

ASSIGNMENT FINAL DEMO
NLP

Kallol Dey
Rahul Mitra

Shubham Gautam

11.11.2012

Works Done
● Generative Bigram POS Tagging
● Trigram POS Tagging
● Next Word Prediction
● Descriminative Bigram POS Tagging
● A* Implementation for POS Tag
● Finding PATH between two entities using

YAGO
● Study of Parser Projection

Bigram POS Tagging : Example 1
● Target word : RISING

● Oil prices are rising again .

● Oil_NN1 prices_NN2 are_VBB rising_VVG again_AV0 ._PUN

● The rising sun .

● The_AT0 rising_AJ0 sun_NN1 ._PUN

● The attempted rising was put down .

● The_AT0 attempted_AJ0 rising_NN1 was_VBD put_VVN
down_AVP ._PUN

Bigram POS Tagging : Example 2
● Target word : Sort

● We will sort it out .

● We_PNP will_VM0 sort_VVI it_PNP out_AVP ._PUN

● Deb is the worst sort of person I ever met .

● Deb_NP0 is_VBZ the_AT0 worst_AJS sort_NN1 of_PRF
person_NN1 I_PNP ever_AV0 met_VVN ._PUN

● I am just sort of looking for solution .

● I_PNP am_VBB just_AV0 sort_NN1 of_PRF looking_VVG
for_PRP solution_NN1 ._PUN [Fail should be 'AV0' adverb]

Bigram POS Tagging : Example 3
● Target word : That

● That is my car .

● That_DT0 is_VBZ my_DPS car_NN1 ._PUN

● Many experts claim that it is good for your growing baby .

● Many_DT0 experts_NN2 claim_CJT that_CJT it_PNP is_VBZ
good_AV0 for_PRP your_DPS growing_AJ0 baby_NN1 ._PUN

● It wasn't all that bad .

● It_PNP wasn't_NN1 all_AV0 that_DT0 bad_AJ0 ._PUN [Fail
should be 'AV0' adverb , 'wasn't' also failed !!]

A * POS Tagging : Example 1
● Target word : RISING

● Oil prices are rising again .

● Oil_NN1 prices_NN2 are_VBB rising_VVG again_AV0 ._PUN

● The rising sun .

● The_AT0 rising_NN1 sun_NN1 ._PUN [Fail rising should be
AJ0]

● The attempted rising was put down .

● The_AT0 attempted_AJ0 rising_NN1 was_VBD put_VVN
down_AVP ._PUN

A* POS Tagging : Example 2
● Target word : Sort

● We will sort it out .

● We_PNP will_VM0 sort_VVI it_PNP out_AVP ._PUN

● Deb is the worst sort of person I ever met .

● Deb_VBZ is_VBZ the_AT0 worst_AJS sort_NN1 of_PRF
person_NN1 I_PNP ever_AV0 met_VVN ._PUN

● I am just sort of looking for solution .

● I_PNP am_VBB just_AV0 sort_NN1 of_PRF looking_VVG
for_PRP solution_NN1 ._PUN [Fail should be 'AV0' adverb]

A* POS Tagging : Example 3
● Target word : That

● That is my car .

● That_DT0 is_VBZ my_DPS car_NN1 ._PUN

● Many experts claim that it is good for your growing baby .

● Many_DT0 experts_NN2 claim_CJT that_CJT it_PNP is_VBZ
good_AV0 for_PRP your_DPS growing_AJ0 baby_NN1 ._PUN

● It wasn't all that bad .

● It_PNP wasn't_VVD all_DT0 that_DT0 bad_AJ0 ._PUN [Fail
should be 'AV0' adverb]

Discriminative Bigram POS Tagging
: Example 1

● Target word : RISING

● Oil prices are rising again .

● Oil_NN1 prices_NN2 are_VBB rising_NN1 again_NN1 ._PUN

● The rising sun .

● The_AT0 rising_NN1 sun_NN1 ._PUN [Fail rising should be
AJ0]

● The attempted rising was put down .

● The_AT0 attempted_NN1 rising_NN1 was_NN1 put_NN1
down_AVP ._PUN

Discriminative POS Tagging :
Example 2

● Target word : Sort

● We will sort it out .

● We_PNP will_VM0 sort_VVI it_PNP out_NN1 ._PUN

● Deb is the worst sort of person I ever met .

● Deb_NP0 is_VBZ the_AT0 worst_NN1 sort_NN1 of_PRF
person_NN1 I_PNP ever_AV0 met_VVD ._PUN

● I am just sort of looking for solution .

