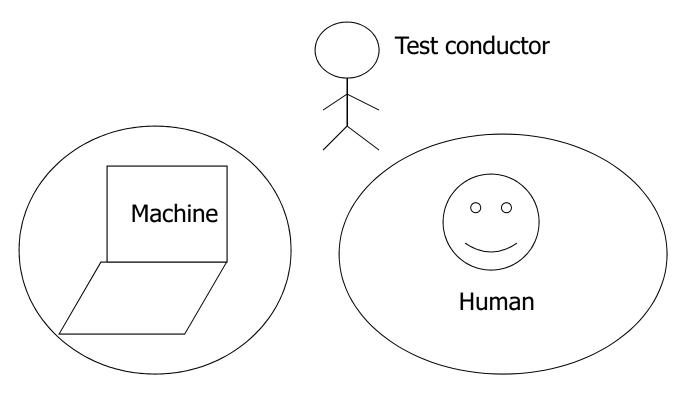

CS626 : Natural Language Processing, Speech and the Web (Lecture 1,2,3 – Introduction, POS tagging)

> Pushpak Bhattacharyya CSE Dept., IIT Bombay 19th, 22nd and 26th July, 2012

Logistics

- Faculty instructors: Dr. Pushpak
 Bhattacharyya (<u>www.cse.iitb.ac.in/~pb</u>)
- TAs: Avishek Dan, Bibek Behera {avishekdan,bibek}@cse.iitb.ac.in
- Course home page (to be created)
 - http://www.cse.iitb.ac.in/~cs626-sem1-2012
- Moodle account
- SIC 201
- Slot 8: Mon-2 to 3.25 PM and Thu-2 to 3.25 PM

Perpectivising NLP: Areas of AI and their inter-dependencies


What is NLP

- Branch of AI
- 2 Goals
 - Science Goal: Understand the way language operates
 - Engineering Goal: Build systems that analyse and generate language; reduce the man machine gap

Two Views of NLP and the Associated Challenges

- 1. Classical View
- 2. Statistical/Machine Learning View

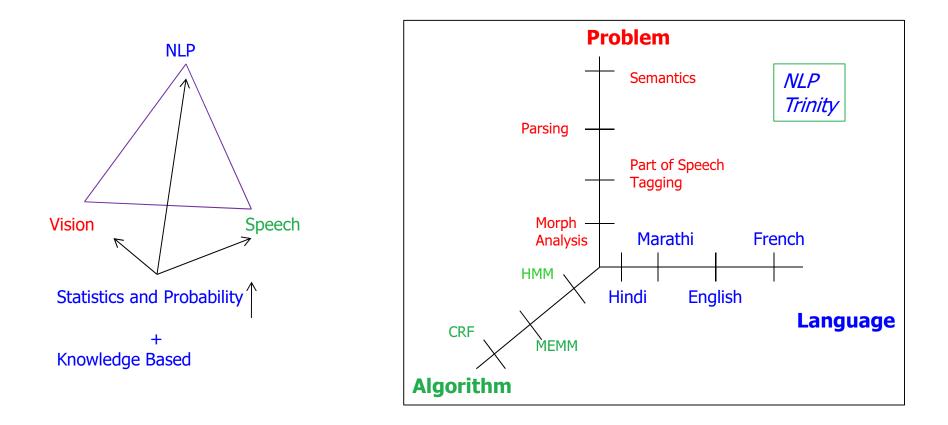
The famous Turing Test: Language Based Interaction

Can the test conductor find out which is the machine and which the human

Inspired *Eliza*

A Sample of Interaction:

File Edit Options Buffers Tools Help




```
I am the psychotherapist. Please, describe your problems.
 ≤Each time
  you are finished talking, type RET twice.
  I have a terrible headache.
  Maybe you should consult a doctor of medicine, I am a psychi
 Satrist.
  Okay, I'll do that then.
  Can you elaborate on that?
  What are you talking about? No I cannot elaborate. See you le
 Sater.
  Why do you say that?
  Now you're just talking nonsense!
  What makes you believe now I am just talking nonsense?
  You are not making any sense.
  Perhaps your plans have something to do with this.
-u:
  ** *doctor*
                         (Doctor Fill) -- L1 -- Top------
```

