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Lexical Probabilities

Motivation: Problem: Implement A* to get the 
best Tag sequence 
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Note: Red arrows indicate the correct tag sequence.



Search building blocks

� State Space : Graph of states (Express constraints 
and parameters of the problem)
� Operators : Transformations applied to the states.
� Start state : S0 (Search starts from here)Start state : S0 (Search starts from here)
� Goal state : {G} - Search terminates here.
� Cost : Effort involved in using an operator.
� Optimal path : Least cost path



Examples
Problem 1 : 8 – puzzle
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Tile movement represented as the movement of the blank space.
Operators:
L : Blank moves left
R : Blank moves right
U : Blank moves up
D : Blank moves down

C(L) = C(R) = C(U) = C(D) = 1



Problem 2: Missionaries and Cannibals

River 

R

L

boat

boat

Constraints
� The boat can carry at most 2 people
� On no bank should the cannibals outnumber the missionaries

Missionaries Cannibals
Missionaries Cannibals



State : <#M, #C, P>
#M = Number of missionaries on bank L
#C= Number of cannibals on bank L
P = Position of the boat

S0 = <3, 3, L>
G = < 0, 0, R >

Operations
M2 = Two missionaries take boat
M1 = One missionary takes boat
C2= Two cannibals take boat
C1= One cannibal takes boat
MC = One missionary and one cannibal takes boat



<3,3,L>

<3,1,R> <2,2,R>

C2 MC

<3,3,L>

Partial search 
tree



Problem 3

B B W W WB

G: States where no B is to the left of any W
Operators:
1)  A tile jumps over another tile into a blank tile with cost 1)  A tile jumps over another tile into a blank tile with cost 
2
2) A tile translates into a blank space with cost 1



Algorithmics of Search



General Graph search Algorithm
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1) Open List : S (Ø, 0)

Closed list : Ø

2) OL : A(S,1), B(S,3), C(S,10)

CL : S

3) OL : B(S,3), C(S,10), D(A,6)

CL : S, A

6) OL : E(B,7), F(D,8), G(D, 9)

CL : S, A, B, C, D

7) OL : F(D,8), G(D,9)

CL : S, A, B, C, D, E

8) OL : G(D,9)

CL : S, A, B, C, D, E, F

4) OL : C(S,10), D(A,6), E(B,7)

CL: S, A, B

5) OL : D(A,6), E(B,7)

CL : S, A, B , C

9) OL : Ø
CL : S, A, B, C, D, E,

F, G



Steps of GGS 
(principles of AI, Nilsson,)

� 1. Create a search graph G, consisting solely of the 
start node S; put S on a list called OPEN.

� 2. Create a list called CLOSED that is initially empty.

� 3. Loop: if OPEN is empty, exit with failure.

� 4. Select the first node on OPEN, remove from OPEN� 4. Select the first node on OPEN, remove from OPEN

and put on CLOSED, call this node n.

� 5. if n is the goal node, exit with the solution 
obtained by tracing a path along the pointers from n 

to s in G. (ointers are established in step 7).

� 6. Expand node n, generating the set M of its 
successors that are not ancestors of n. Install these 
memes of M as successors of n in G.



GGS steps (contd.)

� 7. Establish a pointer to n from those members of M
that were not already in G (i.e., not already on either 
OPEN or CLOSED). Add these members of M to 
OPEN. For each member of M that was already on OPEN. For each member of M that was already on 
OPEN or CLOSED, decide whether or not to redirect 
its pointer to n. For each member of M already on 
CLOSED, decide for each of its descendents in G
whether or not to redirect its pointer.

� 8. Reorder the list OPEN using some strategy.

� 9. Go LOOP.



GGS is a general umbrella

OL is a 

queue

(BFS)

OL is 

stack

(DFS)

OL is accessed by 

using a functions 
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h(n2)

h(n1)
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(BFS) (DFS)
using a functions 

f= g+h

(Algorithm A)



Algorithm A

� A function f is maintained with each node

f(n) = g(n) + h(n), n is the node in the open list

� Node chosen for expansion is the one with least 

f value

� For BFS: h = 0, g = number of edges in the 

path to S

� For DFS: h = 0, g = 



Algorithm A*
� One of the most important advances in AI

� g(n)= least cost path to n from S found so far

� h(n)<= h*(n) where h*(n) is the actual cost of 

optimal path to G(node to be found) from noptimal path to G(node to be found) from n

S

n

G

				

				

“ Optimism leads to optimality”



A* Algorithm – Definition and 
Properties

� f(n) = g(n) + h(n)
� The node with the least 

value of f is chosen from the 
OL.

