CS626 : Natural Language Processing,

 Speech and the Web(Lecture 4,5 - HMM, POS tagging)

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay
$30^{\text {th }}$ July and $2^{\text {nd }}$ August, 2012

POS tagging: Definition

- Tagging is the assignment of a singlepart-of-speech tag to each word (and punctuation marker) in a corpus.
- "_" The_DT guys_NNS that_WDT make_VBP traditional_JJ hardware_NN are_VBP really_RB being_VBG obsoleted_VBN by_IN microprocessorbased_JJ machines_NNS ,_,"_" said_VBD Mr._NNP Benton_NNP ._.

Where does POS tagging fit in

Increased Complexity Of Processing		Discourse and Corefernce
		Semantics Extraction
		Parsing
	7	Chunking
		POS tagging
		Morphology

Behaviour of "That"

- That
- That man is known by the company he keeps. (Demonstrative)
- Man that is known by the company he keeps, gets a good job. (Pronoun)
- That man is known by the company he keeps, is a proverb. (Complementation)
- Chaotic systems: Systems where a small perturbation in input causes a large change in output

Argmax computation (1/2)

Best tag sequence
$=\mathrm{T}^{*}$
$=\operatorname{argmax} \mathrm{P}(\mathrm{T} \mid \mathrm{W})$
$=\operatorname{argmax} \mathrm{P}(\mathrm{T}) \mathrm{P}(\mathrm{W} \mid \mathrm{T})$
(by Baye's Theorem)

$$
\begin{aligned}
P(T) & =P\left(t_{0}=\wedge t_{1} t_{2} \ldots t_{n+1}=.\right) \\
& =P\left(t_{0}\right) P\left(t_{1} \mid t_{0}\right) P\left(t_{2} \mid t_{1} t_{0}\right) P\left(t_{3} \mid t_{2} t_{1} t_{0}\right) \ldots \\
& P\left(t_{n} \mid t_{n-1} t_{n-2} \ldots t_{0}\right) P\left(t_{n+1} \mid t_{n} t_{n-1} \ldots t_{0}\right) \\
& =P\left(t_{0}\right) P\left(t_{1} \mid t_{0}\right) P\left(t_{2} \mid t_{1}\right) \ldots P\left(t_{n} \mid t_{n-1}\right) P\left(t_{n+1} \mid t_{n}\right) \\
& =\prod_{i=0}^{N+1} P\left(t_{i} \mid t_{i-1}\right) \quad \text { Bigram Assumption }
\end{aligned}
$$

Argmax computation (2/2)

$$
\begin{gathered}
P(W \mid T)=P\left(w_{0} \mid t_{0}-t_{n+1}\right) P\left(w_{1} \mid w_{0} t_{0}-t_{n+1}\right) P\left(w_{2} \mid w_{1} w_{0} t_{0}-t_{n+1}\right) \ldots \\
P\left(w_{n} \mid w_{0}-w_{n-1} t_{0}-t_{n+1}\right) P\left(w_{n+1} \mid w_{0}-w_{n} t_{0}-t_{n+1}\right)
\end{gathered}
$$

Assumption: A word is determined completely by its tag. This is inspired by speech recognition

$$
\begin{aligned}
& =P\left(w_{0} \mid t_{0}\right) P\left(w_{1} \mid t_{1}\right) \ldots P\left(w_{n+1} \mid t_{n+1}\right) \\
& =\prod_{i=0}^{n+1} P\left(w_{i} \mid t_{i}\right) \\
& =\prod_{i=1}^{n+1} P\left(w_{i} \mid t_{i}\right) \quad \text { (Lexical Probability Assumption) }
\end{aligned}
$$

Generative Model

This model is called Generative model.
Here words are observed from tags as states.
This is similar to HMM.

