CS626 : Natural Language Processing, Speech and the Web (Lecture 4,5 – HMM, POS tagging)

> Pushpak Bhattacharyya CSE Dept., IIT Bombay 30th July and 2nd August, 2012

POS tagging: Definition

- Tagging is the assignment of a singlepart-of-speech tag to each word (and punctuation marker) in a corpus.
 - "_" The_DT guys_NNS that_WDT make_VBP traditional_JJ hardware_NN are_VBP really_RB being_VBG obsoleted_VBN by_IN microprocessorbased_JJ machines_NNS ,_, "_" said_VBD Mr._NNP Benton_NNP ._.

Where does POS tagging fit in

Behaviour of "That"

- That
 - That man is known by the company he keeps. (Demonstrative)
 - Man that is known by the company he keeps, gets a good job. (Pronoun)
 - That man is known by the company he keeps, is a proverb. (Complementation)
- Chaotic systems: Systems where a small perturbation in input causes a large change in output

Argmax computation (1/2)

Best tag sequence

= T*

= argmax P(T|W)

 $= \operatorname{argmax} P(T)P(W|T)$ (by Baye's Theorem)

$$\begin{split} \mathsf{P}(\mathsf{T}) &= \mathsf{P}(\mathsf{t}_0 = \ \ t_1 \mathsf{t}_2 \ \dots \ t_{n+1} = .) \\ &= \mathsf{P}(\mathsf{t}_0) \mathsf{P}(\mathsf{t}_1 | \mathsf{t}_0) \mathsf{P}(\mathsf{t}_2 | \mathsf{t}_1 \mathsf{t}_0) \mathsf{P}(\mathsf{t}_3 | \mathsf{t}_2 \mathsf{t}_1 \mathsf{t}_0) \ \dots \\ &\quad \mathsf{P}(\mathsf{t}_n | \mathsf{t}_{n-1} \mathsf{t}_{n-2} \dots \mathsf{t}_0) \mathsf{P}(\mathsf{t}_{n+1} | \mathsf{t}_n \mathsf{t}_{n-1} \dots \mathsf{t}_0) \\ &= \mathsf{P}(\mathsf{t}_0) \mathsf{P}(\mathsf{t}_1 | \mathsf{t}_0) \mathsf{P}(\mathsf{t}_2 | \mathsf{t}_1) \ \dots \ \mathsf{P}(\mathsf{t}_n | \mathsf{t}_{n-1}) \mathsf{P}(\mathsf{t}_{n+1} | \mathsf{t}_n) \end{split}$$

 $= \prod_{i=0}^{N+1} P(t_i | t_{i-1})$ Bigram Assumption

Argmax computation (2/2)

 $P(W|T) = P(w_0|t_0-t_{n+1})P(w_1|w_0t_0-t_{n+1})P(w_2|w_1w_0t_0-t_{n+1}) \dots P(w_n|w_0-w_{n-1}t_0-t_{n+1})P(w_{n+1}|w_0-w_nt_0-t_{n+1})$

Assumption: A word is determined completely by its tag. This is inspired by speech recognition

$$= P(w_{o}|t_{o})P(w_{1}|t_{1}) \dots P(w_{n+1}|t_{n+1})$$

$$= \prod_{i=0}^{n+1} P(w_{i}|t_{i})$$

$$= \prod_{i=1}^{n+1} P(w_{i}|t_{i}) \quad \text{(Lexical Probability Assumption)}$$

Generative Model

This model is called Generative model. Here words are observed from tags as states. This is similar to HMM.

