CS626: NLP, Speech and the Web

Pushpak Bhattacharyya CSE Dept.,
 IIT Bombay

Lecture 6, 7, 8, 9: Viterbi; forward and backward; Baum Welch; IL POS tags
$6^{\text {th }}, 8^{\text {th }}, 9^{\text {th }}, 13^{\text {th }}$ August, 2012

HMM

HMM Definition

- Set of states: S where $|\mathrm{S}|=\mathrm{N}$
- Start state $\mathrm{S}_{0} / * \mathrm{P}\left(\mathrm{S}_{0}\right)=1 * /$
- Output Alphabet: O where |O|=M
- Transition Probabilities: $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{ij}}\right\} / *$ state i to state $j^{* /}$
- Emission Probabilities : $\mathrm{B}=\left\{\mathrm{b}_{\mathrm{j}}\left(\mathrm{o}_{\mathrm{k}}\right)\right\} / *$ prob. of emitting or absorbing o_{k} from state $j^{*} /$
- Initial State Probabilities: $\Pi=\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots \mathrm{p}_{\mathrm{N}}\right\}$
- Each $\mathrm{p}_{\mathrm{i}}=\mathrm{P}\left(\mathrm{o}_{0}=\varepsilon, \mathrm{S}_{\mathrm{i}} \mid \mathrm{S}_{0}\right)$

Markov Processes

- Properties
- Limited Horizon: Given previous t states, a state i, is independent of preceding O to t $k+1$ states.
- $P\left(X_{t}=i / X_{t-1}, X_{t-2}, \ldots X_{0}\right)=P\left(X_{t}=i / X_{t-1,} X_{t-2} \ldots X_{t-k}\right)$
- Order k Markov process
- Time invariance: (shown for $k=1$)
- $P\left(X_{t}=i / X_{t-1}=j\right)=P\left(X_{1}=i / X_{0}=j\right) \ldots=P\left(X_{n}=i / X_{n-1}=j\right)$

Three basic problems (contd.)

- Problem 1: Likelihood of a sequence
- Forward Procedure
- Backward Procedure
- Problem 2: Best state sequence
- Viterbi Algorithm
- Problem 3: Re-estimation
- Baum-Welch (Forward-Backward Algorithm)

Probabilistic Inference

- O: Observation Sequence
- S: State Sequence
- Given O find S^{*} where $S^{*}=\arg \max p(S / O)$ called Probabilistic Inference
- Infer "Hidden" from "Observed"
- How is this inference different from logical inference based on propositional or predicate calculus?

Essentials of Hidden Markov Model

1. Markov + Naive Bayes
2. Uses both transition and observation probability

$$
p\left(S_{k} \rightarrow^{O_{k}} S_{k+1}\right)=p\left(O_{k} / S_{k}\right) p\left(S_{k+1} / S_{k}\right)
$$

3. Effectively makes Hidden Markov Model a Finite State Machine (FSM) with probability

Probability of Observation Sequence

$$
\begin{aligned}
p(O) & =\sum_{S} p(O, S) \\
& =\sum_{S} p(S) p(O / S)
\end{aligned}
$$

- Without any restriction,
- Search space size= $|\mathrm{S}|^{|0|}$

Continuing with the Urn example

Colored Ball choosing

Example (contd.)

Observation : RRGGBRGR

What is the corresponding state sequence ?

Diagrammatic representation (1/2)

Diagrammatic representation (2/2)

Probabilistic FSM

The question here is:
"what is the most likely state sequence given the output sequence seen"

Developing the tree

Tree structure contd...

The problem being addressed by this tree is $S^{*}=\arg \max P\left(S \mid a_{1}-a_{2}-a_{1}-a_{2, \mu}\right)$ $\mathrm{a} 1-\mathrm{a} 2-\mathrm{a} 1-\mathrm{a} 2$ is the output sequence and μ the model or the machine

Tabular representation of the tree

Latest symbol observed	$€$	a_{1}	a_{2}	a_{1}	a_{2}		
Ending state						\quad	(
:---:							

Note: Every cell records the winning probability ending in that state
Final winner
The bold faced values in each cell shows the sequence probability ending in that state. Going backward from final winner sequence which ends in state S_{2} (indicated By the $2^{\text {nd }}$ tuple), we recover the sequence.

