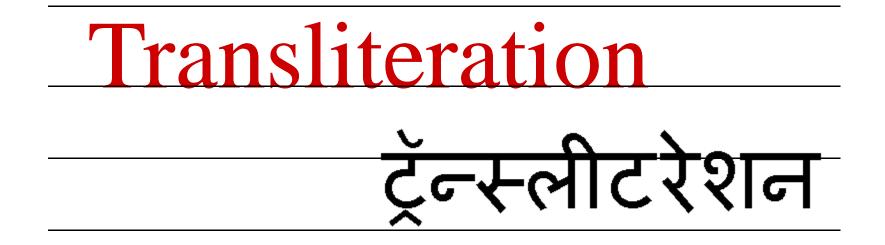
#### CS460/626 : Natural Language Processing/Speech, NLP and the Web

Lecture 33: Transliteration

Pushpak Bhattacharyya CSE Dept., IIT Bombay 8<sup>th</sup> Nov, 2012



Credit: lot of material from seminar of Maoj (PhD student) Purva, Mugdha, Aditya, Manasi (M.Tech students)

### 

 Task of converting a word from one alphabetic script to another

Used for:

- Named entities
- गांधीजी : Gandhiji
- Out of vocabulary words
- बॅंक : Bank

### Transliteration for OOV words

- Name searching (people, places, organizations) constitutes a large proportion of search
- Words of foreign origin in a language Loan Words

◆Example: बस (bus), स्कूल (school)

 Such words not found in the dictionary are called "Out Of Vocabulary (OOV) words" in CLIR/MT

#### Machine Transliteration – The Problem

- Graphemes Basic units of written language (English – 26 letters, Devanagari – 92 including matraas)
- Definition

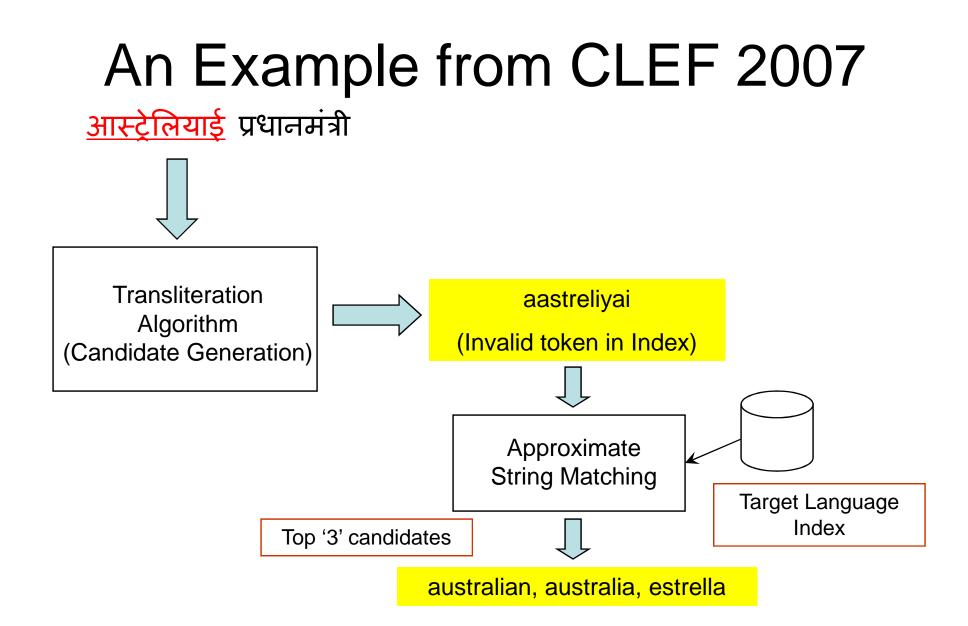
"The process of automatically mapping an given grapheme sequence in source language to a valid grapheme sequence in the target language such that it preserves the pronunciation of the original source word"

### Challenges in Machine Transliteration

- Lot of ambiguities at the grapheme level *esp.* while dealing with non-phonetic languages
  - Example: Devanagari letter has multiple grapheme mappings in English {ca, ka, qa, c, k, q, ck}
- Presence of silent letters
  \* Pneumonia –
- Difference of scripts causes spelling variations *esp.* for loan words



रिलीस, रिलीज, जार्ज, जॉर्ज, बैंक, बॅंक



### **Candidate Generation Schemes**

- Takes an input Devanagari word and generates most likely transliteration candidates in English
- Any standard transliteration scheme could be used for candidate generation
- In our current work, we have experimented with
  - Rule Based Schemes o Single Mapping o Multiple Mapping
- Pre-Storing Hindi Transliterations in Index

