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We know that p(W|T)=P(W,T)/P(T)
And since p(W,T)=N(W,T)/N(T)

We Used a Hash Map to get all the counts of 
tagged words in the training corpus. That is we 
first find N(W,T). And then divide it by N(T).



We know that p(Tn|Tn-1)=P(Tn,Tn-1)/P(Tn-1)
And since p(W,T)=N(Tn-1,Tn)/N(Tn-1)
Used Hash Map again. Got the N(t(n-1),t(n)) 
values and then we divided it by N(t(n-1)).



The folds were separated in the ratio of 4:1
4 for training and 1 for the testing.
5 folds were created and the models were tested 

and trained on each folds.



For the non existent data we tried to smoothen the 
data by adding a minor value(0.0000001) to the 
count.

A single zero in product can make the whole term 
zero.



The viterbi algorithm was implemented to get  the 
best possible state sequence using the transition 
matrix and the emission matrix. The best 
possible state  sequence was considered as the 
best tag possible for the sentence 



Till now the pos tagger have implemented  the 
viterbi algorithm ,at the same time it we kept 
the  greedy  local  lookup that we presented 
before.

T(n)*=argmax(Tj)(p((Tj|Ti)*p(Wj|tj));
Here ‘i’is prev state and ‘j’ varies. 



We  take joint probability 
P(Si,Sj,wi,wj)=P(sj|si)*P(si)*P(wj|sj)*P(wi|si)
And set P(si)=1 and P(wi|si)=1(Considering the prev state 
is constant , we don’t need to cosider P(si) for local 
maximisation )



The confusion matrix have been created. The 
actual tags were shown in the right hand side 
column and the tags by the Viterbi algorithm 
were  enumerated   at the bottom line.

file:///C:/Users/Biplab/Desktop/confusion_ma
trix.html



Most of the confusion was between NP0 and NN1
It was because of the unknown word prediction 

handling done in the code.



The proper output for the  tag wise precision-
recall and the  F-score has been   calculated .

The F-score was calculated putting the beta value 
to 1.

file:///C:/Users/Biplab/Desktop/proper.html



The trigram model was implemented for the Pos 
tagger.

In this case the current tag not only depends on 
the previous state but also on the previous to 
previous state. 







Heuristic used:
-h(Ti)= log(P(Wi|Ti))+∑(j= i+1 to n) log(max(P(Wj|Tj)))+                            

∑(log(max(Ti|Tj))

Where,
P(Wi|Ti) is the lexical prob at a node.
max(Ti|Tj) is the maximum of all transitional probabilities
max(Ti|Tj) is the max lexical prob at a node



Fold
No

Bigra
m

Skip gram
(0.75*bigra
m+.25 
skipgram)

(.23*bigram+.11*
skipgram+.66*tri
gram)

A* algorithm

Fold 1 92.69 92.71 92.82 93.20

Fold 2 93.76 94.08 94.28 94.75

Fold 3 93.61 93.69 93.73 94.66

Fold 4 94.00 94.06 94.17 94.72

Fold 5 93.22 93.38 93.64 93.86

Overall 93.45 93.58 93.73 94.23



Model  tag directly from the data.

Expression :
Argmax(j) P(T(j)|T(j-1),Current_word)

Accuracy acieved 72.98 %
Possible problem :Unknown word handling was 

not done .





argmax∑
(Nw)

∑
(Tw)

I(Tw)*sim(Syn(Nw),Syn(Tw))

Where argmax is over Nw
Here nw=argmax(wi,wj) maximizing over wj
Sim is a similarity function
Syn(W) refers to the synset of the words



Measured  using trigram of content words and 
checked with the top 5 suggestions.

It came out to be 43.30% without knowing pos 
tags and with pos tags it increased to 46.00%
Most  of the confusion occurred when the next 
words involved names.