Algorithm

(following James Alan, Natural Language Understanding (2nd edition), Benjamin Cummins (pub.), 1995

Given:

1. The HMM, which means:
a. Start State: S_{1}
b. Alphabet: $\mathrm{A}=\left\{\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{a}_{\mathrm{p}}\right\}$
c. Set of States: $S=\left\{S_{1}, S_{2}, \ldots S_{N}\right\}$
d. Transition probability $P\left(S_{i} \xrightarrow{\underline{a_{k}} \rightarrow} S_{j}\right) \quad \forall i, j, k$
which is equal to $P\left(S_{j}, a_{k} \mid S_{i}\right)$
2. The output string $a_{1} a_{2} \ldots a_{M}$

To find:
The most likely sequence $C_{1} C_{2} \ldots C_{M}$ which produces the given output sequence, i.e., $\mathrm{C}_{1} \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{M}}=\operatorname{argmax}_{C}\left(\mathrm{P}\left(\mathrm{C} \mid \mathrm{a}_{1} \mathrm{a}_{2} \ldots \mathrm{a}_{\mathrm{M}}\right)\right.$

Algorithm contd...

Data Structure:

1. A $N * M$ array called SEQSCORE to maintain the winner sequence always ($N=$ \#states, $M=$ length of o/p sequence)
2. Another $\mathrm{N}^{*} \mathrm{M}$ array called BACKPTR to recover the path.

Three distinct steps in the Viterbi implementation

1. Initialization
2. Iteration
3. Sequence Identification

1. Initialization

$\operatorname{SEQSCORE}(1,1)=1.0$
$\operatorname{BACKPTR}(1,1)=0$
For $(\mathrm{i}=2$ to N$)$ do
SEQSCORE($\mathrm{i}, 1$)=0.0
[expressing the fact that first state is S_{1}]

2. Iteration

$\operatorname{For}(\mathrm{t}=2 \mathrm{to} \mathrm{T})$ do
For(i=1 to N) do
$\operatorname{SEQSCORE}(\mathrm{i}, \mathrm{t})=\operatorname{Max}_{(\mathrm{j}=1, \mathrm{~N})}$
[SEQSCORE $\left.\quad(j,(t-1)) * P\left(S j-\underline{a_{k}} \rightarrow S i\right)\right]$
$\operatorname{BACKPTR}(1, \mathrm{t})=$ index j that gives the MAX above

3. Seq. Identification

$C(M)=i$ that maximizes SEQSCORE(i, M)
For i from (M-1) to 1 do

$$
C(i)=\operatorname{BACKPTR}[C(i+1),(i+1)]
$$

Optimizations possible:

1. BACKPTR can be $1^{*} \mathrm{M}$
2. SEQSCORE can be $\mathrm{M}^{*} 2$

Homework:- Compare this with A*, Beam Search [Homework]
Reason for this comparison:
Both of them work for finding and recovering sequence

Viterbi Algorithm for the Urn problem (first two symbols)

Markov process of order>1 (say 2)

	O_{0}	O_{1}	O_{2}	O_{3}	O_{4}	O_{5}	O_{6}	O_{7}	O_{8}
Obs:	ε	R	R	G	G	B	R	G	R
State: S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	$\mathrm{~S}_{7}$	$\mathrm{~S}_{8}$	$\mathrm{~S}_{9}$

Same theory works
P(S).P(O|S)
$=P\left(\mathrm{O}_{0} \mid \mathrm{S}_{0}\right) \cdot \mathrm{P}\left(\mathrm{S}_{1} \mid \mathrm{S}_{0}\right)$.
$\left[P\left(\mathrm{O}_{1} \mid \mathrm{S}_{1}\right) . \quad \mathrm{P}\left(\mathrm{S}_{2} \mid \mathrm{S}_{1} \mathrm{~S}_{0}\right)\right]$.
$\left[P\left(\mathrm{O}_{2} \mid \mathrm{S}_{2}\right) . \quad \mathrm{P}\left(\mathrm{S}_{3} \mid \mathrm{S}_{2} \mathrm{~S}_{1}\right)\right]$.
$\left[P\left(\mathrm{O}_{3} \mid \mathrm{S}_{3}\right) \cdot \mathrm{P}\left(\mathrm{S}_{4} \mid \mathrm{S}_{3} \mathrm{~S}_{2}\right)\right]$.
$\left[P\left(\mathrm{O}_{4} \mid \mathrm{S}_{4}\right) \cdot \mathrm{P}\left(\mathrm{S}_{5} \mid \mathrm{S}_{4} \mathrm{~S}_{3}\right)\right]$.
$\left[P\left(\mathrm{O}_{5} \mid \mathrm{S}_{5}\right) \cdot \mathrm{P}\left(\mathrm{S}_{6} \mid \mathrm{S}_{5} \mathrm{~S}_{4}\right)\right]$.
$\left[P\left(\mathrm{O}_{6} \mid \mathrm{S}_{6}\right) \cdot \mathrm{P}\left(\mathrm{S}_{7} \mid \mathrm{S}_{6} \mathrm{~S}_{5}\right)\right]$.
$\left[P\left(\mathrm{O}_{7} \mid \mathrm{S}_{7}\right) \cdot \mathrm{P}\left(\mathrm{S}_{8} \mid \mathrm{S}_{7} \mathrm{~S}_{6}\right)\right]$.
$\left[P\left(\mathrm{O}_{8} \mid \mathrm{S}_{8}\right) \cdot \mathrm{P}\left(\mathrm{S}_{9} \mid \mathrm{S}_{8} \mathrm{~S}_{7}\right)\right]$.

