
Using Hidden Markov Model
By

Ravi Yadav
Biplab Ch Das

We know that p(W|T)=P(W,T)/P(T)
And since p(W,T)=N(W,T)/N(T)

We Used a Hash Map to get all the counts of
tagged words in the training corpus. That is we
first find N(W,T). And then divide it by N(T).

We know that p(Tn|Tn-1)=P(Tn,Tn-1)/P(Tn-1)
And since p(W,T)=N(Tn-1,Tn)/N(Tn-1)
Used Hash Map again. Got the N(t(n-1),t(n))
values and then we divided it by N(t(n-1)).

The folds were separated in the ratio of 4:1
4 for training and 1 for the testing.
5 folds were created and the models were tested

and trained on each folds.

For the non existent data we tried to smoothen the
data by adding a minor value(0.0000001) to the
count.

A single zero in product can make the whole term
zero.

The viterbi algorithm was implemented to get the
best possible state sequence using the transition
matrix and the emission matrix. The best
possible state sequence was considered as the
best tag possible for the sentence

Till now the pos tagger have implemented the
viterbi algorithm ,at the same time it we kept
the greedy local lookup that we presented
before.

T(n)*=argmax(Tj)(p((Tj|Ti)*p(Wj|tj));
Here ‘i’is prev state and ‘j’ varies.

We take joint probability
P(Si,Sj,wi,wj)=P(sj|si)*P(si)*P(wj|sj)*P(wi|si)
And set P(si)=1 and P(wi|si)=1(Considering the prev state
is constant , we don’t need to cosider P(si) for local
maximisation)

The confusion matrix have been created. The
actual tags were shown in the right hand side
column and the tags by the Viterbi algorithm
were enumerated at the bottom line.

file:///C:/Users/Biplab/Desktop/confusion_ma
trix.html

Most of the confusion was between NP0 and NN1
It was because of the unknown word prediction

handling done in the code.

The proper output for the tag wise precision-
recall and the F-score has been calculated .

The F-score was calculated putting the beta value
to 1.

file:///C:/Users/Biplab/Desktop/proper.html

The trigram model was implemented for the Pos
tagger.

In this case the current tag not only depends on
the previous state but also on the previous to
previous state.

Heuristic used:
-h(Ti)= log(P(Wi|Ti))+∑(j= i+1 to n) log(max(P(Wj|Tj)))+

∑(log(max(Ti|Tj))

Where,
P(Wi|Ti) is the lexical prob at a node.
max(Ti|Tj) is the maximum of all transitional probabilities
max(Ti|Tj) is the max lexical prob at a node

Fold
No

Bigra
m

Skip gram
(0.75*bigra
m+.25
skipgram)

(.23*bigram+.11*
skipgram+.66*tri
gram)

A* algorithm

Fold 1 92.69 92.71 92.82 93.20

Fold 2 93.76 94.08 94.28 94.75

Fold 3 93.61 93.69 93.73 94.66

Fold 4 94.00 94.06 94.17 94.72

Fold 5 93.22 93.38 93.64 93.86

Overall 93.45 93.58 93.73 94.23

Model tag directly from the data.

Expression :
Argmax(j) P(T(j)|T(j-1),Current_word)

Accuracy acieved 72.98 %
Possible problem :Unknown word handling was

not done .

argmax∑
(Nw)

∑
(Tw)

I(Tw)*sim(Syn(Nw),Syn(Tw))

Where argmax is over Nw
Here nw=argmax(wi,wj) maximizing over wj
Sim is a similarity function
Syn(W) refers to the synset of the words

Measured using trigram of content words and
checked with the top 5 suggestions.

It came out to be 43.30% without knowing pos
tags and with pos tags it increased to 46.00%
Most of the confusion occurred when the next
words involved names.

