
CS626: NLP, Speech and Web
Pushpak Bhattacharyya

CSE Dept.,
IIT Bombay

Extra Lecture (no. 20, 21): A*

2nd and 4th October, 2012

AI Perspective (post-web)

NLP

Robotics

Search,

Planning

Computer

Vision

Expert
Systems

Search,
Reasoning,
Learning

IR

Transition Probabilities

Blue balls roll on
slowly

N N N N N

V V V V V

Lexical Probabilities

Motivation: Problem: Implement A* to get the
best Tag sequence

Transition Probabilities

J J J J J

R R R R R

O O O O O

^
$

Note: Red arrows indicate the correct tag sequence.

Search building blocks

� State Space : Graph of states (Express constraints
and parameters of the problem)
� Operators : Transformations applied to the states.
� Start state : S0 (Search starts from here)Start state : S0 (Search starts from here)
� Goal state : {G} - Search terminates here.
� Cost : Effort involved in using an operator.
� Optimal path : Least cost path

Examples
Problem 1 : 8 – puzzle

8

4

6

5

12

1

4

63 3

5

2

57 7 8

S G
Tile movement represented as the movement of the blank space.
Operators:
L : Blank moves left
R : Blank moves right
U : Blank moves up
D : Blank moves down

C(L) = C(R) = C(U) = C(D) = 1

Problem 2: Missionaries and Cannibals

River

R

L

boat

boat

Constraints
� The boat can carry at most 2 people
� On no bank should the cannibals outnumber the missionaries

Missionaries Cannibals
Missionaries Cannibals

State : <#M, #C, P>
#M = Number of missionaries on bank L
#C= Number of cannibals on bank L
P = Position of the boat

S0 = <3, 3, L>
G = < 0, 0, R >

Operations
M2 = Two missionaries take boat
M1 = One missionary takes boat
C2= Two cannibals take boat
C1= One cannibal takes boat
MC = One missionary and one cannibal takes boat

<3,3,L>

<3,1,R> <2,2,R>

C2 MC

<3,3,L>

Partial search
tree

Problem 3

B B W W WB

G: States where no B is to the left of any W
Operators:
1) A tile jumps over another tile into a blank tile with cost 1) A tile jumps over another tile into a blank tile with cost
2
2) A tile translates into a blank space with cost 1

Algorithmics of Search

General Graph search Algorithm

SS

AA CB

1 103

Graph G = (V,E)
A CB

S

F

ED

G

5 4 6

2
3

7

D E

F G

1) Open List : S (Ø, 0)

Closed list : Ø

2) OL : A(S,1), B(S,3), C(S,10)

CL : S

3) OL : B(S,3), C(S,10), D(A,6)

CL : S, A

6) OL : E(B,7), F(D,8), G(D, 9)

CL : S, A, B, C, D

7) OL : F(D,8), G(D,9)

CL : S, A, B, C, D, E

8) OL : G(D,9)

CL : S, A, B, C, D, E, F

4) OL : C(S,10), D(A,6), E(B,7)

CL: S, A, B

5) OL : D(A,6), E(B,7)

CL : S, A, B , C

9) OL : Ø
CL : S, A, B, C, D, E,

F, G

Steps of GGS
(principles of AI, Nilsson,)

� 1. Create a search graph G, consisting solely of the
start node S; put S on a list called OPEN.

� 2. Create a list called CLOSED that is initially empty.

� 3. Loop: if OPEN is empty, exit with failure.

� 4. Select the first node on OPEN, remove from OPEN� 4. Select the first node on OPEN, remove from OPEN

and put on CLOSED, call this node n.

� 5. if n is the goal node, exit with the solution
obtained by tracing a path along the pointers from n

to s in G. (ointers are established in step 7).

� 6. Expand node n, generating the set M of its
successors that are not ancestors of n. Install these
memes of M as successors of n in G.

GGS steps (contd.)

� 7. Establish a pointer to n from those members of M
that were not already in G (i.e., not already on either
OPEN or CLOSED). Add these members of M to
OPEN. For each member of M that was already on OPEN. For each member of M that was already on
OPEN or CLOSED, decide whether or not to redirect
its pointer to n. For each member of M already on
CLOSED, decide for each of its descendents in G
whether or not to redirect its pointer.

� 8. Reorder the list OPEN using some strategy.

� 9. Go LOOP.

GGS is a general umbrella

OL is a

queue

(BFS)

OL is

stack

(DFS)

OL is accessed by

using a functions

S

n1

n2

g

C(n1,n2)

h(n2)

h(n1)

)(),()(2211 nhnnCnh +≤

(BFS) (DFS)
using a functions

f= g+h

(Algorithm A)

Algorithm A

� A function f is maintained with each node

f(n) = g(n) + h(n), n is the node in the open list

� Node chosen for expansion is the one with least

f value

� For BFS: h = 0, g = number of edges in the

path to S

� For DFS: h = 0, g =

Algorithm A*
� One of the most important advances in AI

� g(n)= least cost path to n from S found so far

� h(n)<= h*(n) where h*(n) is the actual cost of

optimal path to G(node to be found) from noptimal path to G(node to be found) from n

S

n

G

				

				

“ Optimism leads to optimality”

A* Algorithm – Definition and
Properties

� f(n) = g(n) + h(n)
� The node with the least

value of f is chosen from the
OL.

