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HMM Definition

� Set of states: S where |S|=N

� Start state S0 /*P(S0)=1*/

� Output Alphabet: O where |O|=M

� Transition Probabilities: A= {aij} /*state i to 
state j*/

ij

state j*/

� Emission Probabilities : B= {bj(ok)} /*prob. of 
emitting or absorbing ok from state j*/

� Initial State Probabilities: Π={p1,p2,p3,…pN}

� Each pi=P(o0=ε,Si|S0)



Markov Processes

� Properties

� Limited Horizon: Given previous t states, a 
state i, is independent of preceding 0 to t-state i, is independent of preceding 0 to t-
k+1 states.

� P(Xt=i|Xt-1, Xt-2 ,… X0) = P(Xt=i|Xt-1, Xt-2… Xt-k)

� Order k Markov process

� Time invariance: (shown for k=1) 

� P(Xt=i|Xt-1=j) = P(X1=i|X0=j) …= P(Xn=i|Xn-1=j) 



Three basic problems (contd.)

� Problem 1: Likelihood of a sequence

� Forward Procedure

� Backward Procedure� Backward Procedure

� Problem 2: Best state sequence

� Viterbi Algorithm

� Problem 3: Re-estimation

� Baum-Welch ( Forward-Backward 
Algorithm )



Probabilistic Inference

� O: Observation Sequence

� S: State Sequence

Given O find S* where called * arg max ( / )S p S O=� Given O find S* where called 
Probabilistic Inference

� Infer “Hidden” from “Observed”

� How is this inference different from logical inference 
based on propositional or predicate calculus?

* arg max ( / )
S

S p S O=



Essentials of Hidden 
Markov Model

1. Markov + Naive Bayes

2. Uses both transition and observation probability

3. Effectively makes Hidden Markov Model a Finite State 

Machine (FSM) with probability

1 1( ) ( / ) ( / )kO
k k k k k kp S S p O S p S S+ +→ =



Probability of Observation 
Sequence
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         = ( ) ( / )
S
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p S p O S
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� Without any restriction,

� Search space size= |S||O|

         = ( ) ( / )
S

p S p O S∑



Continuing with the Urn example

Urn 1 Urn 3Urn 2

Colored Ball choosing

Urn 1

# of Red = 30

# of Green = 50 

# of Blue = 20 

Urn 3

# of Red =60

# of Green =10  

# of Blue =  30

Urn 2

# of Red = 10

# of Green = 40 

# of Blue = 50



Example (contd.)

U1 U2 U3

U1 0.1 0.4 0.5

U2 0.6 0.2 0.2

U3 0.3 0.4 0.3

Given :

Observation : RRGGBRGR

and

R G B

U1 0.3 0.5 0.2

U2 0.1 0.4 0.5

U3 0.6 0.1 0.3

Transition Probability Observation/output Probability

Observation : RRGGBRGR

What is the corresponding state sequence ?



Diagrammatic representation (1/2)

U U
0.1

0.3 0.3

R, 0.6

B, 0.2

R, 0.3 G, 0.5

U1

U2

U3

0.1

0.2

0.4

0.6

0.4

0.5

0.2

R, 0.6

G, 0.1

B, 0.3

R, 0.1

B, 0.5

G, 0.4



Diagrammatic representation (2/2)

U U
R,0.15

R,0.18

G,0.03

B,0.09

R,0.18

R,0.03

G,0.05

B,0.02

U1

U2

U3

R,0.02

G,0.08

B,0.10

R,0.24

G,0.04

B,0.12

R,0.06

G,0.24

B,0.30
R, 0.08

G, 0.20

B, 0.12

R,0.15

G,0.25

B,0.10

R,0.18

G,0.03

B,0.09

R,0.02

G,0.08

B,0.10



Probabilistic FSM
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The question here is:

“what is the most likely state sequence given the output sequence

seen”

S
1

S
2



Developing the tree

Start

S1 S2

S1 S2 S1 S2

1.0 0.0

0.1 0.3 0.2 0.3

1*0.1=0.1 0.3 0.0 0.0
�. �.