We introduce the states S_{0} and S_{9} as initial and final states respectively.
After S_{8} the next state is S_{9} with probability 1, i.e., $P\left(S_{9} \mid S_{8} S_{7}\right)=1$
O_{0} is ε-transition

Adjustments

- Transition probability table will have tuples on rows and states on columns
- Output probability table will remain the same
- In the Viterbi tree, the Markov process will take effect from the $3^{\text {rd }}$ input symbol ($\varepsilon R R$)
- There will be 27 leaves, out of which only 9 will remain
- Sequences ending in same tuples will be compared
- Instead of U1, U2 and U3
- $\mathrm{U}_{1} \mathrm{U}_{1}, \mathrm{U}_{1} \mathrm{U}_{2}, \mathrm{U}_{1} \mathrm{U}_{3}, \mathrm{U}_{2} \mathrm{U}_{1}, \mathrm{U}_{2} \mathrm{U}_{2}, \mathrm{U}_{2} \mathrm{U}_{3}, \mathrm{U}_{3} \mathrm{U}_{1}, \mathrm{U}_{3} \mathrm{U}_{2}, \mathrm{U}_{3} \mathrm{U}_{3}$

Forward and Backward Probability Calculation

Forward probability $F(k, i)$

- Define $F(k, p)=$ Probability of being in state S_{i} having seen $o_{0} O_{1} O_{2} \ldots o_{k}$
- $F(k, i)=P\left(o_{0} O_{1} 0_{2} \ldots o_{k}, S_{p}\right)$
- With m as the length of the observed sequence
- $P($ observed sequence $)=P\left(o_{0} 0_{1} o_{2} . o_{m}\right)$

$$
\begin{aligned}
& =\sum_{p=0, N} P\left(o_{0} O_{1} O_{2} \cdot . o_{m}, S_{p}\right) \\
& =\Sigma_{p=0, N} F(m, p)
\end{aligned}
$$

Forward probability (contd.)

$F(k, q)$
$=P\left(o_{0} O_{1} O_{2} . o_{k}, S_{q}\right)$
$=P\left(o_{0} O_{1} O_{2} . . o_{k}, S_{q}\right)$
$=P\left(o_{0} O_{1} o_{2} . . o_{k-1}, o_{k}, S_{q}\right)$
$=\Sigma_{p=0, N} P\left(O_{0} O_{1} O_{2} . . O_{k-1}, S_{p}, o_{k}, S_{q}\right)$
$=\Sigma_{p=0, N} P\left(o_{0} O_{1} O_{2} \cdot o_{k-1}, S_{p}\right)$. $P\left(o_{m}, S_{q} / o_{0} O_{1} O_{2} . o_{k-1}, S_{p}\right)$
$=\sum_{p=0, N} F(k-1, p) . P\left(o_{k}, S_{q} / S_{p}\right)$
$=\Sigma_{p=0, N} F(k-1, p) \cdot P\left(S_{p}^{o_{k}} \rightarrow S_{q}\right)$

$$
\begin{array}{llllllllll}
\mathrm{O}_{0} & \mathrm{O}_{1} & \mathrm{O}_{2} & \mathrm{O}_{3} & \ldots & \mathrm{O}_{\mathrm{k}} & \mathrm{O}_{\mathrm{k}+1} & \ldots & \mathrm{O}_{\mathrm{m}-1} & \mathrm{O}_{\mathrm{m}} \\
\mathrm{~S}_{0} \rightarrow \mathrm{~S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{3} & \ldots & \mathrm{~S}_{\mathrm{p}} \rightarrow & \mathrm{~S}_{\mathrm{q}} & \cdots & \mathrm{~S}_{\mathrm{m}} & \mathrm{~S}_{\text {final }}
\end{array}
$$