Inspiration from Automatic Speech Recognition

- Isolated Word Recognition (IWR)

apple

dog
- $w^{*}=\operatorname{argmax}_{w}(P(w \mid s))$
- w=word, s=speech signal
- $P(w \mid s)=P(w) . P(s \mid w)$
- $P(w)$ - word model (how probable is a word) - learnt from any corpus
- $\mathrm{P}(\mathrm{s} \mid \mathrm{w})$ - translation model (how a word is spoken) learnt from annotated speech corpus
- Brittle, britle, brite
- $\mathrm{P}(\mathrm{w})$ will be extremely low (~ 0) for the words britle and brite

HMM

A Motivating Example

Colored Ball choosing

Urn 1
\# of Red = 30
\# of Green $=50$
\# of Blue $=20$

Urn 2
\# of Red = 10
\# of Green $=40$
\# of Blue = 50

Urn 3
\# of Red =60
\# of Green $=10$
\# of Blue $=30$

Probability of transition to another Urn after picking a ball:

	U_{1}	U_{2}	U_{3}
U_{1}	0.1	0.4	0.5
U_{2}	0.6	0.2	0.2
U_{3}	0.3	0.4	0.3

Example (contd.)

and | | R | G | B |
| :--- | :--- | :--- | :--- |
| U_{1} | 0.3 | 0.5 | 0.2 |
| U_{2} | 0.1 | 0.4 | 0.5 |
| U_{3} | 0.6 | 0.1 | 0.3 |

Observation : RRGGBRGR

State Sequence : ??

Not so Easily Computable.

Diagrammatic representation (1/2)

Diagrammatic representation (2/2)

Example (contd.)

- Here :
- $S=\{U 1, U 2, U 3\} \quad A=$
- $V=\{R, G, B\}$
- For observation:
- $\mathrm{O}=\left\{\mathrm{o}_{1} \ldots \mathrm{o}_{n}\right\}$
- And State sequence
- $\mathrm{Q}=\left\{\mathrm{q}_{1} \ldots \mathrm{q}_{\mathrm{n}}\right\} \quad \mathrm{B}=$
- Π ist $_{\pi_{i}=P\left(q_{1}=U_{i}\right)}$

	U_{1}	U_{2}	U_{3}
U_{1}	0.1	0.4	0.5
U_{2}	0.6	0.2	0.2
U_{3}	0.3	0.4	0.3
	R	G	B
U_{1}	0.3	0.5	0.2
U_{2}	0.1	0.4	0.5
U_{3}	0.6	0.1	0.3

Observations and states

O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}
R	R	G	G	B	R	G	R

$\begin{array}{llllllll}\text { OBS: } & R & R & G & G & B & R & G \\ R \\ \text { State: } & S_{1} & S_{2} & S_{3} & S_{4} & S_{5} & S_{6} & S_{7} \\ S_{8}\end{array}$
$S_{i}=U_{1} / U_{2} / U_{3}$; A particular state
S : State sequence
O: Observation sequence
S* = "best" possible state (urn) sequence
Goal: Maximize $\mathrm{P}\left(\mathrm{S}^{*} \mid 0\right)$ by choosing "best" S

Goal

- Maximize $P(S \mid O)$ where S is the State Sequence and O is the Observation Sequence

$$
S^{*}=\arg \max _{S}(P(S \mid O))
$$

False Start

	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}
OBS:	R	R	G	G	B	R	G	R
State:	S_{1}	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$
$P(S \mid O)=$	$P\left(S_{1-8} \mid O_{1-8}\right)$							
$P(S \mid O)=$	$P\left(S_{1} \mid O\right) . P\left(S_{2} \mid S_{1}, O\right) . P\left(S_{3} \mid S_{1-2, O)} \ldots P\left(S_{8} \mid S_{1-7, O}\right)\right.$							

By Markov Assumption (a state depends only on the previous state)

$$
P(S \mid O)=P\left(S_{1} \mid O\right) \cdot P\left(S_{2} \mid S_{1}, O\right) \cdot P\left(S_{3} \mid S_{2}, O\right) \ldots P\left(S_{8} \mid S_{7}, O\right)
$$

Baye's Theorem
 $P(A \mid B)=P(A) \cdot P(B \mid A) / P(B)$

$\mathrm{P}(\mathrm{A})$-: Prior
$\mathrm{P}(\mathrm{B} \mid \mathrm{A})$-: Likelihood
$\operatorname{argmax}_{f} P(S \mid O)=\operatorname{argmax}_{S} P(S) \cdot P(O \mid S)$