� f*(n) = g*(n) + h*(n),

S s

g(n)

� f*(n) = g*(n) + h*(n),
where,

g*(n) = actual cost of
the optimal path (s, n)

h*(n) = actual cost of
optimal path (n, g)

� g(n) ≥ g*(n)

� By definition, h(n) ≤ h*(n)

n

goal

State space graph G

h(n)

8-puzzle: heuristics

2 1 4

7 8 3

5 6

1 6 7

4 3 2

5 8

1 2 3

4 5 6

7 8

Example: 8 puzzle

s n g

h*(n) = actual no. of moves to transform n to g

1. h1(n) = no. of tiles displaced from their destined
position.

2. h2(n) = sum of Manhattan distances of tiles from
their destined position.

h
1
(n) ≤ h*(n) and h

1
(n) ≤ h*(n)

h*

h
2

h
1

Comparison

Eight puzzle problem

Number of Tiles displaced from their original position
Tiles: 1 2 3 4 5 6 7 8
Displacement: 1 1 1 1 1 1 1 1

h1 = 8 (sum of the number of tiles required displacement)

Manhattan displacement Required in tiles to get destined position(Manhattan Distances of tiles from
goal)goal)

Tiles: 1 2 3 4 5 6 7 8
Displacement: 1 1 1 3 2 2 1 1

h2 = 12 (sum of the tile’s manhatten disptances from goal)
h* = Actual displacement from goal.

h1 <= h* and h2 <= h*

A* critical points

• Goal

1. Do we know the goal?

2. Is the distance to the goal known?2. Is the distance to the goal known?

3. Is there a path (known?) to the goal?

A* critical points

• About the path
Any time before A* terminates there

exists on the OL, a node from the optimal
path all whose ancestors in the optimal path all whose ancestors in the optimal
path are in the CL.

This means,

Э in the OL always a node ‘n’ s.t.
g(n) = g*(n)

Key point about A* search

S

Statement:

Let S -n1-n2-n3…ni…-nk-1-
nk(=G) be an optimal path.

At any time during the
search:

S

|

n
1

|

n
2

| search:

1. There is a node ni from the
optimal path in the OL

2. For ni all its ancestors
S,n1,n2,…,ni-1 are in CL

3. g(ni) = g*(ni)

2

|

.

.

n
i

.

.

n
k-1

|

n
k

=g

Proof of the statement

Proof by induction on iteration no. j

Basis : j = 0, S is on the OL, S satisfies
the statementthe statement

Hypothesis : Let the statement be true for
j = p (pth iteration)

Let ni be the node satisfying the
statement

Proof (continued)

Induction : Iteration no. j = p+1

Case 1 : ni is expanded and moved to
the closed list

Then, ni+1 from the optimal path
comes to the OLcomes to the OL

Node ni+1 satisfies the statement

(note: if ni+1 is in CL, then ni+2 satisfies
the property)

Case 2 : Node x ≠ ni is expanded

Here, ni satisfies the statement

� Admissibility: An algorithm is called admissible if it
always terminates and terminates in optimal path

� Theorem: A* is admissible.
� Lemma: Any time before A* terminates there exists

on OL a node n such that f(n) <= f*(s)

A* Algorithm- Properties

on OL a node n such that f(n) <= f*(s)
� Observation: For optimal path s → n1 → n2 → … →

g,
1. h*(g) = 0, g*(s)=0 and
2. f*(s) = f*(n1) = f*(n2) = f*(n3)… = f*(g)

f*(ni) = f*(s), ni ≠ s and ni ≠ g

Following set of equations show the above equality:

f*(ni) = g*(ni) + h*(ni)

f*(n) = g*(n) + h*(n)

A* Properties (contd.)

f*(ni+1) = g*(ni+1) + h*(ni+1)

g*(ni+1) = g*(ni) + c(ni , ni+1)

h*(ni+1) = h*(ni) - c(ni , ni+1)

Above equations hold since the path is optimal.

Admissibility of A*

A* always terminates finding an optimal path to the goal if such a
path exists.

Intuition

(1) In the open list there always exists a node
S

g(n)

n

h(n)

G

(1) In the open list there always exists a node
n such that f(n) <= f*(S) .

(2) If A* does not terminate, the f value of the
nodes expanded become unbounded.

1) and 2) are together inconsistent

Hence A* must terminate

Lemma
Any time before A* terminates there exists in the open list a node n'
such that f(n') <= f*(S)

S

n1

n2

Optimal path
For any node ni on optimal path,
f(ni) = g(ni) + h(ni)

<= g*(n i) + h*(ni)
Also f*(n i) = f*(S)
Let n' be the first node in the optimal path that n2

G

is in OL. Since allparents of n' in the optimal
have gone to CL,

g(n') = g*(n') and h(n') <= h*(n')
=> f(n') <= f*(S)

If A* does not terminate

Let ebe the least cost of all arcs in the search graph.