€

a1

S1 S2 S1 S2

S1 S2 S1 S2

1*0.1=0.1 0.3 0.0 0.0

0.1*0.2=0.02 0.1*0.4=0.04 0.3*0.3=0.09 0.3*0.2=0.06

�. �.

a2

Choose  the  winning 

sequence per state

per iteration

0.2 0.4 0.3 0.2



Tree structure contd…

S1 S2

S1 S2 S1 S2

0.1 0.3 0.2 0.3

0.027 0.012
�.�.

0.09 0.06

0.09*0.1=0.009 0.018

a1

S1

0.3

0.0081

S2

0.2

0.0054

S2

0.4

0.0048

S1

0.2

0.0024

�.

a2

The problem being addressed by this tree is )|(maxarg* ,2121 µaaaaSPS
s

−−−=

a1-a2-a1-a2 is the output sequence and µ the model or the machine 





Tabular representation of the 
tree

€ a1 a2 a1 a2

S 1.0 (1.0*0.1,0.0*0.2 (0.02, (0.009, 0.012) (0.0024, 

Ending state

Latest symbol 

observed

S1
1.0 (1.0*0.1,0.0*0.2

)=(0.1,0.0)

(0.02, 

0.09)

(0.009, 0.012) (0.0024, 

0.0081)

S2
0.0 (1.0*0.3,0.0*0.3

)=(0.3,0.0)

(0.04,0.0

6)

(0.027,0.018) (0.0048,0.005

4)

Note: Every cell records the winning probability ending in that state

Final winner
The bold faced values in each cell shows the 
sequence probability ending in that state. Going backward
from final winner sequence which ends in state S2 (indicated 
By the 2nd tuple), we recover the sequence.



Algorithm
(following James Alan, Natural Language Understanding 
(2nd edition), Benjamin Cummins (pub.), 1995

Given: 
1. The HMM, which means:

a. Start State: S1
b. Alphabet: A = {a1, a2, … ap}

Set of States: S = {S , S , … S }c. Set of States: S = {S1, S2, … SN}

d. Transition probability

which is equal to 

2. The output string a1a2…aM

To find: 

The most likely sequence C1C2…CM which produces the given 
output sequence, i.e., C1C2…CM = argmaxC(P(C|a1a2…aM)

kjij
k

i SaSP ,,      )( ∀ →

)|,( ikj SaSP



Algorithm contd…
Data Structure:

1. A N*M array called SEQSCORE to maintain the 
winner sequence always (N=#states, M=length of 
o/p sequence)

2. Another N*M array called BACKPTR to recover the 2. Another N*M array called BACKPTR to recover the 
path.

Three distinct steps in the Viterbi implementation
1. Initialization

2. Iteration

3. Sequence Identification



1. Initialization
SEQSCORE(1,1)=1.0

BACKPTR(1,1)=0

For(i=2 to N) do

SEQSCORE(i,1)=0.0

[expressing the fact that first state 
is S1]

2. Iteration
For(t=2 to T) do

For(i=1 to N) do

SEQSCORE(i,t) = Max(j=1,N)

BACKPTR(I,t) = index j that gives the MAX above

)](*))1(,([ SiaSjPtjSEQSCORE k →−



3. Seq. Identification

C(M) = i that maximizes SEQSCORE(i,M)

For i from (M-1) to 1 do

C(i) = BACKPTR[C(i+1),(i+1)]

Optimizations possible:Optimizations possible:

1. BACKPTR can be 1*M

2. SEQSCORE can be M*2

Homework:- Compare this with A*, Beam Search [Homework]

Reason for this comparison: 

Both of them work for finding and recovering sequence



Viterbi Algorithm for the Urn 
problem (first two symbols)

S0

U U U

0.5

0.3

0.2ε

U1 U2 U3

U1 U2 U3

0.03

0.08

0.15

U1 U2 U3 U1 U2 U3

0.06

0.02

0.02

0.18

0.24

0.18

0.015 0.04 0.075* 0.018 0.006 0.006 0.048* 0.036

*: winner sequences

R



Markov process of order>1 (say 2)

Same theory works

P(S).P(O|S)

= P(O0|S0).P(S1|S0).

We introduce the states
S0 and S9 as initial 
and final states 

O0 O1 O2 O3 O4 O5 O6 O7 O8

Obs: ε R R G  G B  R   G  R

State: S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

= P(O0|S0).P(S1|S0).

[P(O1|S1). P(S2|S1S0)].

