CS626: NLP, Speech and the Web

Pushpak Bhattacharyya CSE Dept., IIT Bombay

Lecture 6, 7, 8, 9: Viterbi; forward and backward; Baum Welch; IL POS tags 6th, 8th, 9th, 13th August, 2012

HMM

HMM Definition

- Set of states: S where |S|=N
- Start state $S_0 / P(S_0) = 1*/$
- Output Alphabet: O where |O|=M
- Transition Probabilities: A= {a_{ij}} /*state i to state j*/
- Emission Probabilities : B= {b_j(o_k)} /*prob. of emitting or absorbing o_k from state j*/
- Initial State Probabilities: $\Pi = \{p_1, p_2, p_3, ..., p_N\}$
- Each $p_i = P(o_0 = \varepsilon, S_i | S_0)$

Markov Processes

Properties

- Limited Horizon: Given previous t states, a state i, is independent of preceding 0 to tk+1 states.
 - $P(X_t=i|X_{t-1}, X_{t-2}, ..., X_0) = P(X_t=i|X_{t-1}, X_{t-2}, ..., X_{t-k})$
 - Order k Markov process
- Time invariance: (shown for k=1)

• $P(X_t=i|X_{t-1}=j) = P(X_1=i|X_0=j) \dots = P(X_n=i|X_{n-1}=j)$

Three basic problems (contd.)

- Problem 1: Likelihood of a sequence
 - Forward Procedure
 - Backward Procedure
- Problem 2: Best state sequence
 - Viterbi Algorithm
- Problem 3: Re-estimation
 - Baum-Welch (Forward-Backward Algorithm)

Probabilistic Inference

- O: Observation Sequence
- S: State Sequence
- Given O find S^{*} where $S^* = \arg \max p(S / O)$ called Probabilistic Inference
- Infer "Hidden" from "Observed"
- How is this inference different from logical inference based on propositional or predicate calculus?

Essentials of Hidden Markov Model

- 1. Markov + Naive Bayes
- 2. Uses both transition and observation probability

$$p(S_k \to^{O_k} S_{k+1}) = p(O_k / S_k) p(S_{k+1} / S_k)$$

3. Effectively makes Hidden Markov Model a Finite State Machine (FSM) with probability

Probability of Observation Sequence

$$p(O) = \sum_{S} p(O, S)$$
$$= \sum_{S} p(S) p(O / S)$$

Without any restriction,
 Search space size= |S|^{|O|}

Continuing with the Urn example

Colored Ball choosing

Example (contd.)

Transition Probability

Observation/output Probability

R G В U_1 0.3 0.5 0.2 and U_2 0.1 0.4 0.5 U_3 0.6 0.3 0.1

Observation : RRGGBRGR

What is the corresponding state sequence ?

Diagrammatic representation (1/2)

Diagrammatic representation (2/2)

The question here is:

"what is the most likely state sequence given the output sequence seen"

Developing the tree

Tree structure contd...

The problem being addressed by this tree is $S^* = \arg \max_{s} P(S \mid a_1 - a_2 - a_1 - a_2, \mu)$

a1-a2-a1-a2 is the output sequence and μ the model or the machine

Tabular representation of the tree

Latest symbol observed Ending state	€	a ₁	a ₂	a ₁	a ₂
S ₁	1.0	(1.0*0.1,0.0*0.2)=(0.1 ,0.0)	(0.02, 0.09)	(0.009, 0.012)	(0.0024, 0.0081)
S ₂	0.0	(1.0*0.3,0.0*0.3)=(0.3 ,0.0)	(0.04, 0.0 6)	(0.027 ,0.018)	(0.0048,0.005 4)

Note: Every cell records the winning probability ending in that state

Final winner

The bold faced values in each cell shows the sequence probability ending in that state. Going backward from final winner sequence which ends in state S_2 (indicated By the 2nd tuple), we recover the sequence.