NLP→Cryptography→Turing

- Machine Translation is an important branch of NLP, has once been looked upon as a problem in cryptography!
- Warren Weaver, one of the pioneering minds in machine translation, wrote in 1947:
 - When I look at an article in Russian, I say: 'This is really written in English, but it has been coded in some strange symbols. I will now proceed to decode'. [Weaver, 1947, 1949]

NLP: Two pictures

Stages of processing

- Phonetics and phonology
- Morphology
- Lexical Analysis
- Syntactic Analysis
- Semantic Analysis
- Pragmatics
- Discourse

sound and associated challenges

- Homophones: bank (finance) vs. bank (river bank)
- Near Homophones: *maatraa* vs. *maatra (hin)*
- Word Boundary
 - आजायेंगे (aajaayenge) (aa jaayenge (will come) or aaj aayenge (will come today)
 - I got [ua]plate
 - Disfluency: *ah, um, ahem etc.*

Recently heard:

The king of Abu Dhabi had expired last year. The nation was mourning. A few children were playing in the evening in a garden.

An elderly person: "Why are you playing? It is mourning time.

Children: "No, it is evening time. Why shouldn't we play."

Today's (24/6/12) Times of India Headline: Google CEO Larry Page looses his voice.

Morphology

- Word formation rules from *root* words
- Nouns: Plural (*boy-boys*); Gender marking (czar-czarina)
- Verbs: Tense (*stretch-stretched*); Aspect (*e.g. perfective sit-had sat*); Modality (e.g. *request khaanaa→ khaaiie*)
- First crucial first step in NLP
- Languages rich in morphology: e.g., Dravidian, Hungarian, Turkish
- Languages poor in morphology: Chinese, English
- Languages with rich morphology have the advantage of easier processing at higher stages of processing
- A task of interest to computer science: *Finite State Machines for Word Morphology*

Lexical Analysis

Essentially refers to dictionary access and obtaining the properties of the word

 e.g. dog
 noun (lexical property)
 take-'s'-in-plural (morph property)
 animate (semantic property)
 4-legged (-do-)
 carnivore (-do)

 Challenge: Lexical or word sense

disambiguation

Lexical Disambiguation

First step: part of Speech Disambiguation

- *Dog* as a *noun* (animal)
- Dog as a verb (to pursue)
- Sense Disambiguation
 - Dog (as animal)
 - Dog (as a very detestable person)

Needs word relationships in a context

The chair emphasised the need for adult education
 Very common in day to day communications
 Satellite Channel Ad: Watch what you want, when you want (two senses of watch)

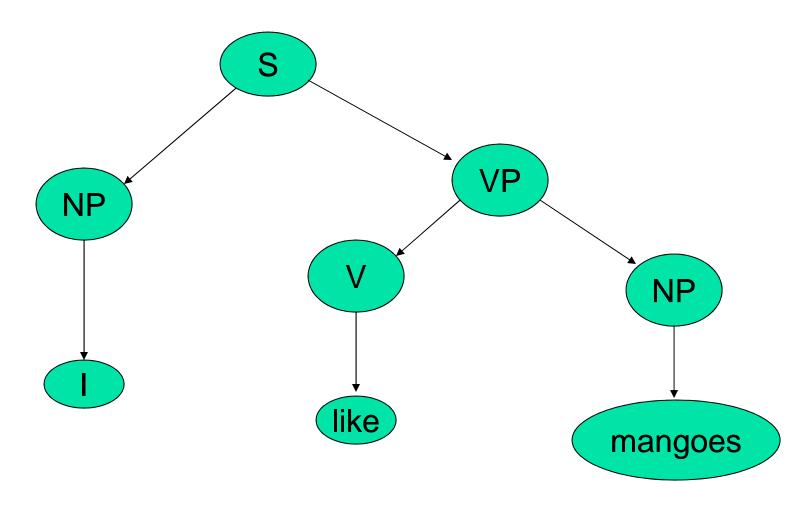
e.g., Ground breaking ceremony/research

Technological developments bring in new terms, additional meanings/nuances for existing terms

- Justify as in *justify the right margin* (word processing context)
- Xeroxed: a new verb
- Digital Trace: a new expression
- Communifaking: pretending to talk on mobile when you are actually not
- Discomgooglation: anxiety/discomfort at not being able to access internet
- Helicopter Parenting: over parenting