[P(O2|S2). P(S3|S2S1)]. 

[P(O3|S3).P(S4|S3S2)]. 

[P(O4|S4).P(S5|S4S3)]. 

[P(O5|S5).P(S6|S5S4)]. 

[P(O6|S6).P(S7|S6S5)]. 

[P(O7|S7).P(S8|S7S6)].

[P(O8|S8).P(S9|S8S7)].

and final states 
respectively.

After S8 the next state 
is S9 with probability 
1, i.e., P(S9|S8S7)=1

O0 is ε-transition



Adjustments

� Transition probability table will have tuples on 
rows and states on columns

� Output probability table will remain the same

� In the Viterbi tree, the Markov process will 
take effect from the 3rd input symbol (εRR)take effect from the 3 input symbol (εRR)

� There will be 27 leaves, out of which only 9 
will remain

� Sequences ending in same tuples will be 
compared

� Instead of U1, U2 and U3

� U1U1, U1U2, U1U3, U2U1, U2U2,U2U3, U3U1,U3U2,U3U3



Forward and Backward 
Probability Calculation



Forward probability F(k,i)

� Define F(k,p)= Probability of being in 
state Si having seen o0o1o2…ok
� F(k,i)=P(o0o1o2…ok , Sp)

� With m as the length of the observed � With m as the length of the observed 
sequence 

� P(observed sequence)=P(o0o1o2..om)

=Σp=0,N P(o0o1o2..om , Sp)

=Σp=0,N F(m , p)



Forward probability (contd.)
F(k , q)

= P(o0o1o2..ok , Sq)

= P(o0o1o2..ok , Sq)

= P(o0o1o2..ok-1 , ok ,Sq)

= Σp=0,N P(o0o1o2..ok-1 , Sp , ok ,Sq)

= Σp=0,N P(o0o1o2..ok-1 , Sp ).= Σp=0,N P(o0o1o2..ok-1 , Sp ).

P(om ,Sq|o0o1o2..ok-1 , Sp)

= Σp=0,N F(k-1,p). P(ok ,Sq|Sp)

= Σp=0,N F(k-1,p). P(Sp � Sq)
ok

O0 O1 O2 O3 …         Ok Ok+1 …   Om-1 Om

S0 S1 S2 S3 …  Sp Sq … Sm Sfinal



Backward probability B(k,i)

� Define B(k,i)= Probability of seeing 
okok+1ok+2…om given that the state was 
Si
� B(k,i)=P(okok+1ok+2…om \ Si )k k+1 k+2 m i

� With m as the length of the observed 
sequence 

� P(observed sequence)=P(o0o1o2..om)

= P(o0o1o2..om| S0)

=B(0,0)



Backward probability (contd.)
B(k , p)

= P(okok+1ok+2…om \ Sp)

= P(ok+1ok+2…om , ok |Sp)

= Σq=0,N P(ok+1ok+2…om , ok , Sq|Sp)

= Σq=0,N P(ok ,Sq|Sp) 

P(ok+1ok+2…om|ok ,Sq ,Sp )

= Σq=0,N P(ok+1ok+2…om|Sq ). P(ok , 

Sq|Sp)

= Σq=0,N B(k+1,q). P(Sp � Sq)
ok

O0 O1 O2 O3 …         Ok Ok+1 …   Om-1 Om

S0 S1 S2 S3 …  Sp Sq … Sm Sfinal



Assignment 2

� Prove that a language model based on
POS tagged text is better than one
developed from raw textdeveloped from raw text

LMpos > Lmraw

� Choose a suitable NLP task to compare
the models

� Eg: next word prediction



Example

• Sentence: People laugh.
– People and laugh can both be used as noun 
and verb

– N V : P(“people laugh”, N V) = – N V : P(“people laugh”, N V) = 
P(N).P(V|N).P(people|N).P(laugh|V)

– N N : P(“people laugh”, N N) = 
P(N).P(N|N).P(people|N).P(laugh|N)

– V N : P(“people laugh”, V N) = 
P(V).P(N|V).P(people|V).P(laugh|N)

– V V : P(“people laugh”, V V) = 
P(V).P(V|V).P(people|V).P(laugh|V)



Forward Probability

� ^ People laugh $

� ^ N N $

V VV V

P(People laugh) 

= F(People laugh, $) 

= F(People, N).P(N->laugh$)+F(people, 
V).P(V->laugh$) 



Label Sequence to Automaton

people

people

ε

N

N

V

laugh

laugh

people

people

N

V

V

V

^ $

laugh

laugh

laugh

ε



Forward Probability (contd.)