Algorithm

(following James Alan, Natural Language Understanding (2nd edition), Benjamin Cummins (pub.), 1995

Given:

- 1. The HMM, which means:
 - a. Start State: S₁
 - b. Alphabet: $A = \{a_1, a_2, ..., a_p\}$
 - Set of States: $S = \{S_1, S_2, \dots, S_N\}$
 - d. Transition probability $P(S_i _ a_k \to S_j) = \forall_{i, j, k}$ which is equal to $P(S_j, a_k | S_i)$
- 2. The output string $a_1a_2...a_M$

To find:

The most likely sequence $C_1C_2...C_M$ which produces the given output sequence, *i.e.*, $C_1C_2...C_M = \operatorname{argmax}_C(P(C|a_1a_2...a_M))$

Algorithm contd...

Data Structure:

- A N*M array called SEQSCORE to maintain the winner sequence always (N=#states, M=length of o/p sequence)
- 2. Another N*M array called BACKPTR to recover the path.

Three distinct steps in the Viterbi implementation

- 1. Initialization
- 2. Iteration
- 3. Sequence Identification

1. Initialization

SEQSCORE(1,1)=1.0 BACKPTR(1,1)=0 For(i=2 to N) do SEQSCORE(i,1)=0.0 [expressing the fact that first state is S_1]

2. Iteration

For(t=2 to T) do For(i=1 to N) do SEQSCORE(i,t) = $Max_{(j=1,N)}$ [SEQSCORE (j,(t-1)) * P(Sj $\xrightarrow{a_k} \rightarrow Si$)] BACKPTR(I,t) = index j that gives the MAX above

3. Seq. Identification

C(M) = i that maximizes SEQSCORE(i,M) For i from (M-1) to 1 do C(i) = BACKPTR[C(i+1),(i+1)]

Optimizations possible:

- 1. BACKPTR can be 1*M
- 2. SEQSCORE can be M*2

Homework:- Compare this with A*, Beam Search [Homework]

Reason for this comparison:

Both of them work for finding and recovering sequence

Viterbi Algorithm for the Urn problem (first two symbols)

Markov process of order>1 (say 2)

O_0	O_1	O ₂	O ₃	O ₄	O ₅	
Obs: E	R	R	G	G	В	
State: S	$_0$ S ₁	S_2	S_3	S_4	S_5	

Same theory works P(S).P(O|S)

 $= P(O_0|S_0).P(S_1|S_0).$ $[P(O_1|S_1), P(S_2|S_1S_0)].$ $[P(O_2|S_2), P(S_3|S_2S_1)].$ $[P(O_3|S_3).P(S_4|S_3S_2)].$ $[P(O_4|S_4).P(S_5|S_4S_3)].$ $[P(O_5|S_5).P(S_6|S_5S_4)].$ $[P(O_6|S_6).P(S_7|S_6S_5)].$ $[P(O_7|S_7).P(S_8|S_7S_6)].$ $[P(O_8|S_8).P(S_9|S_8S_7)].$

We introduce the states S_0 and S_9 as initial and final states respectively.

 O_6

S₆

 O_7

S₇

R G

 O_8

R

 S_8

S

After S_8 the next state is S_q with probability 1, i.e., $P(S_9|S_8S_7)=1$

 O_{0} is ε -transition

Adjustments

- Transition probability table will have tuples on rows and states on columns
- Output probability table will remain the same
- In the Viterbi tree, the Markov process will take effect from the 3rd input symbol (εRR)
- There will be 27 leaves, out of which only 9 will remain
- Sequences ending in same tuples will be compared
 - Instead of U1, U2 and U3
 - U₁U₁, U₁U₂, U₁U₃, U₂U₁, U₂U₂, U₂U₃, U₃U₁, U₃U₂, U₃U₃

Forward and Backward Probability Calculation

Forward probability *F(k,i)*

- Define F(k,p)= Probability of being in state S_i having seen O₀O₁O₂...O_k
- $F(k,i)=P(o_0o_1o_2...o_k, S_p)$
- With *m* as the length of the observed sequence
- $P(observed sequence) = P(o_0 o_1 o_2 ... o_m)$ = $\sum_{p=0,N} P(o_0 o_1 o_2 ... o_m, S_p)$ = $\sum_{p=0,N} F(m, p)$

