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Development Cycle of ANN

Design Training

Testing

Deployment
(software)

Deployment
(Hardware)



  

Motivation
● NN Hardware is faster due to inherent 

hardware-level parallelism

– Portable devices for speech recognition / 
biometrics / image-processing / control 
systems for safety-critical devices

● On-field deployment requires transparent 
resilience to component failure

● Not possible to plug-in and modify

   network hardware on the fly

● For Neural Networks, fault tolerance in s/w 
design is much cheaper than h/w redundancy



  

Agenda
● Great Expectations

● Ground Realities

● Defining Fault Tolerance

● Training to improve Fault Tolerance

– Training with Injected Faults
– Addition/Deletion Procedure (ADP)
– Constraint Back-propagation (CBP)

● Conclusion & References



  

Great Expectations

● ANN are widely considered fault-tolerant

● By virtue of Biological heritage

● Empirical data does NOT always support

● Potentially fault tolerant

● Redundancy != Fault Tolerance



  

Ground Realities

● Few proven mathematical model exist...

● Most results based on heuristics and 

experimental observations

● Training procedures need to be modified



  

Defining Fault Tolerance

● No single point of failure

● Performance should degrade gracefully

● Quantified point of complete breakdown



  

Types of Failure in ANN

● Neuron Failure

● Link Failure



  

Types of Failure

● Neuron Failure
➔ Stuck at 0

➔ Neutral impact on 
next layer

➔ Stuck at 1
➔ Maximum activation 

/ inhibition for next 
layer



  

Types of Failure

● Link Failure
➔ Stuck at MinVal

➔ Max Inhibition
➔ Stuck at MaxVal

➔ Max Activation
➔ Stuck at 0

➔ Neutral

   (Missing)



  

Training Algorithms

1. Training with Injected Faults



  

Training with Injected Faults
● Brute-force approach

● Assume that all components (links / neurons) 
have equal importance.

● During training, randomly fail few neurons/links 
for few iterations at regular intervals

● Training time increases drastically

● Network learns to be resilient to 

   failures (hopefully!!)



  

Training Algorithms

1. Training with Injected Faults

2. Addition Deletion Procedure



  

Impact of Failure

● Are there any hot-spots in the network?

● Are there any singular point of failure?

● Failure of each neuron/link contributes to an 
increase in system error (MSE/SSE).

● Failure of which neuron/link, contributes 

   the most?

● Concept of Sensitivity ...



  

Impact of Failure

● Sensitivity: (of a neuron)
– The impact of failure of that neuron on 

overall system error
– Simulate different types of failure of neuron 

(stuck at 0 / stuck at 1)
– Calculate change in network error for each 

failure over entire training set
– Add these and average over types

   of failures (in our case 2).



  

Impact of Failure
● W : vector of all weights

● E(W) : Sum error over all weights

●                        : error with neuron     stuck at

● B : set of all possible faults (  ) = {0, 1}

● Sensitivity:

E W ,on j= n j

sn
 n j = E W ,on j =  − E W 

Snn j = 1
∣B∣ ∑

  B
sn
 n j







  

Addition/Deletion Procedure(ADP)

● Smarter approach

● Train network with Back-propagation as usual

● At end of training, different components may 
have different impact on network

● But we want them to have equal impact

● We will use our knowledge of sensitivity to

   distribute load equally across all

   neurons in a layer



  

Addition/Deletion Procedure(ADP)

● Rank neurons according to sensitivity

● Eliminate dead-spots by substituting the least 
sensitive neuron with fresh neuron

● This step increases network error within limits

● Eliminate hot-spots by configuring new neuron 
to share load of most sensitive neuron

● Retrain to remove chinks 

   (very few iterations required).



  

Addition/Deletion Procedure(ADP)

● Load Sharing algorithm:

● Let n_max = most sensitive neuron
  n_new = freshly added neuron

● input weights to n_new = 

input weights to  n_max
● ouput weights from n_new = 

1/2(output weights from n_max)
● ouput weights from n_max = 

1/2(output weights from n_max)



  

Addition/Deletion Procedure(ADP)



  

Training Algorithms

1. Training with Injected Faults

2. Addition Deletion Procedure

    3. Constraint Backpropagation



  

Constraint Backpropagation

● Most sophisticated approach so far

● Fault-tolerance built-in into Back-prop

● In each training iteration:

– minimize Global error (as usual)
– minimize susceptibility to failure (called 

Constraint Energy      )
● Degree of fault-tolerance can be 

   quantified 

Ec



  

Constraint Backpropagation
● m : degree of fault tolerance

● R : Set of neurons in hidden layer

●     : type of fault {0, 1}

●      : subset of R of size m with output set to 

●           : net output with elements of       set to 

  Minimize :

For      from R minimize :

E = 1
2
∑
i /p
∑
o/p

t−o2

EC =
1
2
∑
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∑
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t−o m
2

o m

× ∣R∣m 
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







  

Constraint Backpropagation

● Trained network guarantees fault tolerance of 
upto m neurons

● Degree of fault tolerance can be varied via 
training parameter (m)

● We traverse a set of         error surfaces  

simultaneously

● What is the effect of varying m?

∣R∣m 



  

Constraint Backpropagation
● Smaller m

–      is small ⇒ fewer error surfaces

– small variations in error surfaces
● Medium m

–      is large ⇒ more error surfaces

– significant variation in error surfaces
● Large m

–      is small ⇒ fewer error surfaces

– Large variation across error surfaces

– CBP may never converge

∣R∣m

∣R∣m

∣R∣m



  

Conclusion

● Neural networks are not inherently fault-
tolerant - but potential exists!!

● Training procedures need to be modified

● Sometimes, redundancy helps

● No explicit fault-handling required

● Resilience comes implicitly by clever 
design and training algorithms

● Guaranteed Fault-tolerance requires 
extra effort in training stage
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