● I_PNP am_VBB just_AV0 sort_NN1 of_PRF looking_VVG
for_PRP solution_NN1 ._PUN [Fail should be 'AV0' adverb]

Discriminative Bigram POS Tagging
: Example 3

● Target word : That

● That is my car .

● That_DT0 is_VBZ my_NN1 car_NN1 ._PUN

● Many experts claim that it is good for your growing baby .

● Many_DT0 experts_NN1 claim_NN1 that_CJT it_PNP is_VBZ
good_AJ0 for_PRP your_DPS growing_NN1 baby_NN1 ._PUN

● It wasn't all that bad .

● It_PNP wasn't_NN1 all_AV0 that_CJT bad_NN1 ._PUN [Fail
should be 'AV0' adverb] * Bigram gen shows it as DT0.

Same sentence : How all algorithms behave ?
Case 1

Sentence : To be or not to be that is the question .

● Bigram POS :

To_TO0 be_VBI or_CJC not_XX0 to_TO0 be_VBI that_CJT is_VBZ
the_AT0 question_NN1 ._PUN

● A * :

To_TO0 be_VBI or_CJC not_XX0 to_TO0 be_VBI that_CJT is_VBZ
the_AT0 question_NN1 ._PUN

● Bigram Dis :

To_TO0 be_VBI or_CJC not_XX0 to_TO0 be_VBI that_CJT is_VBZ
the_AT0 question_NN1 ._PUN

Same sentence : How all algorithms behave : Case2

Sentence : The rising sun .

● Bigram POS :

The_AT0 rising_AJ0 sun_NN1 ._PUN

● A * :

● The_AT0 rising_NN1 sun_NN1 ._PUN [Fail rising should be
AJ0]

● Bigram Dis :

The_AT0 rising_NN1 sun_NN1 ._PUN [Fail rising should be
AJ0]

An Experiment Containing All
Algorithms.

● Same setup applied for all the algorithms.
● Two Test Cases.
● Final Checking :

– Efiiciency

– Per Tag Accuracy

– Confusion Matrix

– Find Some Sentence Whihc Will Have
Different POS Tag in different algorithm.

–

Setup 1 : A00
● Confusion Matrix ,Pertag precison ,recall ,F-

Score is available in .csv files.
● Bigram Generative Accuracy : 95 %
● Trigram Generative Accuracy :95.4%
● A* Accuracy : 85%
● Bigram Discriminative Accuracy : 80%

● Bigram Generative :

AJ0:2,AV0:1,VVG 1:AVP:2
VVB:5,NN1:1002,NP0:36,NN2:39,VVI:1

● Trigram Generative :

AJ0:3,AV0:1,VVG:1,AVP:1,VVB:6,NN1:997,NP0:35,NN2:43,VVI:2

● Bigram Discriminative :

AJ0:10,AV0:6,VVG:1,VVB:1,NN1:890,NN2:14,NP0:167

● A* :

 NP0 : 50 , AV0 23

● NN1 Highly Confused tag.

Setup 1 : A00 : NN1 Confusion

● Trigram Gen :

● AJ0:3,AV0:5, PNX: 1 ,DT0:120, CJT:2,NP0:2

● Generative Bigram :

● AJ0:2 ,AV0:5,PNX:1,DT0:121,CJT:2,NP0:2

● Conclusion : DT0 is less confused !!

Setup 1 : A00 : DT0 Confusion

Setup 2 : A69

● Confusion Matrix ,Pertag precison ,recall ,F-
Score is available in .csv files.

● Bigram Generative Accuracy : 94.8 %
● Trigram Generative Accuracy :95.2%
● A* Accuracy : 86%

Conclusions on POS Tagging

● A* POS Tagger on an average expands 6
times the length of the given sentence.

● We conclude that the Viterbi Algorithm is
better than A* Star in this case because to
minimize the no. of expansions in A* Star (to
find a good heuristic for h) we need O(mn^2)
time which is same as that of Viterbi with an
extra overhead of searching.

NWP : Efficiency

● Made triplet of sentences and checked
accuracy.

● We taken till available 5 suggestions in both
bigram and trigram

● With Tag it was 31 %
● Perplexity With POS : 7612
● Without Tag it was about 25 %
● Perplexity WithOut POS : 6678

NWP Some Cases
Input : The rising

● ---------WithOut POST----------------

● Trigram :

● Word: IMPORTANCE Val :0.3333333333333333

● Word: TIMES Val :0.3333333333333333

● Word: ARMENIAN Val :0.3333333333333333

● Bigram :

● Word: . Val :0.09523809523809523

● Word: TO Val :0.09523809523809523

● ---------With POST----------------

● Trigram :

● Word: IMPORTANCE Val :1.53514768600473E-4

● Bigram :

● Word: TIME Val :2.2924415221811705E-4

NWP Some Cases
Input : The attempted rising

● ---------WithOut POST----------------

● Bigram :

● Word: . Val :0.09523809523809523

● Word: TO Val :0.09523809523809523

● Word: AND Val :0.07142857142857142

● ---------With POST----------------

● Bigram :

● Word: TO Val :0.010214862036588118

● Word: IN Val :0.005269375581831756

● Word: WITH Val :0.0018962539718156356

● Word: FROM Val :0.001261831970327749

YAGO

We implemented it in both BFS way and DFS
way. The efficiency of this two approach very
from case to case.