� f*(n) = g*(n) + h*(n), 

S s

g(n)

� f*(n) = g*(n) + h*(n), 
where,

g*(n) = actual cost of 
the optimal path (s, n)

h*(n) = actual cost of 
optimal path (n, g)

� g(n) ≥ g*(n)

� By definition, h(n) ≤ h*(n)

n

goal

State space graph G

h(n)



8-puzzle: heuristics
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Example: 8 puzzle

s n g

h*(n) = actual no. of moves to transform n to g

1. h1(n) = no. of tiles displaced from their destined 
position.

2. h2(n) = sum of Manhattan distances of tiles from 
their destined position.

h
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Eight puzzle problem

Number of Tiles displaced from their original position
Tiles:                     1               2             3                4               5             6           7        8
Displacement:     1               1             1                1               1             1           1              1 

h1 = 8 (sum of the number of tiles required displacement)

Manhattan displacement Required in tiles to get destined position(Manhattan Distances of tiles from
goal)goal)

Tiles:                    1               2             3                4               5             6           7         8
Displacement:    1               1             1                3               2             2           1              1 

h2 = 12 (sum of the tile’s manhatten disptances from goal)
h* = Actual displacement from goal.

h1 <= h* and h2 <= h*



A* critical points

• Goal

1. Do we know the goal?

2. Is the distance to the goal known?2. Is the distance to the goal known?

3. Is there a path (known?) to the goal?



A* critical points

• About the path
Any time before A* terminates there 

exists on the OL, a node from the optimal 
path all whose ancestors in the optimal path all whose ancestors in the optimal 
path are in the CL.

This means,

Э in the OL always a node ‘n’  s.t. 
g(n)  = g*(n)



Key point about A* search

S

Statement:  

Let S -n1-n2-n3…ni…-nk-1-
nk(=G) be an optimal path.

At any time during the 
search:

S

|

n
1

|

n
2

| search:

1. There is a node ni from the 
optimal path in the OL

2. For ni all its ancestors 
S,n1,n2,…,ni-1 are in CL

3. g(ni) = g*(ni)

2

|

.

.

n
i

.

.

n
k-1

|

n
k

=g



Proof of the statement

Proof by induction on iteration no. j

Basis : j = 0, S is on the OL, S satisfies 
the statementthe statement

Hypothesis : Let the statement be true for 
j = p (pth iteration)

Let ni be the node satisfying the 
statement 



Proof (continued)

Induction : Iteration no. j = p+1

Case 1 : ni is expanded and moved to 
the closed list

Then, ni+1 from the optimal path 
comes to the OLcomes to the OL

Node ni+1 satisfies the statement

(note: if ni+1 is in CL, then ni+2 satisfies 
the property)

Case 2 : Node x ≠ ni is expanded

Here, ni satisfies the statement



� Admissibility: An algorithm is called admissible if it 
always terminates and terminates in optimal path

� Theorem: A* is admissible.
� Lemma: Any time before A* terminates there exists 

on OL a node n such that f(n) <= f*(s)

A* Algorithm- Properties

on OL a node n such that f(n) <= f*(s)
� Observation: For optimal path s → n1 → n2 → … →

g, 
1. h*(g) = 0, g*(s)=0 and 
2. f*(s) = f*(n1) = f*(n2) = f*(n3)… = f*(g)



f*(ni) = f*(s), ni ≠ s and ni ≠ g

Following set of equations show the above equality:

f*(ni) = g*(ni) + h*(ni)

f*(n ) = g*(n ) + h*(n )

A* Properties (contd.)

f*(ni+1) = g*(ni+1) + h*(ni+1)

g*(ni+1) = g*(ni) + c(ni , ni+1)

h*(ni+1) = h*(ni) - c(ni , ni+1)

Above equations hold since the path is optimal.



Admissibility of A*

A* always terminates finding an optimal path to the goal if such a 
path exists.

Intuition

(1) In the open list there always exists a node 
S

g(n)

n

h(n)

G

(1) In the open list there always exists a node 
n such that f(n) <= f*(S) .

(2) If A* does not terminate, the f value of the 
nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate



Lemma
Any time before A* terminates there exists in the open list a node n'
such that f(n') <= f*(S)

S

n1

n2

Optimal path
For any node ni on optimal path,
f(ni) = g(ni) + h(ni)

<= g*(n i) + h*(ni)
Also f*(n i) = f*(S)
Let n' be the first node in the optimal path that n2

G

is in OL. Since allparents of n' in the optimal 
have gone to CL,

g(n') = g*(n') and h(n') <= h*(n') 
=> f(n') <= f*(S)



If A* does not terminate

Let ebe the least cost of all arcs in the search graph.