Ambiguity of Multiwords

- The grandfather <u>kicked the bucket after</u> suffering from cancer.
- This job is a <u>piece of cake</u>
- Put the sweater on
- He is the <u>dark horse</u> of the match


```
Google Translations of above sentences:
दादा कैंसर से पीड़ित होने के बाद बाल्टी लात
मारी.
इस काम के केक का एक टुकड़ा है.
स्वेटर पर रखो.
वह मैच के अंधेरे घोड़ा है.
```

Ambiguity of Named Entities

- Bengali: <u>চঞ্চল সরকার</u> বাড়িতে আছে English: Government is restless at home. (*) <u>Chanchal Sarkar</u> is at home
- Hindi: दैनिक दबंग दुनिया English: everyday bold world Actually name of a Hindi newspaper in Indore
- High degree of overlap between NEs and MWEs
- Treat differently transliterate do not translate

Syntax Processing Stage

Structure Detection

Parsing Strategy

Driven by grammar

- S-> NP VP
- NP-> N | PRON
- VP-> V NP | V PP
- N-> Mangoes
- PRON-> I
- V-> like

Challenges in Syntactic Processing: Structural Ambiguity

Scope

1. The old men and women were taken to safe locations (old men and women) vs. ((old men) and women)
2. No smoking areas will allow Hookas inside

Preposition Phrase Attachment

- I saw the boy with a telescope (who has the telescope?)
- I saw the mountain with a telescope (world knowledge: *mountain* cannot be an *instrument of seeing*)
- I saw the boy with the pony-tail
 - (world knowledge: *pony-tail* cannot be an *instrument of seeing*)
- Very ubiquitous: newspaper headline "20 years later, BMC pays father 20 lakhs for causing son's death"

Semantic Analysis

- Representation in terms of
 - Predicate calculus/Semantic Nets/Frames/Conceptual Dependencies and Scripts
- John gave a book to Mary
 - Give action: Agent: John, Object: Book, Recipient: Mary
- Challenge: ambiguity in semantic role labeling
 - (Eng) Visiting aunts can be a nuisance
 - (Hin) aapko mujhe mithaai khilaanii padegii (ambiguous in Marathi and Bengali too; not in Dravidian languages)

Pragmatics

- Very hard problem
- Model user intention
 - Tourist (in a hurry, checking out of the hotel, motioning to the service boy): Boy, go upstairs and see if my sandals are under the divan. Do not be late. I just have 15 minutes to catch the train.
 - Boy (running upstairs and coming back panting): yes sir, they are there.
- World knowledge
 - WHY INDIA NEEDS A SECOND OCTOBER (ToI, 2/10/07)

Discourse

Processing of *sequence* of sentences *Mother* to *John*:

John go to school. It is open today. Should you bunk? Father will be very angry.

Ambiguity of open

bunk what?

Why will the father be angry?

Complex chain of reasoning and application of world knowledge Ambiguity of *father father* as *parent* or

father as headmaster

Complexity of Connected Text

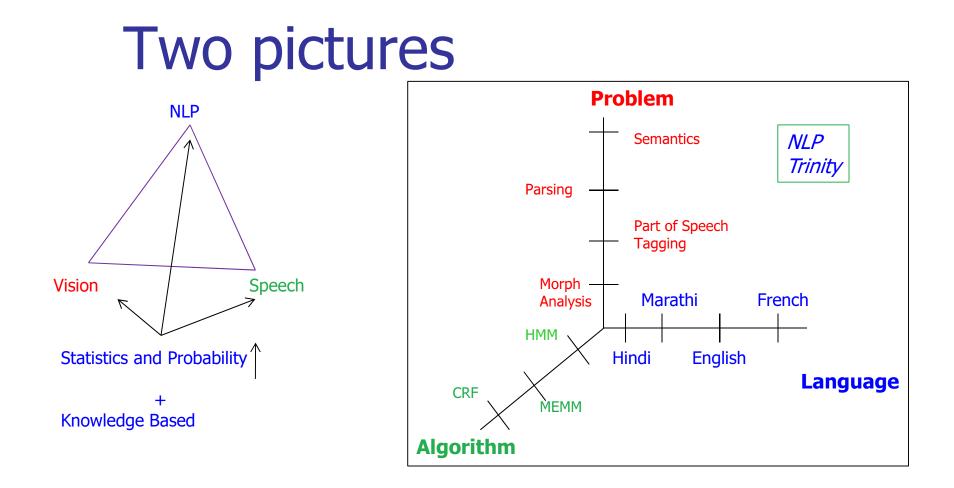
John was returning from school dejected – today was the math test