� P(people laugh) = F(people laugh, $)

= F(people, N).P(N->laugh$)+F(people, 
V).P(V->laugh$)V).P(V->laugh$)

� F(people, N)=F(^ people, N)

=F(^, N).P(N->peopleN)+F(^, V).P(V-
>peopleN)

� F(people, V)=F(^ people, V)

=F(^, N).P(N->peopleV)+F(^, V).P(V-
>peopleV)



HMM Training

Baum Welch or Forward Backward 
Algorithm



Key Intuition a

b

a

a

b

a

b

q r

Given: Training sequence

Initialization: Probability values

Compute: Pr (state seq | training seq)

get expected count of transition

compute rule probabilities

Approach: Initialize the probabilities and recompute them… 
EM like approach

b



Baum-Welch algorithm: counts

a, b

a,b

q r

a,b

a,b

String = abb aaa bbb aaa

Sequence of states with respect to input symbols

rqrqqqrqrqqrq aaabbbaaabba →→→→→→→→→→→→→
o/p seq

State seq



Calculating probabilities from table

Table of counts

8/3)( =→ rqP b

Src Dest O/P Cou

nt

q r a 5

q q b 3

r q a 3

8/5)( =→ rqP a

 →
 → =

T A

ji
ji swsc

swsP
k

k
)(

)(

T=#states

A=#alphabet symbols

Now if we have a non-deterministic transitions then 
multiple state seq possible for the given o/p seq (ref. to 
previous slide’s feature). Our aim is to find expected 
count through this.

r q a 3

r q b 2∑∑
= =

 →

 → =
T

l

A

m

li swsc
ssP

m

1 1

)(
)(



Interplay Between Two 
Equations

∑∑
= =

→

→=→ T

l

A

m

lWmi

jWi
jWi

ssc

ssc
ssP

k

k

0 0

)(

)(
)(

∑
+

++ →×

=→

1,0

),,()|(

)(

,01,0,01,0

n

k

k

s
nn

jWi
nn

jWi

wSssnWSP

ssC

wk

No. of times the transitions si�sj occurs in the string



Illustration

a:0.67

b:1.0

b:0.17

a:0.16

q r

Actual (Desired) HMM

a:0.04

b:1.0

b:0.48

a:0.48

q r

Actual (Desired) HMM

Initial guess



One run of Baum-Welch algorithm: string 
ababb

P(path)

q r q r q q 0.00077 0.00154 0.00154 0 0.0007
7

q r q q q q 0.00442 0.00442 0.00442 0.0044
2

0.0088
4

q q q r q q 0.00442 0.00442 0.00442 0.0044 0.0088

q
b

q →q
a

q →r
a

q → q
b

r →a∈→ ba → ab → bb → →∈bba →

q q q r q q 0.00442 0.00442 0.00442 0.0044
2

0.0088
4

q q q q q q 0.02548 0.0 0.000 0.0509
6

0.0764
4

Rounded Total � 0.035 0.01 0.01 0.06 0.095

New Probabilities (P) � 0.06
=(0.01/(0.

01+0.06+

0.095)

1.0 0.36 0.581

*      ε is considered as starting and ending symbol of the input sequence 
string.

State sequences

Through multiple iterations the probability values will converge.



Computational part (1/2)
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Computational part (2/2)
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S0  � S1 � S1 � … Si � Sj … � Sn-1 � Sn � Sn+1



Discussions

1. Symmetry breaking: 

Example: Symmetry breaking leads to no change in initial values 

s
s

b:1.0

a:0.5

a:1.0

s
s

a:0.5

a:0.25

a:0.5
b:0.5

b:0.25

2 Struck in Local maxima

3. Label  bias problem 

Probabilities have to sum to 1.

Values can rise at the cost of fall of values for others.

s

sb:1.0

b:0.5

a:1.0

s

sa:0.5

b:0.5

a:0.5
b:0.5

a:0.25
b:0.5

Desired Initialized



Indian Language POS tag 
standard