Inspiration from Automatic Speech Recognition

Isolated Word Recognition (IWR)

apple

₩\\ M\\ dog

- $w^* = \operatorname{argmax}_w(P(w|s))$
 - w=word, s=speech signal

P(w|s) = P(w) . P(s|w)

- P(w) word model (how probable is a word) learnt from any corpus
- P(s|w) translation model (how a word is spoken) learnt from annotated speech corpus
- Brittle, britle, brite
 - P(w) will be extremely low (~0) for the words britle and brite

HMM

A Motivating Example

Colored Ball choosing

Probability of transition to another Urn after picking a ball:

	U_1	U ₂	U ₃
U_1	0.1	0.4	0.5
U ₂	0.6	0.2	0.2
U ₃	0.3	0.4	0.3

Example (contd.)

Given :

	U_1	U_2	U_3
U_1	0.1	0.4	0.5
U ₂	0.6	0.2	0.2
U_3	0.3	0.4	0.3

		R	G	В
and	U_1	0.3	0.5	0.2
	U_2	0.1	0.4	0.5
	U_3	0.6	0.1	0.3

Observation : RRGGBRGR

State Sequence : ??

Not so Easily Computable.

Diagrammatic representation (1/2)

Diagrammatic representation (2/2)

Example (contd.)

Here :		
■ S = {U1, U2, U3}	Α =	
V = { R,G,B}		U_1
For observation:		
• O ={o ₁ o _n }		U.
And State sequence		
• Q = { $q_1 q_n$ }	B=	
$\blacksquare \Pi i \mathbf{S}_{i} = P(q_1 = U_i)$		
		U_2
	1	U-

	$ U_1 $	U ₂	U ₃
U_1	0.1	0.4	0.5
U ₂	0.6	0.2	0.2
U ₃	0.3	0.4	0.3
	R	G	В
U ₁	0.3	0.5	0.2
U ₁ U ₂	0.3 0.1	0.5 0.4	0.2 0.5

Observations and states

- $S_i = U_1/U_2/U_3$; A particular state
- S: State sequence
- O: Observation sequence
- S* = "best" possible state (urn) sequence
- Goal: Maximize P(S*|O) by choosing "best" S

Goal

Maximize P(S|O) where S is the State Sequence and O is the Observation Sequence

$$S^* = \arg \max_{S} (P(S \mid O))$$

False Start

By Markov Assumption (a state depends only on the previous state) $P(S | O) = P(S_1 | O).P(S_2 | S_1, O).P(S_3 | S_2, O)...P(S_8 | S_7, O)$

Baye's Theorem P(A | B) = P(A).P(B | A) / P(B)

P(A) -: Prior P(B|A) -: Likelihood

 $\operatorname{argmax}_{S} P(S | O) = \operatorname{argmax}_{S} P(S) P(O | S)$

State Transitions Probability

 $P(S) = P(S_{1-8})$ $P(S) = P(S_1) P(S_2 | S_1) P(S_3 | S_{1-2}) P(S_4 | S_{1-3}) ... P(S_8 | S_{1-7})$

By Markov Assumption (k=1)

 $P(S) = P(S_1) P(S_2 | S_1) P(S_3 | S_2) P(S_4 | S_3) ... P(S_8 | S_7)$

Observation Sequence probability

 $P(O|S) = P(O_1|S_{1-8}) P(O_2|O_1, S_{1-8}) P(O_3|O_{1-2}, S_{1-8}) \dots P(O_8|O_{1-7}, S_{1-8})$

Assumption that ball drawn depends only on the Urn chosen

 $P(O | S) = P(O_1 | S_1) \cdot P(O_2 | S_2) \cdot P(O_3 | S_3) \cdot \cdot \cdot P(O_8 | S_8)$

 $P(S \mid O) = P(S).P(O \mid S)$

 $P(S | O) = P(S_1).P(S_2 | S_1).P(S_3 | S_2).P(S_4 | S_3)...P(S_8 | S_7).$

 $P(O_1 | S_1).P(O_2 | S_2).P(O_3 | S_3)...P(O_8 | S_8)$

Grouping terms

P(S).P(O|S)