State Transitions Probability

$$
\begin{aligned}
& P(S)=P\left(S_{1-8}\right) \\
& P(S)=P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{1-2}\right) P\left(S_{4} \mid S_{1-3}\right) . . P\left(S_{8} \mid S_{1-7}\right)
\end{aligned}
$$

By Markov Assumption (k=1)

$$
P(S)=P\left(S_{1}\right) P\left(S_{2} \mid S_{1}\right) P\left(S_{3} \mid S_{2}\right) P\left(S_{4} \mid S_{3}\right) . . P\left(S_{8} \mid S_{7}\right)
$$

Observation Sequence probability

$$
P(O \mid S)=P\left(O_{1} \mid S_{1-8}\right) \cdot P\left(O_{2} \mid O_{1}, S_{1-8}\right) P\left(O_{3} \mid O_{1-2}, S_{1-8}\right) . . P\left(O_{8} \mid O_{1-7}, S_{1-8}\right)
$$

Assumption that ball drawn depends only on the Urn chosen
$P(O \mid S)=P\left(O_{1} \mid S_{1}\right) \cdot P\left(O_{2} \mid S_{2}\right) \cdot P\left(O_{3} \mid S_{3}\right) \ldots P\left(O_{8} \mid S_{8}\right)$
$P(S \mid O)=P(S) \cdot P(O \mid S)$
$P(S \mid O)=P\left(S_{1}\right) \cdot P\left(S_{2} \mid S_{1}\right) \cdot P\left(S_{3} \mid S_{2}\right) \cdot P\left(S_{4} \mid S_{3}\right) \ldots P\left(S_{8} \mid S_{7}\right)$.
$P\left(O_{1} \mid S_{1}\right) \cdot P\left(O_{2} \mid S_{2}\right) \cdot P\left(O_{3} \mid S_{3}\right) \ldots P\left(O_{8} \mid S_{8}\right)$

Grouping terms

	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}
Obs: ε	R	R	G	G	B	R	G	R	
State: S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$

P(S).P(O|S)
$=\left[P\left(\mathrm{O}_{0} \mid \mathrm{S}_{0}\right) \cdot \mathrm{P}\left(\mathrm{S}_{1} \mid \mathrm{S}_{0}\right)\right]$. $\left[P\left(\mathrm{O}_{1} \mid \mathrm{S}_{1}\right) . \quad \mathrm{P}\left(\mathrm{S}_{2} \mid \mathrm{S}_{1}\right)\right]$. $\left[P\left(\mathrm{O}_{2} \mid \mathrm{S}_{2}\right) . \quad \mathrm{P}\left(\mathrm{S}_{3} \mid \mathrm{S}_{2}\right)\right]$. $\left[P\left(\mathrm{O}_{3} \mid \mathrm{S}_{3}\right) \cdot \mathrm{P}\left(\mathrm{S}_{4} \mid \mathrm{S}_{3}\right)\right]$. $\left[P\left(\mathrm{O}_{4} \mid \mathrm{S}_{4}\right) \cdot \mathrm{P}\left(\mathrm{S}_{5} \mid \mathrm{S}_{4}\right)\right]$. $\left[P\left(O_{5} \mid S_{5}\right) \cdot P\left(S_{6} \mid S_{5}\right)\right]$. $\left[P\left(\mathrm{O}_{6} \mid \mathrm{S}_{6}\right) \cdot \mathrm{P}\left(\mathrm{S}_{7} \mid \mathrm{S}_{6}\right)\right]$. $\left[\mathrm{P}\left(\mathrm{O}_{7} \mid \mathrm{S}_{7}\right) \cdot \mathrm{P}\left(\mathrm{S}_{8} \mid \mathrm{S}_{7}\right)\right]$. $\left[P\left(\mathrm{O}_{8} \mid \mathrm{S}_{8}\right) \cdot \mathrm{P}\left(\mathrm{S}_{9} \mid \mathrm{S}_{8}\right)\right]$.