#### **Rule Based Transliteration**

- Manually defined mapping for each Devanagari grapheme to English grapheme(s)
- Devanagari being a phonetic script, easy to come up with such rules
- Single Mapping
  - Each Devanagari grapheme has only a single mapping to English grapheme(s)
  - 💠 Example: न {na}
- A given Devanagari word is transliterated from left-right

| Input Letter | Output String |
|--------------|---------------|
|              |               |
| ग            | ga            |
| ·            | gan           |
| ग्           | ganga         |
| ओ            | gango         |
| त्           | gangot        |
| र            | gangotra      |
| फ            | gangotri      |

# Rule Based Transliteration (Contd..)

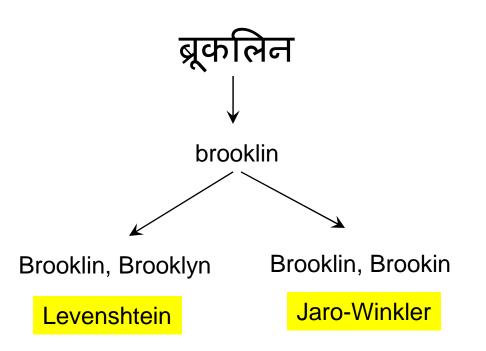
- Multiple Mapping
  - ◆ Each Devanagari grapheme has multiple mappings to target English grapheme(s) Example: न – {na,kn,n}
  - May lead to very large number of possible candidates
  - Not possible to efficiently rank and perform approximate matching
- Pruning Candidates
  - At each stage rank and retain only top 'n' desirable candidates
  - Desirability based on probability of forming a valid spelling in English language
  - Bigram letter model trained on words of English language

#### **Evaluation Metrics**

- Transliteration engine outputs ranked list of English transliterations
- Following metrics used to evaluate various transliteration techniques
  - Accuracy Percentage of words where right transliteration was retrieved as one of the candidates in list
  - Mean Reciprocal Rank (MRR) Used for capturing efficiency of ranking