Then g(n) >= e.l(n)where l(n) = # of arcs in the path from Sto 
n found so far. If A* does not terminate, g(n) and hence 
f(n) = g(n) + h(n) [h(n) >= 0] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.



2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof
Suppose the path formed is not optimal
Let G be expanded in a non-optimal path. 
At the point of expansion of G,

f(G) = g(G) + h(G)
= g(G) + 0
> g*(G)  = g*(S) + h*(S)

= f*(S) [f*(S) = cost of optimal path]

This is a contradiction
So path should be optimal



Summary on Admissibility

� 1. A* algorithm halts

� 2. A* algorithm finds optimal path

� 3. If f(n) < f*(S) then node n has to be expanded � 3. If f(n) < f*(S) then node n has to be expanded 
before termination

� 4. If A* does not expand a node n before termination 
then f(n) >= f*(S) 



Exercise-1

Prove that if the distance of every node from the goal 
node is “known”, then no “search:” is necessary

Ans:

� For every node n, h(n)=h*(n). The algo is A*.

� Lemma proved: any time before A* terminates, there is a node � Lemma proved: any time before A* terminates, there is a node 
m in the OL that has f(m) <= f*(S), S= start node (m is the 
node on the optimal path all whose ancestors in the optimal 
path are in the closed list).

� For m, g(m)=g*(m) and hence  f(m)=f*(S).

� Thus at every step, the node with f=f* will be picked up, and 
the journey to the goal will be completely directed and definite, 
with no “search” at all.

� Note: when h=h*, f value of any node on the OL can never be 
less than f*(S).



Exercise-2
If the h value for every node over-estimates the h* value of the 

corresponding node by a constant, then the path found need 
not be costlier than the optimal path by that constant. Prove 
this. 

Ans:

� Under the condition of the problem,  h(n) <= h*(n) + c.

� Now, any time before the algo terminates, there exists on the 
OL a node m such that f(m) <= f*(S)+c.OL a node m such that f(m) <= f*(S)+c.

� The reason is as follows: let m be the node on the optimal path 
all whose ancestors are in the CL (there has to be such a node).

� Now, f(m)= g(m)+h(m)=g*(m)+h(m) <= g*(m)+h*(m)+c = 
f*(S)+c

� When the goal G is picked up for expansion, it must be the case 
that

� f(G)<= f*(S)+c=f*(G)+c

� i.e., g(G)<= g*(G)+c, since h(G)=h*(G)=0.  



Better Heuristic Performs 
Better



Theorem

A version A2* of A* that has a “better” heuristic than another version 
A1* of A* performs at least “as well as” A1*

Meaning of “better”
h2(n) > h1(n) for all n

Meaning of “as well as”
A1* expands at least all the nodes of A2*

h*(n)

h2(n)

h1(n) For all nodes n, 
except the goal 
node



Proof by induction on the search tree of A2*.

A* on termination carves out a tree out of G

Induction
on the depth k of the search tree of A2*. A1* before termination 
expands all the nodes of depth k in the search tree of A2*.

k=0. True since start node S is expanded by bothk=0. True since start node S is expanded by both

Suppose A1* terminates without expanding a node n at depth (k+1) of 
A2* search tree.

Since A1* has seen all the parents of n seen by A2*
g1(n) <= g2(n)        (1)



k+1

S

G

Since A1* has terminated without 
expanding n, 
f1(n) >= f*(S) (2)

Any node whose f value is strictly less 
than f*(S) has to be expanded.
Since A2* has expanded n
f2(n) <= f*(S) (3)

From (1), (2), and (3)
h1(n) >= h2(n) which is a contradiction. Therefore, A1* has to expand 
all nodes that A2* has expanded.

Exercise

If better meansh2(n) > h1(n) for some n and h2(n) = h1(n) for others, 
then Can you prove the result ?



Lab assignment

� Implement A* algorithm for the following 
problems:
� 8 puzzle
� Missionaries and CannibalsMissionaries and Cannibals
� Robotic Blocks world

� Specifications:
� Try different heuristics and compare with baseline 
case, i.e., the breadth first search.

� Violate the condition h ≤ h*. See if the optimal 
path is still found. Observe the speedup.



Resources
� Main Text:

� Artificial Intelligence: A Modern Approach by Russell & Norvik, 
Pearson, 2003.

� Other Main References:
� Principles of AI - Nilsson
� AI - Rich & Knight
� Knowledge Based Systems – Mark Stefik� Knowledge Based Systems – Mark Stefik

� Journals
� AI, AI Magazine, IEEE Expert, 
� Area Specific Journals e.g, Computational Linguistics

� Conferences 
� IJCAI, AAAI

� Imp “site”: moodle.iitb.ac.in