He couldn't control the class

Teacher shouldn't have made him responsible

After all he is just a janitor

Textual Humour (1/2)


- Teacher (angrily): did you miss the class yesterday? Student: not much
- 2. A man coming back to his parked car sees the sticker "Parking fine". He goes and thanks the policeman for appreciating his parking skill.
- *3. Son*: mother, I broke the neighbour's lamp shade. *Mother*: then we have to give them a new one. *Son*: no need, aunty said the lamp shade is irreplaceable.
- *Ram*: I got a Jaguar car for my unemployed youngest son.
 Shyam: That's a great exchange!
- 5. Shane Warne should bowl maiden overs, instead of bowling maidens over

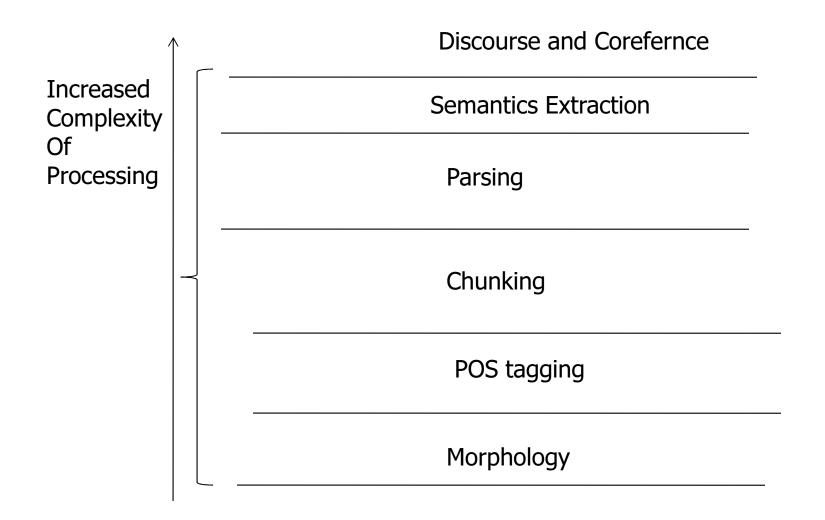
Textual Humour (2/2)

- It is not hard to meet the expenses now a day, you find them everywhere
- Teacher: What do you think is the capital of Ethiopia?
 Student: What do you think?
 Teacher: I do not think, I know
 Student: I do not think I know

Stages of processing

- Phonetics and phonology
- Morphology
- Lexical Analysis
- Syntactic Analysis
- Semantic Analysis
- Pragmatics
- Discourse

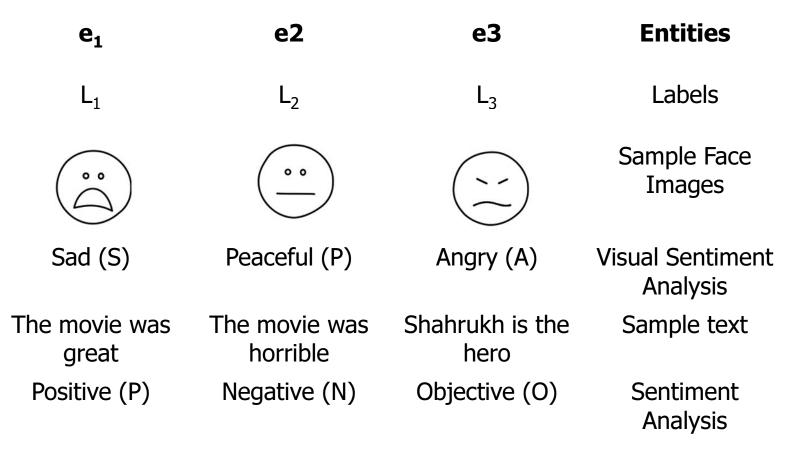
Part of Speech Tagging and Hidden Markov Model


Part of Speech Tagging

- POS Tagging is a process that attaches each word in a sentence with a suitable tag from a given set of tags.
- The set of tags is called the Tag-set.
- Standard Tag-set : Penn Treebank (for English).