Forward probability (contd.)

$$\begin{split} F(k, q) &= P(o_0 o_1 o_2 .. o_k, S_q) \\ &= P(o_0 o_1 o_2 .. o_k, S_q) \\ &= P(o_0 o_1 o_2 .. o_{k-1}, o_k, S_q) \\ &= \sum_{p=0,N} P(o_0 o_1 o_2 .. o_{k-1}, S_p, o_k, S_q) \\ &= \sum_{p=0,N} P(o_0 o_1 o_2 .. o_{k-1}, S_p) . \\ &\qquad P(o_m, S_q / o_0 o_1 o_2 .. o_{k-1}, S_p) \\ &= \sum_{p=0,N} F(k-1, p). P(o_k, S_q / S_p) \end{split}$$

$$= \Sigma_{p=0,N} F(k-1,p), P(S_p \rightarrow S_q)$$

 \mathbf{O}_{i}

Backward probability B(k,i)

- Define B(k,i)= Probability of seeing $O_k O_{k+1} O_{k+2} \dots O_m$ given that the state was S_i
- $B(k,i) = P(O_k O_{k+1} O_{k+2} ... O_m | S_i)$
- With *m* as the length of the observed sequence
- $P(observed sequence) = P(o_0 o_1 o_2 ... o_m)$ = $P(o_0 o_1 o_2 ... o_m / S_0)$ = B(0, 0)

Backward probability (contd.)

B(k, p) $= P(o_k o_{k+1} o_{k+2} \dots o_m \mid S_p)$ $= P(O_{k+1}O_{k+2}...O_m, O_k | S_n)$ $= \sum_{a=0,N} P(O_{k+1}O_{k+2}...O_m, O_k, S_a/S_b)$ $= \sum_{a=0,N} P(O_k, S_a/S_n)$ $P(O_{k+1}O_{k+2}...O_m | O_k, S_a, S_n)$ $= \sum_{a=0,N} P(o_{k+1}o_{k+2}...o_m/S_a), P(o_k),$ S_{a}/S_{n} $= \sum_{q=0,N}^{q, p, p} B(k+1,q). P(S_n \xrightarrow{O_k} S_n)$

Assignment 2

 Prove that a language model based on POS tagged text is better than one developed from raw text

$$LM_{pos} > Lm_{raw}$$

- Choose a suitable NLP task to compare the models
 - Eg: next word prediction

Example

- Sentence: People laugh.
 - People and laugh can both be used as noun and verb
 - N V : P("people laugh", N V) = P(N).P(V|N).P(people|N).P(laugh|V)
 - N N : P("people laugh", N N) =P(N).P(N|N).P(people|N).P(laugh|N)
 - V N : P("people laugh", V N) = P(V).P(N|V).P(people|V).P(laugh|N)

 - V V : P("people laugh", V V) = P(V).P(V|V).P(people|V).P(laugh|V)

Forward Probability

People laugh \$
 N N \$
 V V

P(People laugh)

- = F(People laugh, \$)
- = F(People, N).P(N->^{laugh}\$)+F(people, V).P(V->^{laugh}\$)

Forward Probability (contd.)

- P(people laugh) = F(people laugh, \$)
 = F(people, N).P(N->^{laugh}\$)+F(people, V).P(V->^{laugh}\$)
- F(people, N)=F(^ people, N) =F(^, N).P(N->^{people}N)+F(^, V).P(V->^{people}N)
- F(people, V)=F(^ people, V)

>peopleV)

 $=F(^{N}, N).P(N->^{people}V)+F(^{N}, V).P(V-$

HMM Training

Baum Welch or Forward Backward Algorithm

Approach: Initialize the probabilities and recompute them... EM like approach

Baum-Welch algorithm: counts

String = abb aaa bbb aaa

Sequence of states with respect to input symbols

 $\begin{array}{c} \text{o/p seq} & \xrightarrow{a} r \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{a} r \xrightarrow{a} q \xrightarrow{a} r \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{a} r \xrightarrow{a} q \xrightarrow{a} r \xrightarrow{a} q \xrightarrow{a} r \xrightarrow{a} q \xrightarrow{a} r \xrightarrow{b} q \xrightarrow{$