Yago found out interesting relationship
between two words.

We are producing some cases here :

YAGO : Cases
Relation between BigB with Guzaarish (IMDB
rating 7.2 !!!)

● Amitabh_Bachchan : <hasChild> :
Abhishek_Bachchan

● Abhishek_Bachchan : <isMarriedTo> :
Aishwarya_Rai

● Aishwarya_Rai : <actedIn> : Guzaarish

YAGO : Cases
Relation between Jawaharlal_Nehru with India

● Jawaharlal_Nehru : <hasChild> : Indira_Gandhi

● Indira_Gandhi : <hasChild> : Sanjay_Gandhi

● Sanjay_Gandhi : <livesIn> : Uttar_Pradesh

● Uttar_Pradesh : <isLocatedIn> : India

So long path because directly no other short path between JN and India

Parser ProjectionParser Projection

 Input : Source Language Sentence
 Output: Bracketed Tree structure of Target

Language Sentence
 Conversion Function : a mapping function

which depends on both the languages.

 From “A general approach to natural language conversion” by Md. Abu
Nuser Musud, Md. Muntusir Mamun Joarder, Md. Turiq-UI-Azam, IEEE
JNMIC 2003

ParsingParsing

● NLTK can be used for parsing of input
sentence.

● After successful parsing, the exact structure of
input sentence i.e. natural language-1 (NL1) is
known.

● Now our Goal is : The corresponding structure
of that NL2 must be known

Conversion / MappingConversion / Mapping

● Goal : To convert this structure of NL1 to a
structure suitable to generate NL2

● Problem : a large variation in both the
structures (allignment).

● Solution : Rule-based conversion

ExampleExample

● The book is on the table.
● Grammar:

S -> NP VP

NP -> Det NP0

.......
● But for Hindi, the sentence is :

पसु्तक मेज पर है.

Example(cont..)Example(cont..)

So here, “Det” does not play any role.
● The corresponding rule :
● NP -> NP0

and so on for furthur rules.

Problems with the approach

But there will be false positives and false negetives.

This is due to the fact of lexical ambiguities when a word has multiple meaning or
sense. If the sense is correctly captured the parser and in the ruleset the the
corresponding mapping is there only then can the projection be correct.

Wrong projection can be also due the fact that original english sentence may have
syntactical ambiguity. eg.. I saw the boy with the telescope. Here two possible
parse tree can be obtained so depending on which parse tree the english parser
gives corresponding hindi projection will be given.

One Possible SolutionOne Possible Solution

● We can use Dependency Parsing instead of
convential parsing.

● This is because in Dependency Parse Trees
has only relation between the main verb and
all other parts example Subject and Object.

● Since the relation between the parts does not
change between languages. Also we can then
 convert the dependency graph into bracketed
structure.

Why AV0 is confused with PRP?

● Words that are sometimes prepositions can act as
adverbs.

● A preposition requires an object while an adverb
does not.

ExampleExample

● The bird flew off.
● Here, “off” will be treated as AV0 as it has not

an object.

But

Example (cont)..Example (cont)..

● The bird flew off the door.
● Here, “off” will be treated as PRP as it has an

object phrase “the door”.

Reason for confusionReason for confusion

● In the corpus, probabilty of current word to be
tagged depends on the previous tag and current
word. Since these conflicting words have both PRP
and AVO occurances in the corpus therefore the
tag depends on the previous tag.

● But in reality, it should depends upon the the
presence of “object phrase” and this information is
not availbale in POS TAGGING stage..

Explanation for lower accuracy in A
Star than Viterbi

We had taken our h(n) to be
 - h(n) = -log(P(Wi | Ti)) + ∑nj=i+1 - log(max(P(Wj| T))) where T is
element of the set of all tags.
However here if any of the word in the right of the current word is unknown
that is not is the training corpus then we assign a low probability for P(W i|T)

But now h(n) is no longer less than h*(n) as – log(very low value) is large. So if
a unknown word appears in the sentence then our algorithm did not give the
optimum path. So we changed our h(n) to
 - h(n) = -log(P(Wi | Ti)) + (length of the sentence – current word position) +
1

The 1 at the end is added since PUN should have the second last column before
goal state.