POS tagging: Definition

- Tagging is the assignment of a singlepart-of-speech tag to each word (and punctuation marker) in a corpus.
 - "_" The_DT guys_NNS that_WDT make_VBP traditional_JJ hardware_NN are_VBP really_RB being_VBG obsoleted_VBN by_IN microprocessorbased_JJ machines_NNS ,_, "_" said_VBD Mr._NNP Benton_NNP ._.


Where does POS tagging fit in

Mathematics of POS tagging

Entity Labeling

 Label a sequence of entities with labels from a set

Argmax computation (1/2)

Best tag sequence

= T*

= argmax P(T|W)

 $= \operatorname{argmax} P(T)P(W|T)$ (by Baye's Theorem)

$$\begin{split} \mathsf{P}(\mathsf{T}) &= \mathsf{P}(\mathsf{t}_0 = \ \ t_1 \mathsf{t}_2 \ \dots \ t_{n+1} = .) \\ &= \mathsf{P}(\mathsf{t}_0) \mathsf{P}(\mathsf{t}_1 | \mathsf{t}_0) \mathsf{P}(\mathsf{t}_2 | \mathsf{t}_1 \mathsf{t}_0) \mathsf{P}(\mathsf{t}_3 | \mathsf{t}_2 \mathsf{t}_1 \mathsf{t}_0) \ \dots \\ &\quad \mathsf{P}(\mathsf{t}_n | \mathsf{t}_{n-1} \mathsf{t}_{n-2} \dots \mathsf{t}_0) \mathsf{P}(\mathsf{t}_{n+1} | \mathsf{t}_n \mathsf{t}_{n-1} \dots \mathsf{t}_0) \\ &= \mathsf{P}(\mathsf{t}_0) \mathsf{P}(\mathsf{t}_1 | \mathsf{t}_0) \mathsf{P}(\mathsf{t}_2 | \mathsf{t}_1) \ \dots \ \mathsf{P}(\mathsf{t}_n | \mathsf{t}_{n-1}) \mathsf{P}(\mathsf{t}_{n+1} | \mathsf{t}_n) \end{split}$$

 $= \prod_{i=0}^{N+1} P(t_i | t_{i-1})$ Bigram Assumption

Argmax computation (2/2)

 $P(W|T) = P(w_0|t_0-t_{n+1})P(w_1|w_0t_0-t_{n+1})P(w_2|w_1w_0t_0-t_{n+1}) \dots P(w_n|w_0-w_{n-1}t_0-t_{n+1})P(w_{n+1}|w_0-w_nt_0-t_{n+1})$

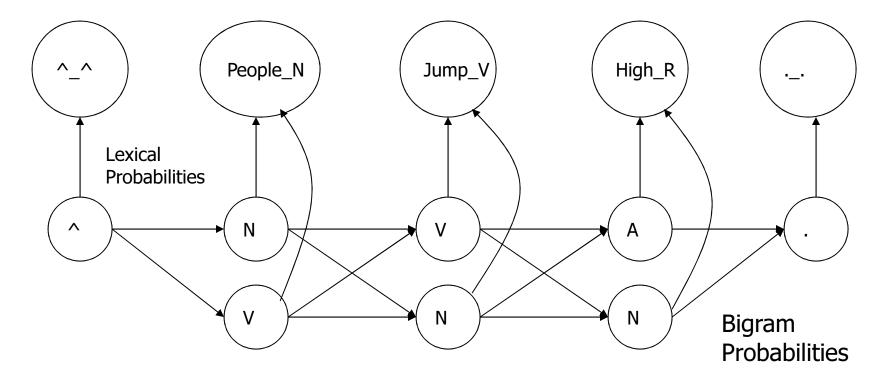
Assumption: A word is determined completely by its tag. This is inspired by speech recognition

$$= P(w_{o}|t_{o})P(w_{1}|t_{1}) \dots P(w_{n+1}|t_{n+1})$$

$$= \prod_{i=0}^{n+1} P(w_{i}|t_{i})$$

$$= \prod_{i=1}^{n+1} P(w_{i}|t_{i}) \quad \text{(Lexical Probability Assumption)}$$