Calculating probabilities from table

Table of counts

$P(q \xrightarrow{a} r) =$	5/8
$P(q \xrightarrow{b} r) =$	3/8
$P(s^i \xrightarrow{W_k} s^j) =$	$= \frac{C(S^{i} \longrightarrow S^{j})}{T \xrightarrow{A}} $
	$\sum_{l=1}^{\infty} \sum_{m=1}^{\infty} C(S^{l} \xrightarrow{W_{m}} S^{l})$

Src	Dest	O/P	Cou nt
q	r	а	5
q	q	b	3
r	q	а	3
r	q	b	2

T=#states

A=#alphabet symbols

Now if we have a non-deterministic transitions then multiple state seq possible for the given o/p seq (ref. to previous slide's feature). Our aim is to find expected count through this.

Interplay Between Two Equations

$$P(s^{i} \xrightarrow{W_{k}} s^{j}) = \frac{c(s^{i} \xrightarrow{W_{k}} s^{j})}{\sum_{l=0}^{T} \sum_{m=0}^{A} c(s^{i} \xrightarrow{W_{m}} s^{l})}$$

Illustration

One run of Baum-Welch algorithm: *string ababb*

$\epsilon \rightarrow a$	$a \rightarrow b$	$b \rightarrow a$	$a \rightarrow b$	$b \rightarrow b$	$b \rightarrow \in$	P(path)	$q \xrightarrow{a} r$	$r \xrightarrow{b} q$	$q \xrightarrow{a} q$	$q \xrightarrow{b} q$
q	r	q	r	q	q	0.00077	0.00154	0.00154	0	0.0007 7
q	r	q	q	q	q	0.00442	0.00442	0.00442	0.0044 2	0.0088 4
q	q	P↑	r	q	q	0.00442	0.00442	0.00442	0.0044 2	0.0088 4
q	q	q	q	q	q	0.02548	0.0	0.000	0.0509 6	0.0764 4
Rounded Total →						0.035	0.01	0.01	0.06	0.095
New Probabilities (P) → State sequences							0.06 =(0.01/(0. 01+0.06+ 0.095)	1.0	0.36	0.581

* ϵ is considered as starting and ending symbol of the input sequence string. Through multiple iterations the probability values will converge.

$$\begin{aligned} & \text{Computational part (1/2)} \\ & C(s^{i} \longrightarrow s^{j}) = \sum_{s_{0,n+1}} [P(S_{0,n+1} | W_{0,n}) \times n(s^{i} \longrightarrow s^{j}, S_{0,n+1}, W_{0,n})] \\ &= \frac{1}{P(W_{0,n})} \sum_{s_{0,n+1}} [P(S_{0,n+1}, W_{0,n}) \times n(s^{i} \longrightarrow s^{j}, S_{0,n+1}, W_{0,n})] \\ &= \frac{1}{P(W_{0,n})} \sum_{t=0,n} \sum_{s_{0,n+1}} [P(S_{t} = s^{i}, W_{t} = w_{k}, S_{t+1} = s^{j}, S_{0,n+1}, W_{0,n})] \\ &= \frac{1}{P(W_{0,n})} \sum_{t=0,n} [P(S_{t} = s^{i}, W_{t} = w_{k}, S_{t+1} = s^{j}, W_{0,n})] \end{aligned}$$

$$S0 \xrightarrow{w_0} S1 \xrightarrow{w_1} S1 \xrightarrow{w_2} ... Si \xrightarrow{w_k} Sj ... \xrightarrow{w_{n-1}} Sn \xrightarrow{w_n} Sn+1$$