 $= [P(O_0|S_0).P(S_1|S_0)].$ $[P(O_1|S_1). P(S_2|S_1)].$ $[P(O_2|S_2). P(S_3|S_2)].$ $[P(O_3|S_3).P(S_4|S_3)].$ $[P(O_4|S_4).P(S_5|S_4)].$ $[P(O_5|S_5).P(S_6|S_5)].$ $[P(O_6|S_6).P(S_7|S_6)].$ $[P(O_7|S_7).P(S_8|S_7)].$ $[P(O_8|S_8).P(S_9|S_8)].$

O_5	O_6	0 ₇	O_8	
В	R	G	R	
S_5	S_6	S ₇	S ₈	S ₉

We introduce the states S₀ and S₉ as initial and final states respectively.

After S_8 the next state is S_9 with probability 1, i.e., $P(S_9|S_8)=1$

 O_0 is ϵ -transition

Introducing useful notation

The question here is:

"what is the most likely state sequence given the output sequence seen"

Developing the tree

Tree structure contd...

The problem being addressed by this tree is $S^* = \arg \max_{s} P(S \mid a_1 - a_2 - a_1 - a_2, \mu)$

a1-a2-a1-a2 is the output sequence and μ the model or the machine

Problem statement: Find the best possible sequence $S^* = \arg \max_{s} P(S \mid O, \mu)$ where, $S \rightarrow$ State Seq, $O \rightarrow$ Output Seq, $\mu \rightarrow$ Model or Machine

T is defined as $P(S_i \xrightarrow{a_k} S_j) \quad \forall_{i, j, k}$

Evaluation of POS Tagging

- $^{=}W_0 W_1 W_2 W_3 ... W_n W_{n+1} =$
- $^{-}T_0$ T_1 T_2 T_3 ... T_n $T_{n+1}=$ \$
- Gold Standard 80-20 rule: 5 fold cross validation
 - Divide data into 5 folds, 4 folds for training, 1 fold for testing

POS: Tagset

Penn tagset (1/2)

CC	Coord Conjuncn	and, but, or	NN	Noun, sing. or mass	dog
CD	Cardinal number	one,two	NNS	Noun, plural	dogs
DT	Determiner	the,some	NNP	Proper noun, sing.	Edinburgh
EX	Existential there	there	NNPS	Proper noun, plural	Orkneys
FW	Foreign Word	mon dieu	PDT	Predeterminer	all, both
IN	Preposition	of,in,by	POS	Possessive ending	's
JJ	Adjective	big	PP	Personal pronoun	l,you,she
JJR	Adj., comparative	bigger	PP\$	Possessive pronoun	my,one's
JJS	Adj., superlative	biggest	RB	Adverb	quickly
LS	List item marker	1,One	RBR	Adverb, comparative	faster
MD	Modal	can,should	RBS	Adverb, superlative	fastest

Penn tagset (2/2)

RP	Particle	up,off	WP\$	Possessive-Wh	whose
SYM	Symbol	+.%.&	WRB	Wh-adverb	how, where
TO	"to"	to	\$	Dollar sign	\$
UH	Interjection	oh, oops	#	Pound sign	#
VB	verb, base form	eat	- 14 - S	Left quote	1 . A
VBD	verb, past tense	ate	:392	Right quote	1.11
VBG	verb, gerund	eating	(Left paren	(
VBN	verb, past part	eaten)	Right paren)
VBP	Verb, non-3sg, pres	eat	5	Comma	20 C
VBZ	Verb, 3sg, pres	eats	38 - C	Sent-final punct	. 1 ?
WDT	Wh-determiner	which,that		Mid-sent punct.	::
WP	Wh-pronoun	what,who			

Indian Language Tagset: Noun

S1. No	Category			Label	Annotation Convention**	Examples
	Top level	Subtype (level 1)	Subtype (level 2)			
1	Noun			N	N	ladakaa, raajaa, kitaaba
1.1		Common		NN	NNN	kitaaba, kalama, cashmaa
1.2		Proper		NNP	NNNP	Mohan, ravi, rashmi
1.4		Nloc		NST	NNST	Uupara, niice, aage,