Reading List


- TnT (<u>http://www.aclweb.org/anthology-new/A/A00/A00-1031.pdf</u>)
- Brill Tagger

(http://delivery.acm.org/10.1145/1080000/1075553/p112brill.pdf?ip=182.19.16.71&acc=OPEN&CFID=129797466&CFTO KEN=72601926& acm =1342975719 082233e0ca9b5d1d67a 9997c03a649d1)

- Hindi POS Tagger built by IIT Bombay (<u>http://www.cse.iitb.ac.in/pb/papers/ACL-2006-Hindi-POS-</u> Tagging.pdf)
- Projection

(http://www.dipanjandas.com/files/posInduction.pdf)

Generative Model

This model is called Generative model. Here words are observed from tags as states. This is similar to HMM. Observations leading to why probability is needed

- Many intelligence tasks are sequence labeling tasks
- Tasks carried out in layers
- Within a layer, there are limited windows of information
- This naturally calls for strategies for dealing with uncertainty
- Probability and Markov process give a way

Penn tagset (1/2)

CC	Coord Conjuncn	and, but, or	NN	Noun, sing. or mass	dog
CD	Cardinal number	one,two	NNS	Noun, plural	dogs
DT	Determiner	the,some	NNP	Proper noun, sing.	Edinburgh
EΧ	Existential there	there	NNPS	Proper noun, plural	Orkneys
FW	Foreign Word	mon dieu	PDT	Predeterminer	all, both
IN	Preposition	of,in,by	POS	Possessive ending	's
JJ	Adjective	big	PP	Personal pronoun	l,you,she
JJR	Adj., comparative	bigger	PP\$	Possessive pronoun	my,one's
JJS	Adj., superlative	biggest	RB	Adverb	quickly
LS	List item marker	1,One	RBR	Adverb, comparative	faster
MD	Modal	can,should	RBS	Adverb, superlative	fastest

Penn tagset (2/2)

RP	Particle	up,off	WP\$	Possessive-Wh	whose
SYM	Symbol	+,%,&	WRB	Wh-adverb	how, where
то	"to"	to	\$	Dollar sign	\$
UH	Interjection	oh, oops	#	Pound sign	#
VB	verb, base form	eat	2003	Left quote	· · · ·
VBD	verb, past tense	ate	:	Right quote	а н С
VBG	verb, gerund	eating	(Left paren	(
VBN	verb, past part	eaten)	Right paren)
VBP	Verb, non-3sg, pres	eat		Comma	200
VBZ	Verb, 3sg, pres	eats	34) 	Sent-final punct	. 1 ?
WDT	Wh-determiner	which,that		Mid-sent punct.	::
WP	Wh-pronoun	what, who			

Indian Language Tagset: Noun

S1. No	Category			Labe1	Annotation Convention**	Examples
	Top level	Subtype (level 1)	Subtype (level 2)			
1	Noun			N	N	ladakaa, raajaa, kitaaba
1.1		Common		NN	NNN	kitaaba, kalama, cashmaa
1.2		Proper		NNP	NNNP	Mohan, ravi, rashmi
1.4		Nloc		NST	NNST	Uupara, niice, aage,

Indian Language Tagset: Pronoun

2	Pronoun		PR	PR	Yaha, vaha, jo
2.1		Personal	PRP	PRPRP	Vaha, main, tuma, ve
2.2		Reflexive	PRF	PRPRF	Apanaa, swayam, khuda
2.3		Relative	PRL	PR_PRL	Jo, jis, jab, jahaaM,
2.4		Reciprocal	PRC	PR_PRC	Paraspara, aapasa
2.5		Wh-word	PRQ	PR_PRQ	Kauna, kab, kahaaM
		Indefinite	PRI	PR_PRI	Koii, kis

Challenge of POS tagging

Example from Indian Language

Tagging of *jo, vaha, kaun* and their inflected forms in Hindi and their equivalents in multiple languages

DEM and PRON labels

Jo_DEM ladakaa kal aayaa thaa, vaha cricket acchhaa khel letaa hai

Jo_PRON kal aayaa thaa, vaha cricket acchhaa khel letaa hai

Disambiguation rule-1 If Jo is followed by noun Then Else

False Negative

- When there is arbitrary amount of text between the *jo* and the noun
- Jo_??? bhaagtaa huaa, haftaa huaa, rotaa huaa, chennai academy a koching lenevaalaa ladakaa kal aayaa thaa, vaha cricket acchhaa khel letaa hai

False Positive

Jo_DEM (wrong!) duniyadarii samajhkar chaltaa hai, ...