$$MRR = \sum_{i=1}^{N} \frac{1}{Rank(i)}$$

#### Example result

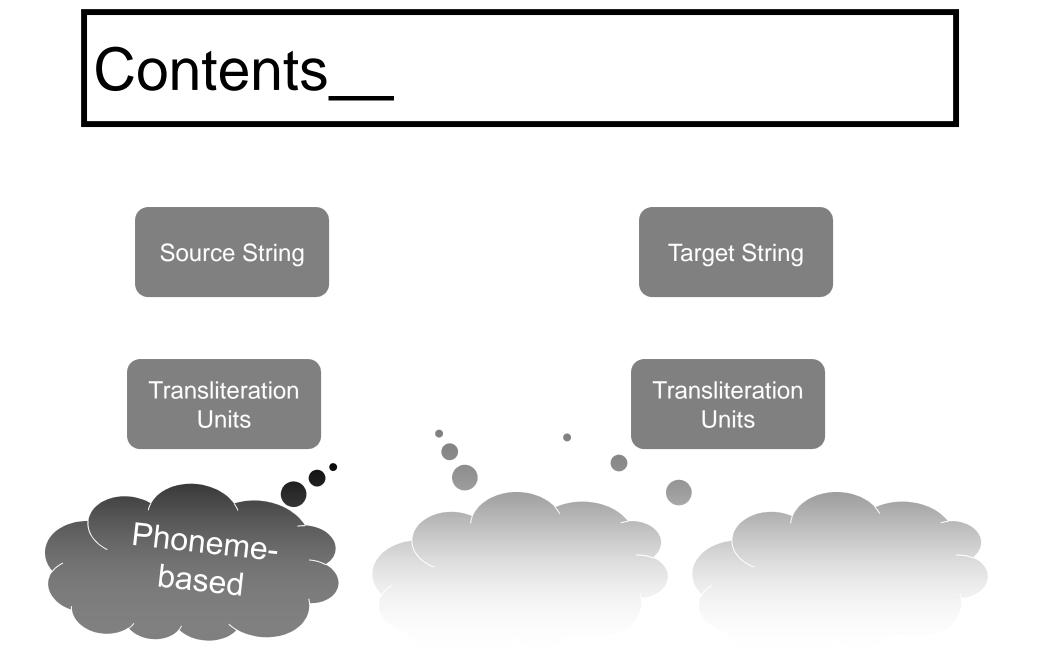


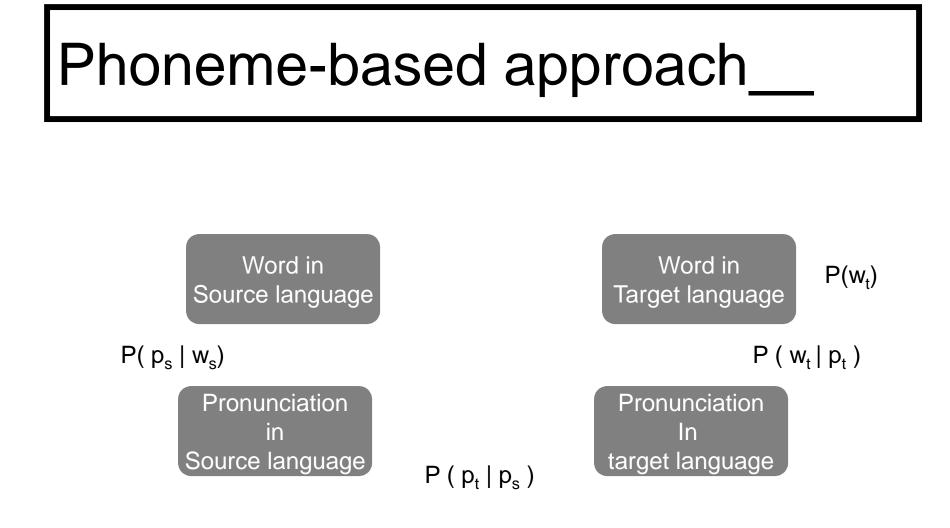
### Overview\_

Source String

Transliteration Units Target String

Transliteration Units



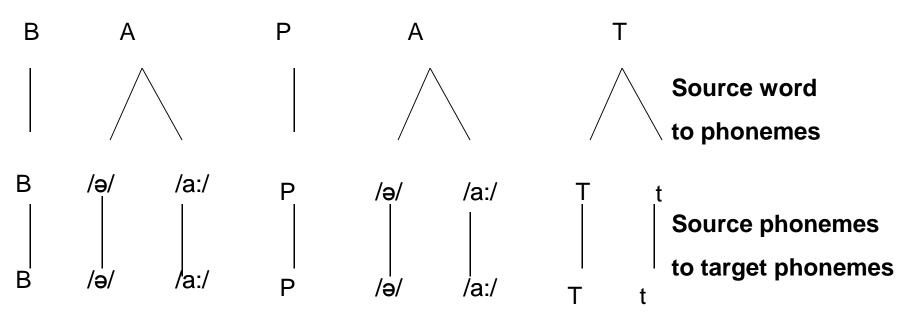


 $W_{t}^{*} = argmax (P(w_{t}). P(w_{t} | p_{t}) . P(p_{t} | p_{s}) . P(p_{s} | w_{s}))$ 

Note: **Phoneme** is the smallest linguistically distinctive unit of sound.

#### Phoneme-based approach\_

#### Transliterating 'BAPAT'

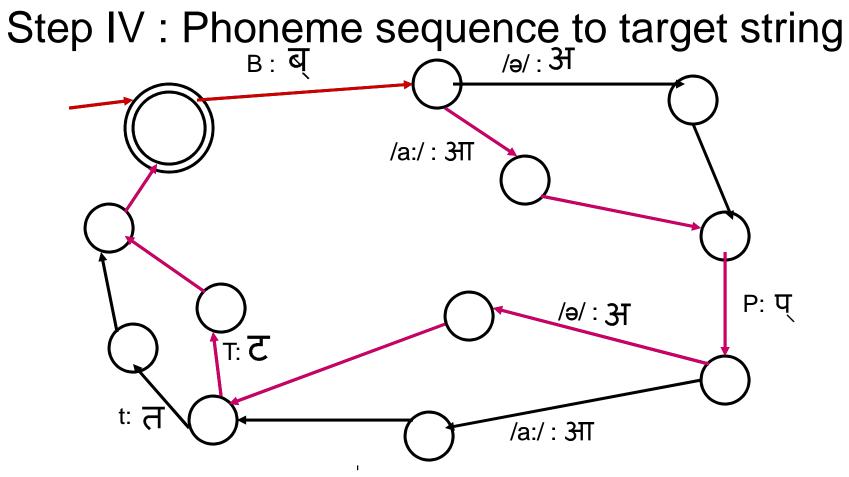


Step I :