We introduce the states S_{0} and S_{9} as initial and final states respectively.
After S_{8} the next state is S_{9} with probability 1, i.e., $P\left(S_{9} \mid S_{8}\right)=1$
O_{0} is ε-transition

Introducing useful notation

	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}
Obs: ε	R	R	G	G	B	R	G	R	
State: S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$

Probabilistic FSM

The question here is:
"what is the most likely state sequence given the output sequence seen"

Developing the tree

Tree structure contd...

The problem being addressed by this tree is $S^{*}=\arg \max P\left(S \mid a_{1}-a_{2}-a_{1}-a_{2, \mu}\right)$ $\mathrm{a} 1-\mathrm{a} 2-\mathrm{a} 1-\mathrm{a} 2$ is the output sequence and μ the model or the machine

Path found:
(working backward)

Problem statement: Find the best possible sequence

$$
S^{*}=\underset{s}{\arg \max } P(S \mid O, \mu)
$$

where, $S \rightarrow$ State Seq, $O \rightarrow$ Output Seq, $\mu \rightarrow$ Model or Machine

T is defined as $P\left(S_{i} \xrightarrow{a_{k}} S_{j}\right) \quad \forall_{i, j, k}$

Evaluation of POS Tagging

- $\wedge=W_{0} \quad W_{1} \quad W_{2} \quad W_{3} \quad \ldots \quad W_{n} \quad W_{n+1}=\$$
- $\wedge=\mathrm{T}_{0} \quad \mathrm{~T}_{1} \quad \mathrm{~T}_{2} \quad \mathrm{~T}_{3} \quad \ldots \quad \mathrm{~T}_{\mathrm{n}} \quad \mathrm{T}_{\mathrm{n}+1}=\$$
- Gold Standard - 80-20 rule: 5 fold cross validation
- Divide data into 5 folds, 4 folds for training, 1 fold for testing

- Precision $\mathrm{P}=\frac{|X|}{|O|} \quad$ Recall $\mathrm{R}=\frac{|X|}{|A|}$
- F-measure $\mathrm{F}=\frac{2 P R}{P+R}$

POS: Tagset

Penn tagset (1/2)

CC	Coord Conjuncn	and,but,or	NN	Noun, sing, or mass	dog
CD	Cardinal number	one,two	NNS	Noun, plural	dogs
DT	Determiner	the,some	NNP	Proper noun, sing.	Edinburgh
EX	Existential there	there	NNPS	Proper noun, plural	Orkneys
FW	Foreign Word	mon dieu	PDT	Predeterminer	all, both
IN	Preposition	of,in, by	POS	Possessive ending	's
JJ	Adjective	big	PP	Personal pronoun	I,you,she
JJR	Adj,, comparative	bigger	PPS	Possessive pronoun	my,one's
JJS	Adj,, superlative	biggest	RB	Adverb	quickly
LS	List item marker	1,One	RBR	Adverb, comparative	faster
MD	Modal	can,should	RBS	Adverb, superlative	fastest

Penn tagset (2/2)

RP	Particle	up,off	WP\$	Possessive-Wh	whose
SYM	Symbol	+. \%, 2	WRB	Wh-adverb	how, where
TO	"to"	to	\$	Dollar sign	\$
UH	Interjection	oh, oops	\#	Pound sign	\#
VB	verb, base form	eat	.	Left quote	1
VBD	verb, past tense	ate	"	Right quote	,
VBG	verb, gerund	eating	(Left paren	(
VBN	verb, past part	eaten)	Right paren)
VBP	Verb, non-3sg, pres	eat	,	Comma	
VBZ	Verb, 3sg, pres	eats	.	Sent-final punct	.17
WDT	Wh-determiner	which, that	:	Mid-sent punct.	: $; \ldots$
WP	Wh-pronoun	what, who			

