, 1}
m, : subset of R of size m with output set to «

o(m,) : net output with elements of m_ setto «

Minimize : ZZ t—o0)’

ilp olp

For m _from R minimize :

Constraint Backpropagation

Trained network guarantees fault tolerance of ||

upto m neurons

Degree of fault tolerance can be varied via
training parameter (m)

R
We traverse a set of (|m|) error surfaces

simultaneously

What is the effect of varying m? /

Constraint Backpropagation

 Smaller m

(' |) IS small = fewer error surfaces

- small variations in error surfaces
e Medium m
(|R|) Is large = more error surfaces
- significant variation in error surfaces
* Large m
(|R|) Is small = fewer error surfaces

- Large variation across error surfaces
- CBP may never converge

Conclusion

Neural networks are not inherently fault-
tolerant - but potential exists!!

Training procedures need to be modified
Sometimes, redundancy helps

No explicit fault-handling required
Resilience comes implicitly by clever
design and training algorithms
Guaranteed Fault-tolerance requires/

extra effort in training stage

AEEEREE

Ching-Tai Chiu; Mehrotra, K.; Mohan, C.K.; Rankat, S., |
“Training techniques to obtain fault-tolerant neural networks".}
Fault-Tolerant Computing, 1994. FTCS-24 .pp.360-369.

Buh Yun Sher and Weng-Shong Hsieh, “Fault Tolerance
Training of Feedforward Neural Networks”. Proceedings of the
National Science Council, Republic of China, Vol-23, No.5,
1999, pp. 599-608.

Carlo Sequin and Reed Clay, “Fault Tolerance in Feed-forward
Artificial Neural Networks”. Technical Report

TR-90-031, International Computer Science

Institute, UE Berkely, CA., July 1990.

George Bolt, “Investigating Fault Tolerance in
Artificial Neural Networks”. Technical Report YCS-154,
University of York, Department of Computer Science, 1991.