Then g(n) >= e.l(n)where l(n) = # of arcs in the path from Sto
n found so far. If A* does not terminate, g(n) and hence
f(n) = g(n) + h(n) [h(n) >= 0] will become unbounded.

This is not consistent with the lemma. So A* has to terminate.

2nd part of admissibility of A*

The path formed by A* is optimal when it has terminated

Proof
Suppose the path formed is not optimal
Let G be expanded in a non-optimal path.
At the point of expansion of G,

f(G) = g(G) + h(G)
= g(G) + 0
> g*(G) = g*(S) + h*(S)

= f*(S) [f*(S) = cost of optimal path]

This is a contradiction
So path should be optimal

Summary on Admissibility

� 1. A* algorithm halts

� 2. A* algorithm finds optimal path

� 3. If f(n) < f*(S) then node n has to be expanded � 3. If f(n) < f*(S) then node n has to be expanded
before termination

� 4. If A* does not expand a node n before termination
then f(n) >= f*(S)

Exercise-1

Prove that if the distance of every node from the goal
node is “known”, then no “search:” is necessary

Ans:

� For every node n, h(n)=h*(n). The algo is A*.

� Lemma proved: any time before A* terminates, there is a node � Lemma proved: any time before A* terminates, there is a node
m in the OL that has f(m) <= f*(S), S= start node (m is the
node on the optimal path all whose ancestors in the optimal
path are in the closed list).

� For m, g(m)=g*(m) and hence f(m)=f*(S).

� Thus at every step, the node with f=f* will be picked up, and
the journey to the goal will be completely directed and definite,
with no “search” at all.

� Note: when h=h*, f value of any node on the OL can never be
less than f*(S).

Exercise-2
If the h value for every node over-estimates the h* value of the

corresponding node by a constant, then the path found need
not be costlier than the optimal path by that constant. Prove
this.

Ans:

� Under the condition of the problem, h(n) <= h*(n) + c.

� Now, any time before the algo terminates, there exists on the
OL a node m such that f(m) <= f*(S)+c.OL a node m such that f(m) <= f*(S)+c.

� The reason is as follows: let m be the node on the optimal path
all whose ancestors are in the CL (there has to be such a node).

� Now, f(m)= g(m)+h(m)=g*(m)+h(m) <= g*(m)+h*(m)+c =
f*(S)+c

� When the goal G is picked up for expansion, it must be the case
that

� f(G)<= f*(S)+c=f*(G)+c

� i.e., g(G)<= g*(G)+c, since h(G)=h*(G)=0.

Better Heuristic Performs
Better

Theorem

A version A2* of A* that has a “better” heuristic than another version
A1* of A* performs at least “as well as” A1*

Meaning of “better”
h2(n) > h1(n) for all n

Meaning of “as well as”
A1* expands at least all the nodes of A2*

h*(n)

h2(n)

h1(n) For all nodes n,
except the goal
node

Proof by induction on the search tree of A2*.

A* on termination carves out a tree out of G

Induction
on the depth k of the search tree of A2*. A1* before termination
expands all the nodes of depth k in the search tree of A2*.

k=0. True since start node S is expanded by bothk=0. True since start node S is expanded by both

Suppose A1* terminates without expanding a node n at depth (k+1) of
A2* search tree.

Since A1* has seen all the parents of n seen by A2*
g1(n) <= g2(n) (1)

k+1

S

G

Since A1* has terminated without
expanding n,
f1(n) >= f*(S) (2)

Any node whose f value is strictly less
than f*(S) has to be expanded.
Since A2* has expanded n
f2(n) <= f*(S) (3)

From (1), (2), and (3)
h1(n) >= h2(n) which is a contradiction. Therefore, A1* has to expand
all nodes that A2* has expanded.

Exercise

If better meansh2(n) > h1(n) for some n and h2(n) = h1(n) for others,
then Can you prove the result ?

Lab assignment

� Implement A* algorithm for the following
problems:
� 8 puzzle
� Missionaries and CannibalsMissionaries and Cannibals
� Robotic Blocks world

� Specifications:
� Try different heuristics and compare with baseline
case, i.e., the breadth first search.

� Violate the condition h ≤ h*. See if the optimal
path is still found. Observe the speedup.

Resources
� Main Text:

� Artificial Intelligence: A Modern Approach by Russell & Norvik,
Pearson, 2003.

� Other Main References:
� Principles of AI - Nilsson
� AI - Rich & Knight
� Knowledge Based Systems – Mark Stefik� Knowledge Based Systems – Mark Stefik

� Journals
� AI, AI Magazine, IEEE Expert,
� Area Specific Journals e.g, Computational Linguistics

� Conferences
� IJCAI, AAAI

� Imp “site”: moodle.iitb.ac.in