Indian Language Tagset: Noun

Sl. No	Category			Label	Annotation Convention**	Examples
	Top level	Subtype (level 1)	Subtype (level 2)			
$\mathbf{1}$	Noun			N	N	ladakaa, raajaa, kitaaba
1.1		Common		NN	N_NN	kitaaba, kalama, cashmaa
1.2		Proper		NNP	N_NNP	Mohan, ravi, rashi
1.4		Nloc		NST	N__NST	Uupara, niice, aage,

Indian Language Tagset: Pronoun

2	Pronoun			PR	PR	Yaha, vaha, jo
2.1		Personal		PRP	PR__PRP	Vaha, main, tuma, ve
2.2		Reflexive		PRF	PR__PRF	Apanaa, swayam, khuda
2.3		Relative		PRL	PR__PRL	Jo, jis, jab, jahaal,,
2.4		Reciprocal		PRC	PR_PRC	Paraspara, aapasa
2.5		Wh-word		PRQ	PR_PPR	Kauna, kab, kahaall
		Indefinite		PRI	PR_PRI	Koii, kis

Indian Language Tagset: Quantifier

10.1	General		QTF	QT__QTF	thoRaa, bahuta, kucha	
10.2	Cardinals		QTC	QT__QTC	eka, do, tiina,	
10.3		Ordinals		QTO	QT__QTO	pahalaa, duusaraa

Indian Language Tagset: Demonstrative

3	Demonstrative			DM	DM	Vaha, jo, yaha,	
3.1		Deictic		DMD	DM__DMD	Vaha, yaha	
3.2		Relative		DMR	DM__DMR	jo, jis	
3.3		Wh-word		DMQ	DM__DMQ	kis, kaun	
		Indefinite		DMI	DM__DMI	Kol, kis	

Indian Language Tagset: Verb, Adjective, Adverb

4	Verb		V	V	giraa, gayaa, sonaa, haMstaa, hai, rahaa
4.1		Main	VII	V__VM	giraa, gayaa, sonaa, haMstaa,
4.2		Auxiliary	VAUX	V__VAUX	hai, rahaa, huaa,
5	Adjective		JJ	JJ	sundara, acchaa, baRaa
6	Adverb		RB	RB	jaldii, teza

Indian Language Tagset: Postposition, conjunction

7	Postposition			PSP	PSP	ne, ko, se, mein
$\mathbf{8}$	Conjunction		CC	CC	aur, agar, tathaa, kyonki	
8.1		Co- ordinator		CCD	CC_CD	aur, balki, parantu
8.2		Subordinato r	COS	CC_COS	Agar, kyonki, to, ki	

Indian Language Tagset: Particle

9	Particles		RP	RP	to, bhii, hii
9.1		Default	RPD	RP__RPD	to, bhii, hii
9.3		Interjectio n	INJ	RP__INJ	are, he, o
9.4		Intensifier	INTF	RP__INTF	bahuta, behada
9.5		Negation	NEG	RP__NEG	nahi in, mata, binaa

Indian Language Tagset: Residuals

11	Residuals		RD	RD		
11.1		Foreign word	RDF	RD__RDF		A word written in script other than the script of the original text
11.2		Symbol	SYM	RD__SYM	$\begin{aligned} & \$, \&, \\ & (,) \end{aligned}$	For symbols such as \$, \& etc
11.3		Punctuation	PUNC	RD__PUNC	., : ;	Only for punctuations
11.4		Unknown	UNK	RD__UNK		
11.5		Echowords	ECH	RD__ECH	(Paanii-) vaanii, (khaanaa-) vaanaa	
1-m	-	- ' '	' ${ }^{\prime}$,	,	

Challenge of POS tagging

Example from Indian Language

Tagging of jo, vaha, kaun and their inflected forms in Hindi

and
their equivalents in multiple languages

DEM and PRON labels

- Jo_DEM ladakaa kal aayaa thaa, vaha cricket acchhaa khel letaa hai
- Jo_PRON kal aayaa thaa, vaha cricket acchhaa khel letaa hai

Disambiguation rule-1

- If
. Jo is followed by noun
- Then
- DEM
- Else
-...