Consider each character of the word

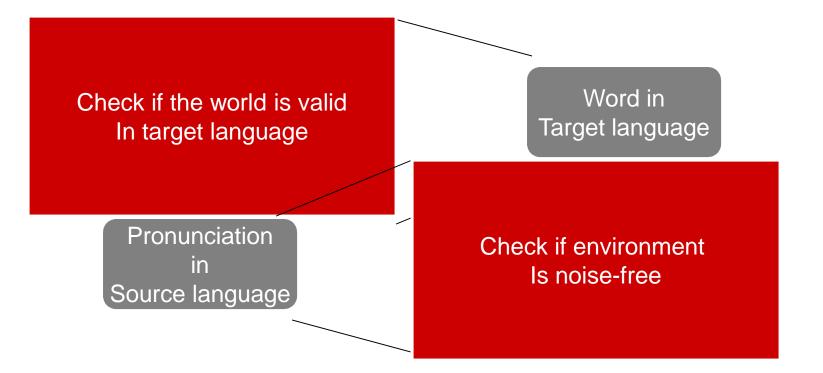
Step II : Converting to phoneme seq. Step III : Converting to target phoneme seq.





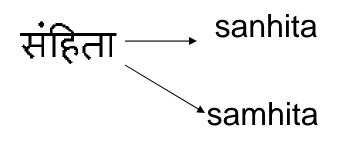


# Concerns\_\_\_\_



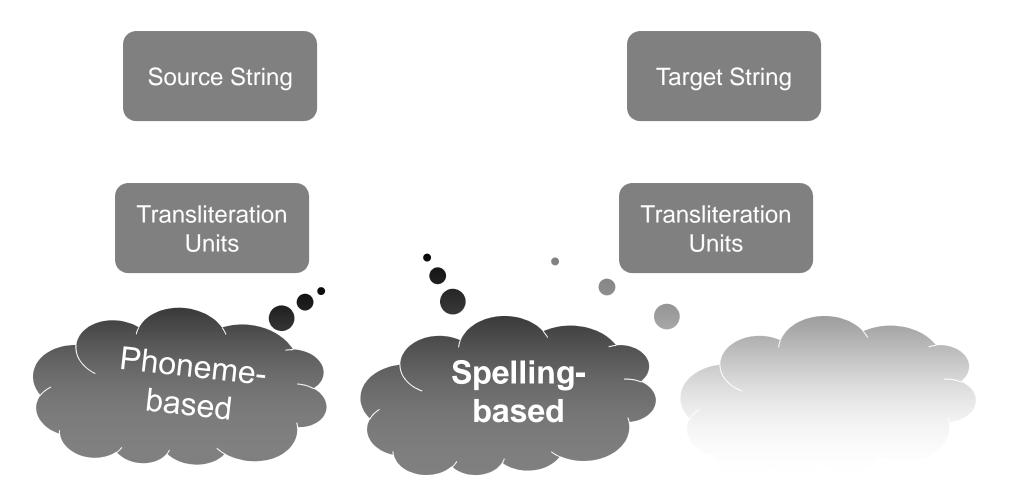
#### Issues in phonetic model

Unknown pronunciations



• Back-transliteration can be a problem Johnson → ਗੱਜਸ਼ਰ → Jonson

## Contents



#### LM based method

- Particularly developed for Chinese
- Chinese : Highly ideographic
- Example :



• Two main steps:

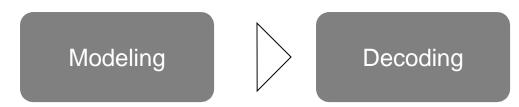


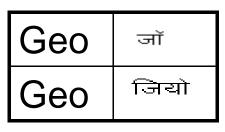
Image courtesy: wikimedia-commons

# Modeling step

 A bilingual dictionary in the source and target language

| John    | जॉन        |
|---------|------------|
| Georgia | जॉर्जि या  |
| Geology | जियो लॉ जी |

 From this dictionary, the character mapping between the source and target language is learnt



The word "Geo" has two possible mappings, the "context" in which it occurs is important

#### Modeling step

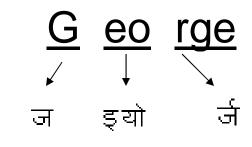
- N-gram Mapping :
- < Geo, লাঁ > < rge, র্ন >
- < Geo, जियो > < lo, `লাঁ >

$$P(E,C) = P(\alpha, \beta, \gamma)$$
  
=  $\prod_{k=1}^{K} P(\langle e, c \rangle_{k} | \langle e, c \rangle_{k-n+1}^{k-1})$ 