Computational part (2/2)

$$\sum_{t=0}^{n} P(S_{t} = s^{i}, S_{t+1} = s^{j}, W_{t} = w_{k}, W_{0,n})$$

$$= \sum_{t=0}^{n} P(W_{0,t-1}, S_{t} = s^{i}, S_{t+1} = s^{j}, W_{t} = w_{k}, W_{t+1,n})$$

$$= \sum_{t=0}^{n} P(W_{0,t-1}, S_{t} = s^{i})P(S_{t+1} = s^{j}, W_{t} = w_{k} | W_{0,t-1}, S_{t} = s^{i})P(W_{t+1,n} | S_{t+1} = s^{j})$$

$$= \sum_{t=0}^{n} F(t-1,i)P(S_{t+1} = s^{j}, W_{t} = w_{k} | S_{t} = s^{i})B(t+1, j)$$

$$= \sum_{t=0}^{n} F(t-1,i)P(S_{t+1} = s^{j}, W_{t} = w_{k} | S_{t} = s^{i})B(t+1, j)$$

$$= \sum_{t=0}^{n} F(t-1,i)P(s^{i} \longrightarrow s^{j})B(t+1, j)$$

$$S0 \xrightarrow{w_{0}} S1 \xrightarrow{w_{1}} S1 \xrightarrow{w_{2}} \dots Si \xrightarrow{w_{k}} Sj \dots \xrightarrow{Sn-1} \xrightarrow{Sn} Sn \xrightarrow{w_{n}} Sn+1$$

Discussions

1. Symmetry breaking:

Example: Symmetry breaking leads to no change in initial values

- 2 Struck in Local maxima
- 3. Label bias problem
 - Probabilities have to sum to 1.
 - Values can rise at the cost of fall of values for others.

Indian Language POS tag standard

SL No		Category		Label	Annotation Convention**	Remarks	
	Top level	Subtype (level 1)	Subtype (level 2)				
1	Noun			N	N		
1.1		Common		NN	N_NN		
1.2		Proper		NNP	N_NNP		
1.3		Verbal		NNV	N_NNV	The verbal noun type is only for languages such as Tamil and Malyalam)	
1.4		Nloc		NST	N_NST		
2	Pronoun			PR	PR		
2.1		Personal		PRP	PR_PRP		
2.2		Reflexive		PRF	PR_PRF		
2.3		Relative		PRL	PR_PRL		
2.4		Reciprocal		PRC	PR_PRC		
2.5		Wh-word		PRQ	PR_PRQ		
3	Demonstrative			DM	DM		
3.1		Deictic		DMD	DM_DMD		
3.2		Relative		DMR	DM_DMR		
3.3		Wh-word		DMQ	DM_DMQ		
4	Verb			v	v		
4.1		Main		VM	V_VM		
04/01/ 01			Finite	VF	V_VM_VF		
04/01/ 02			Non-finite	VNF	V_VM_VNF		
04/01/ 03			Infinitive	VINF	V_VM_VINF		
04/01/ 04			Gerund	VNG	V_VM_VNG		
4.2		Auxiliary		VAUX	V_VAUX		
5	Adjective			JJ			
6	Adverb			RB		Only manner adverbs	
7	Postposition			PSP			

8	Conjunction			CC	CC	
8.1		Co-ordinator		CCD	CC_CCD	
8.2		Subordinator		CCS	CC_CCS	
08/02/ 01			Quotative	UT	CC_CCS_UT	
9	Particles			RP	RP	
9.1		Default		RPD	RP_RPD	
9.2		Classifier		CL	RP_CL	
9.3		Interjection		INJ	RP_INJ	
9.4		Intensifier		INTF	RP_INTF	
9.5		Negation		NEG	RP_NEG	
10	Quantifiers			QT	QT	
10.1		General		QTF	QT_QTF	
10.2		Cardinals		QTC	QT_QTC	
10.3		Ordinals		QTO	QT_QTO	
11	Residuals			RD	RD	
11.1		Foreign word		RDF	RD_RDF	A word written in script other than the script of the original text
11.2		Symbol		SYM	RD_SYM	For symbols such as \$, & etc
11.3		Punctuation		PUNC	RD_PUNC	Only for punctuations
11.4		Unknown		UNK	RD_UNK	
11.5		Echowords		ECH	RD_ECH	

** The annotation is to be done using the lowest level tag of the type hierarchy. Once the lower level tag is selected, the higher level tags should be stored automatically.