Indian Language Tagset: Pronoun

2	Pronoun		PR	PR	Yaha, vaha, jo
2.1		Personal	PRP	PR_PRP	Vaha, main, tuma, ve
2.2		Reflexive	PRF	PR_PRF	Apanaa, swayam, khuda
2.3		Relative	PRL	PR_PRL	Jo, jis, jab, jahaaM,
2.4		Reciprocal	PRC	PR_PRC	Paraspara, aapasa
2.5		Wh-word	PRQ	PR_PRQ	Kauna, kab, kahaaM
		Indefinite	PRI	PR_PRI	Koii, kis

Indian Language Tagset: Quantifier

10.1	General	QTF	QTQTF	thoRaa, bahuta, kucha
10.2	Cardinals	QTC	QTQTC	eka, do, tiina,
10.3	Ordinals	QTO	QTQTO	pahalaa, duusaraa

Indian Language Tagset: Demonstrative

3	Demonstrative		DM	DM	Vaha, jo, yaha,	
3.1		Deictic	DMD	DMDMD	Vaha, yaha	
3.2		Relative	DMR	DMDMR	jo, jis	
3.3		Wh-word	DMQ	DMDMQ	kis, kaun	
		Indefinite	DMI	DMDMI	Kol, kis	

Indian Language Tagset: Verb, Adjective, Adverb

4	Verb		Y	¥	giraa, gayaa, sonaa, haMstaa, hai, rahaa
4.1		Main	VM	VVM	giraa, gayaa, sonaa, haMstaa,
4.2		Auxiliary	VAUX	VVAUX	hai, rahaa, huaa,
5	Adjective		JJ	JJ	sundara, acchaa, baRaa
6	Adverb		RB	RB	jaldii, teza

Indian Language Tagset: Postposition, conjunction

7	Postposition		PSP	PSP	ne, ko, se, mein
8	Conjunction		CC	cc	aur, agar, tathaa, kyonki
8.1		Co- ordinator	CCD	CC_CCD	aur, balki, parantu
8.2		Subordinato r	CCS	CC_CCS	Agar, kyonki, to, ki

Indian Language Tagset: Particle

9	Particles		RP	RP	to, bhii, hii
9.1		Default	RPD	RPRPD	to,bhii, hii
9.3		Interjectio n	INJ	RP_INJ	are, he, o
9.4		Intensifier	INTF	RPINTF	bahuta, behada
9.5		Negation	NEG	RPNEG	nahiin, mata, binaa

Indian Language Tagset: Residuals

11	Residuals		RD	RD		
11.1		Foreign word	RDF	RDRDF		A word written in script other than the script of the original text
11.2		Symbol [SYM	RDSYM	\$, &, *, (,)	For symbols such as \$, & etc
11.3		Punctuation	PUNC	RDPUNC	., : ;	Only for punctuations
11.4		Unknown	UNK	RDUNK		
11.5		Echowords	ECH	RDECH	(Paanii-) vaanii, (khaanaa-) vaanaa	

Challenge of POS tagging

Example from Indian Language

Tagging of *jo, vaha, kaun* and their inflected forms in Hindi and their equivalents in multiple languages

DEM and PRON labels

Jo_DEM ladakaa kal aayaa thaa, vaha cricket acchhaa khel letaa hai

Jo_PRON kal aayaa thaa, vaha cricket acchhaa khel letaa hai

Disambiguation rule-1 If Jo is followed by noun Then Else

False Negative

- When there is arbitrary amount of text between the *jo* and the noun
- Jo_??? bhaagtaa huaa, haftaa huaa, rotaa huaa, chennai academy a koching lenevaalaa ladakaa kal aayaa thaa, vaha cricket acchhaa khel letaa hai

False Positive

Jo_DEM (wrong!) duniyadarii samajhkar chaltaa hai, ...