This heuristic does not suffer from the above problem and hence we found its
accuracy to be 91% which was almost same as our bigram Tagger when Rule
based unknown word handling was not introduced.

Thank You

Any Questions ?

Extra Slide : Tag Descriptions 1.
● AJ0 Adjective (general or positive) (e.g. good, old, beautiful)

● AJC Comparative adjective (e.g. better, older)

● AJS Superlative adjective (e.g. best, oldest)

● AT0 Article (e.g. the, a, an, no)

● AV0 General adverb: an adverb not subclassified as AVP or AVQ (see below) (e.g. often, well,
longer (adv.), furthest.

● AVP Adverb particle (e.g. up, off, out)

● AVQ Wh-adverb (e.g. when, where, how, why, wherever)

● CJC Coordinating conjunction (e.g. and, or, but)

● CJS Subordinating conjunction (e.g. although, when)

● CJT The subordinating conjunction that

● CRD Cardinal number (e.g. one, 3, fifty-five, 3609)

● DPS Possessive determiner-pronoun (e.g. your, their, his)

● DT0 General determiner-pronoun: i.e. a determiner-pronoun which is not a DTQ or an AT0.

● DTQ Wh-determiner-pronoun (e.g. which, what, whose, whichever)

● EX0 Existential there, i.e. there occurring in the there is ... or there are ... construction

Extra Slide : Tag Descriptions 2.
● ITJ Interjection or other isolate (e.g. oh, yes, mhm, wow)

● NN0 Common noun, neutral for number (e.g. aircraft, data, committee)

● NN1 Singular common noun (e.g. pencil, goose, time, revelation)

● NN2 Plural common noun (e.g. pencils, geese, times, revelations)

● NP0 Proper noun (e.g. London, Michael, Mars, IBM)

● ORD Ordinal numeral (e.g. first, sixth, 77th, last) .

● PNI Indefinite pronoun (e.g. none, everything, one [as pronoun], nobody)

● PNP Personal pronoun (e.g. I, you, them, ours)

● PNQ Wh-pronoun (e.g. who, whoever, whom)

● PNX Reflexive pronoun (e.g. myself, yourself, itself, ourselves)

● POS The possessive or genitive marker 's or '

● PRF The preposition of

● PRP Preposition (except for of) (e.g. about, at, in, on, on behalf of, with)

● PUL Punctuation: left bracket - i.e. (or [

● PUN Punctuation: general separating mark - i.e. . , ! , : ; - or ?

● PUQ Punctuation: quotation mark - i.e. ' or "

Extra Slide : Tag Descriptions 3.
● PUR Punctuation: right bracket - i.e.) or]

● TO0 Infinitive marker to

● UNC Unclassified items which are not appropriately considered as items of the English lexicon.

● VBB The present tense forms of the verb BE, except for is, 's: i.e. am, are, 'm, 're and be
[subjunctive or imperative]

● VBD The past tense forms of the verb BE: was and were

● VBG The -ing form of the verb BE: being

● VBI The infinitive form of the verb BE: be

● VBN The past participle form of the verb BE: been

● VBZ The -s form of the verb BE: is, 's

● VDB The finite base form of the verb DO: do

● VDD The past tense form of the verb DO: did

● VDG The -ing form of the verb DO: doing

● VDI The infinitive form of the verb DO: do

● VDN The past participle form of the verb DO: done

● VDZ The -s form of the verb DO: does, 's

Extra Slide : Tag Descriptions 4.

● VHB The finite base form of the verb HAVE: have, 've

● VHD The past tense form of the verb HAVE: had, 'd

● VHG The -ing form of the verb HAVE: having

● VHI The infinitive form of the verb HAVE: have

● VHN The past participle form of the verb HAVE: had

● VHZ The -s form of the verb HAVE: has, 's

● VM0 Modal auxiliary verb (e.g. will, would, can, could, 'll, 'd)

● VVB The finite base form of lexical verbs (e.g. forget, send, live, return) [Including the imperative and
present subjunctive]

● VVD The past tense form of lexical verbs (e.g. forgot, sent, lived, returned)

● VVG The -ing form of lexical verbs (e.g. forgetting, sending, living, returning)

● VVI The infinitive form of lexical verbs (e.g. forget, send, live, return)

● VVN The past participle form of lexical verbs (e.g. forgotten, sent, lived, returned)

● VVZ The -s form of lexical verbs (e.g. forgets, sends, lives, returns)

● XX0 The negative particle not or n't

● ZZ0 Alphabetical symbols (e.g. A, a, B, b, c, d)

Thank You.

 Any Question ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