• This concludes the modeling step

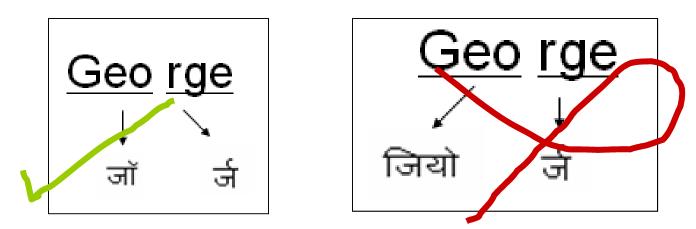
#### Decoding step\_

- Consider the transliteration of the word "George".
- Alignments of George:
- <u>Geo rge</u> ,∕ ↓ जियो र्ज



• <u>Geo rge</u> ↓ ` ਗੱ ਰੀ <u>G</u> <u>eo</u> <u>rge</u> ✓ ↓ √ ग इयो जं

#### Decision to be made between....



• The context mapping <Geo, जॉ > <rge. जf > is present in the map-dictionary

• Using 
$$\overline{\beta} = \underset{\beta,\gamma}{\operatorname{arg\,max}} P(\alpha, \beta, \gamma)$$
.....

### **Transliteration Alignment**

• Where do the n-gram statistics come from?

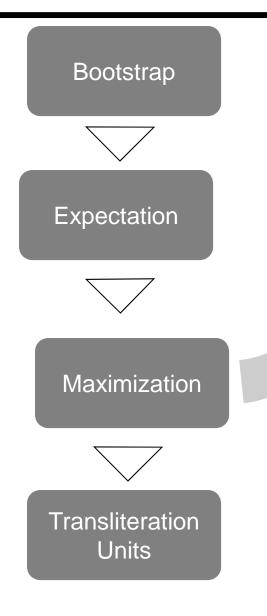
Ans.: Automatic analysis of the bilingual dictionary

• How to align this dictionary?

**Ans.**: Using EM-algorithm

| Rajasi              | राजसी |  |
|---------------------|-------|--|
| Ojasi               | ओजसी  |  |
| Tejasi              | तेजसी |  |
| , ↓ / √<br>मॉर्नेसी |       |  |

### **EM Algorithm**



Bootstrap initial random alignment Update n-gram statistics to estimate probability distribution

#### "Parallel" Corpus

#### **Phoneme Example Translation**

- ----- ----- -------
- AA odd AA D
- AE at AE T
- AH hut HHAHT
- AO ought AO T
- AW cow KAW
- AY hide HH AY D
- B be BIY

#### "Parallel" Corpus cntd

#### Phoneme Example Translation

- CH cheese CH IY Z
- D dee D IY
- DH thee DH IY EH Ed EH D
- ER hurt HH ER T
- EY ate EY T
- F fee F IY
- G green G R IY N
- HH he HH IY

IH it IH T

- IY eat IY T
- JH gee JH IY

#### A Statistical Machine Translation like task

- First obtain the Carnegie Mellon University's Pronouncing Dictionary
- Train and Test the following Statistical Machine Learning Algorithms
- HMM For HMM we can use either Natural Language Toolkit or you can use GIZA++ with MOSES

### Evaluation

|        | ТМ    | NCM   |
|--------|-------|-------|
| 1-gram | 44.8% | 46.9% |
| 2-gram | 10.8% | 16.4% |
| 3-gram | 1.6%  | 7.8%  |

E2C Error rates for n-gram tests

| # < e, c ><br># e | 5640<br>3683 |
|-------------------|--------------|
| #c<br>1 e> 1.5 c  | 374          |
| 1 c> 15.1 e       | !!           |

|        | E2C   | C2E   |
|--------|-------|-------|
| 1-gram | 45.6% | 82.3% |
| 2-gram | 31.6% | 63.8% |
| 3-gram | 29.9% | 62.1% |

#### E2C v/s C2E for TM Tests

### Read up/look up/ study

- Google transliterator (routinely used; supervised by Anupama Dutt, ex-MTP student of CFILT)
- For all Devnagari transliterations, www.quillpad.in/hindi/

#### • Phoneme and spelling-based models

K. Knight and J. Graehl. 1998. Machine transliteration. *Computational Linguistics*, 24(4):599–612.

N. AbdulJaleel and L. S. Larkey. 2003. Statistical transliteration for English-Arabic cross language information retrieval. In *CIKM*, pages 139–146.

Y. Al-Onaizan and K. Knight. 2002. Machine transliteration of names in Arabic text. In ACL Workshop on Comp. Approaches to Semitic Languages.

#### Joint source-channel model

H. Li,M. Zhang, and J. Su. 2004. A joint source-channel model for machine transliteration. In *ACL*, pages 159–166.

www.wikipedia.org