 Jo_DEM/PRON? manushya manushyoM ke biich ristoM naatoM ko samajhkar chaltaa hai, ... (ambiguous)

False Positive for Bengali

- Je_DEM (wrong!) bhaalobaasaa paay, sei bhaalobaasaa dite paare (one who gets love can give love)
- Je_DEM (right!) bhaalobaasa tumi kalpanaa korchho, taa e jagat e sambhab nay

(the love that you imagine exits, is impossible in this world)

Will fail

In the similar situation for *Jis, jin, vaha, us, un*All these forms add to corpus count

Disambiguation rule-2

- If
 - Jo is oblique (attached with ne, ko, se etc. attached)
- Then
 - It is PRON
- Else
 - other tests>

Will fail (false positive)

- In case of languages that demand agreement between *jo*-form and the noun it qualifies
- *E.g.* Sanskrit
- Yasya_PRON (wrong!) baalakasya aananam drshtyaa... (jis ladake kaa muha dekhkar)
- Yasya_PRON (wrong!) kamaniyasya baalakasya aananam drshtyaa...

Will also fail for

- Rules that depend on the whether the noun following *jo/vaha/kaun or its form* is oblique or not
- Because the case marker can be far from the noun
- <vaha or its form> ladakii jise piliya kii bimaarii ho gayiii thii ko ...
- Needs discussions across languages

DEM vs. PRON cannot be disambiguated IN GENERAL At the level of the POS tagger i.e. Cannot assume parsing Cannot assume semantics

POS Tags

- NN Noun; e.g. *Dog_NN*
- VM Main Verb; e.g. Run_VM
- VAUX Auxiliary Verb; e.g. Is_VAUX
- JJ Adjective; e.g. *Red_JJ*
- PRP Pronoun; e.g. You_PRP
- NNP Proper Noun; e.g. John_NNP
- etc.

POS Tag Ambiguity

- In English : I bank₁ on the bank₂ on the river bank₃ for my transactions.
 - Bank₁ is verb, the other two banks are noun

In Hindi :

"Khaanaa" : can be noun (food) or verb (to eat)

For Hindi

- Rama achhaa gaata hai. (hai is VAUX : Auxiliary verb); Ram sings well
- Rama achha ladakaa hai. (hai is VCOP : Copula verb); Ram is a good boy

Morphology: syncretism

Languages that are poor in Morphology (Chinese, English) have Role Ambiguity or **Syncretism** (fusion of originally different inflected forms resulting in a reduction in the use of inflections)

Eg: You/They/He/I will <u>come</u> tomorrow

Here, just by looking at the verb `*come*' its syntactic features aren't apparent i.e.

Gender, Number, Person, Tense, Aspect, Modality (GNPTAM)

-<u>Aspect</u> tells us how the event occurred; whether it is completed, continuous, or habitual. Eg: *John came, John will be coming*

- <u>Modality</u> indicates possibility or obligation. Eg: *John can arrive / John must arrive*

Contrast this with the Hindi Translation of 'I will <u>come</u> tomorrow'

मैं Main (I) कल kal(tomorrow) <u>आउंगा aaunga (will come)</u>

<u>आउंगा aaunga</u> – GNPTAM: Male, Singular, First, Future

आओगे (Aaoge) – has number ambiguity, but still contains more information than '*come*' in English

Books etc.

- Main Text(s):
 - Natural Language Understanding: James Allan
 - Speech and NLP: Jurafsky and Martin
 - Foundations of Statistical NLP: Manning and Schutze
- Other References:
 - NLP a Paninian Perspective: Bharati, Cahitanya and Sangal
 - Statistical NLP: Charniak
- Journals
 - Computational Linguistics, Natural Language Engineering, AI, AI Magazine, IEEE SMC
- Conferences
 - ACL, EACL, COLING, MT Summit, EMNLP, IJCNLP, HLT, ICON, SIGIR, WWW, ICML, ECML