 Jo_DEM/PRON? manushya manushyoM ke biich ristoM naatoM ko samajhkar chaltaa hai, ... (ambiguous)

Morphology: syncretism

Languages that are poor in Morphology (Chinese, English) have Role Ambiguity or **Syncretism** (fusion of originally different inflected forms resulting in a reduction in the use of inflections)

Eg: You/They/He/I will <u>come</u> tomorrow

Here, just by looking at the verb `*come*' its syntactic features aren't apparent i.e.

Gender, Number, Person, Tense, Aspect, Modality (GNPTAM)

-<u>Aspect</u> tells us how the event occurred; whether it is completed, continuous, or habitual. Eg: *John came, John will be coming*

- <u>Modality</u> indicates possibility or obligation. Eg: *John can arrive / John must arrive*

Contrast this with the Hindi Translation of 'I will <u>come</u> tomorrow'

मैं Main (I) कल kal(tomorrow) <u>आउंगा aaunga (will come)</u>

<u>आउंगा aaunga</u> – GNPTAM: Male, Singular, First, Future

आओगे (Aaoge) – has number ambiguity, but still contains more information than '*come*' in English

Books etc.

- Main Text(s):
 - Natural Language Understanding: James Allan
 - Speech and NLP: Jurafsky and Martin
 - Foundations of Statistical NLP: Manning and Schutze
- Other References:
 - NLP a Paninian Perspective: Bharati, Cahitanya and Sangal
 - Statistical NLP: Charniak
- Journals
 - Computational Linguistics, Natural Language Engineering, AI, AI Magazine, IEEE SMC
- Conferences
 - ACL, EACL, COLING, MT Summit, EMNLP, IJCNLP, HLT, ICON, SIGIR, WWW, ICML, ECML

Allied Disciplines

Philosophy	Semantics, Meaning of "meaning", Logic (syllogism)
Linguistics	Study of Syntax, Lexicon, Lexical Semantics etc.
Probability and Statistics	Corpus Linguistics, Testing of Hypotheses, System Evaluation
Cognitive Science	Computational Models of Language Processing, Language Acquisition
Psychology	Behavioristic insights into Language Processing, Psychological Models
Brain Science	Language Processing Areas in Brain
Physics	Information Theory, Entropy, Random Fields
Computer Sc. & Engg.	Systems for NLP

Topics proposed to be covered

- Shallow Processing
 - Part of Speech Tagging and Chunking using HMM, MEMM, CRF, and Rule Based Systems
 - EM Algorithm
- Language Modeling
 - N-grams
 - Probabilistic CFGs
- Basic Speech Processing
 - Phonology and Phonetics
 - Statistical Approach
 - Automatic Speech Recognition and Speech Synthesis
- Deep Parsing
 - Classical Approaches: Top-Down, Bottom-UP and Hybrid Methods
 - Chart Parsing, Earley Parsing
 - Statistical Approach: Probabilistic Parsing, Tree Bank Corpora

Topics proposed to be covered (contd.)

- Knowledge Representation and NLP
 - Predicate Calculus, Semantic Net, Frames, Conceptual Dependency, Universal Networking Language (UNL)
- Lexical Semantics
 - Lexicons, Lexical Networks and Ontology
 - Word Sense Disambiguation
- Applications
 - Machine Translation
 - IR
 - Summarization
 - Question Answering

Grading

- Based on
 - Midsem
 - Endsem
 - Assignments
 - Paper-reading/Seminar

Except the first two everything else in groups of 4. Weightages will be revealed soon.

Conclusions

- Both Linguistics and Computation needed
- Linguistics is the eye, Computation the body
- Phenomenon→
 Fomalization→Technique→Experimentation→Evaluation→H
 ypothesis Testing
 - has accorded to NLP the prestige it commands today
- Natural Science like approach
- Neither Theory Building nor Data Driven Pattern finding can be ignored