False Negative

- When there is arbitrary amount of text between the $j o$ and the noun
- Jo_??? bhaagtaa huaa, haftaa huaa, rotaa huaa, chennai academy a koching lenevaalaa ladakaa kal aayaa thaa, vaha cricket acchhaa khel letaa hai

False Positive

- Jo_DEM (wrong!) duniyadarii samajhkar chaltaa hai, ...
- Jo_DEM/PRON? manushya manushyoM ke biich ristoM naatoM ko samajhkar chaltaa hai, ... (ambiguous)

False Positive for Bengali

- Je_DEM (wrong!) bhaalobaasaa paay, sei bhaalobaasaa dite paare (one who gets love can give love)
- Je_DEM (right!) bhaalobaasa tumi kalpanaa korchho, taa e jagat e sambhab nay
(the love that you imagine exits, is impossible in this world)

Will fail

- In the similar situation for
- Jis, jin, vaha, us, un
- All these forms add to corpus count

Disambiguation rule-2

- If
- Jo is oblique (attached with ne, ko, se etc. attached)
- Then
- It is PRON
- Else
- <other tests>

Will fail (false positive)

- In case of languages that demand agreement between jo-form and the noun it qualifies
- E.g. Sanskrit
- Yasya_PRON (wrong!) baalakasya aananam drshtyaa... (jis ladake kaa muha dekhkar)
- Yasya_PRON (wrong!) kamaniyasya baalakasya aananam drshtyaa...

Will also fail for

- Rules that depend on the whether the noun following jo/vaha/kaun or its form is oblique or not
- Because the case marker can be far from the noun
- <vaha or its form> ladakii jise piliya kii bimaarii ho gayiii thii ko ...
- Needs discussions across languages

DEM vs. PRON cannot be disambiguated

 IN GENERALAt the level of the POS tagger
i.e.

Cannot assume parsing
Cannot assume semantics

POS Tags

- NN - Noun; e.g. Dog_NN
- VM - Main Verb; e.g. Run_VM
- VAUX - Auxiliary Verb; e.g. Is_VAUX

■ JJ - Adjective; e.g. Red_JJ

- PRP - Pronoun; e.g. You_PRP
- NNP - Proper Noun; e.g. John_NNP
. etc.

POS Tag Ambiguity

- In English : I bank ${ }_{1}$ on the bank $_{2}$ on the river bank ${ }_{3}$ for my transactions.
- Bank ${ }_{1}$ is verb, the other two banks are noun
- In Hindi :
- "Khaanaa" : can be noun (food) or verb (to eat)

For Hindi

- Rama achhaa gaata hai. (hai is VAUX : Auxiliary verb); Ram sings well
- Rama achha ladakaa hai. (hai is VCOP : Copula verb); Ram is a good boy

Morphology: syncretism

Languages that are poor in Morphology (Chinese, English) have Role Ambiguity or Syncretism (fusion of originally different inflected forms resulting in a reduction in the use of inflections)

Eg: You/They/He/I will come tomorrow

Here, just by looking at the verb 'come' its syntactic features aren't apparent i.e.

Gender, Number, Person, Tense, Aspect, Modality (GNPTAM)
-Aspect tells us how the event occurred; whether it is completed, continuous, or habitual. Eg: John came, John will be coming

- Modality indicates possibility or obligation. Eg: John can arrive / John must arrive

Contrast this with the Hindi Translation of 'I will come tomorrow'

मैं Main (I) कल kal(tomorrow) आउंगा aaunga (will come)

आउंगा aaunga - GNPTAM: Male, Singular, First, Future

आओगे (Aaoge)- has number ambiguity, but still contains more information than 'come' in English

Books etc.

- Main Text(s):
- Natural Language Understanding: James Allan
- Speech and NLP: Jurafsky and Martin
- Foundations of Statistical NLP: Manning and Schutze
- Other References:
- NLP a Paninian Perspective: Bharati, Cahitanya and Sangal
- Statistical NLP: Charniak
- Journals
- Computational Linguistics, Natural Language Engineering, AI, AI Magazine, IEEE SMC
- Conferences
- ACL, EACL, COLING, MT Summit, EMNLP, IJCNLP, HLT, ICON, SIGIR, WWW, ICML, ECML