Backward probability $B(k, i)$

- Define $B(k, i)=$ Probability of seeing $o_{k} o_{k+1} o_{k+2} \ldots o_{m}$ given that the state was S_{i}
- $B(k, i)=P\left(o_{k} o_{k+1} o_{k+2} \ldots o_{m} \mid S_{i}\right)$
- With m as the length of the observed sequence
- $P($ observed sequence $)=P\left(o_{0} o_{1} o_{2} . o_{m}\right)$

$$
\begin{aligned}
& =P\left(o_{0} o_{1} o_{2} \ldots o_{m} / S_{0}\right) \\
& =B(0,0)
\end{aligned}
$$

Backward probability (contd.)

$$
\begin{aligned}
& B(k, p) \\
&= P\left(o_{k} o_{k+1} o_{k+2} \ldots o_{m} \mid S_{p}\right) \\
&= P\left(o_{k+1} o_{k+2} \ldots o_{m}, o_{k} / S_{p}\right) \\
&= \Sigma_{q=0, N} P\left(o_{k+1} o_{k+2} \ldots o_{m}, o_{k}, S_{q} / S_{p}\right) \\
&= \sum_{q=0, N} P\left(o_{k}, S_{q} / S_{p}\right) \\
& P\left(o_{k+1} o_{k+2} \ldots o_{m} / o_{k}, S_{q}, S_{p}\right) \\
&= \sum_{q=0, N} P\left(o_{k+1} o_{k+2} \ldots o_{m} / S_{q}\right) . P\left(o_{k},\right. \\
&\left.S_{q} / S_{p}\right) \\
&= \sum_{q=0, N} B(k+1, q) . P\left(S_{p} \xrightarrow{o_{k}} S_{q}\right)
\end{aligned}
$$

$$
\begin{array}{|ccccccccccccc}
\hline \mathrm{O}_{0} & \mathrm{O}_{1} & \mathrm{O}_{2} & \mathrm{O}_{3} \ldots & \mathrm{O}_{\mathrm{k}} & \mathrm{O}_{\mathrm{k}+1} & \ldots & \mathrm{O}_{\mathrm{m}-1} & \mathrm{O}_{\mathrm{m}} \\
\mathrm{~S}_{0} \rightarrow \mathrm{~S}_{1} & \mathrm{~S}_{2} & \mathrm{~S}_{3} & \cdots & \mathrm{~S}_{\mathrm{p}} \rightarrow & \mathrm{~S}_{\mathrm{q}} & \cdots & \mathrm{~S}_{\mathrm{m}} & \mathrm{~S}_{\text {final }} \\
\hline
\end{array}
$$

Assignment 2

- Prove that a language model based on POS tagged text is better than one developed from raw text
$L M_{\text {pos }}>L m_{\text {raw }}$
- Choose a suitable NLP task to compare the models
- Eg: next word prediction

Example

- Sentence: People laugh.
- People and laugh can both be used as noun and verb
- NV: P("people laugh", N V) = $P(N) \cdot P(V \mid N) \cdot P($ people|N $) \cdot P($ laugh $\mid V)$
- $N \mathrm{~N}: ~ P($ "people laugh", $N \mathrm{~N})=$ $\mathrm{P}(\mathrm{N}) \cdot \mathrm{P}(\mathrm{N} \mid \mathrm{N}) \cdot \mathrm{P}($ people|N)$\cdot \mathrm{P}($ laugh $\mid \mathrm{N})$
- V N: P("people laugh", V N) = $P(V) \cdot P(N \mid V) \cdot P($ people|V).P(laugh|N)
- V V : P("people laugh", V V $)=$ $P(V) \cdot P(V \mid V) \cdot P($ people|V). $P($ laugh $\mid V)$

Forward Probability

- ^ People laugh \$
- ^

N
N
\$
V
V
P (People laugh)
$=F($ People laugh, \$)
$=F($ People, $N) . P(N->$ laugh $\$)+F($ people, V).P(V->laugh\$)

Forward Probability (contd.)

- $P($ people laugh $)=F($ people laugh, \$)
$=F($ people, $N) . P(N->$ laugh $\$)+F($ people, V).P(V->laugh \$)
- F(people, N$)=\mathrm{F}(\wedge$ people, N)
$=F(\wedge, N) . P(N->$ people $N)+F(\wedge, V) . P(V-$ $>$ people N)
- F (people, V) $=\mathrm{F}(\wedge$ people, V)
$=F(\wedge, N) \cdot P(N->$ people $V)+F(\wedge, V) . P(V-$
$>$ peopleV)

HMM Training

Baum Welch or Forward Backward Algorithm

Key Intuition.

Given:
Initialization:
Compute:

Training sequence
Probability values
Pr (state seq | training seq) get expected count of transition compute rule probabilities
Approach: Initialize the probabilities and recompute them...
EM like approach

Baum-Welch algorithm: counts

String $=a b b$ aaa bbb aaa

Sequence of states with respect to input symbols $\underset{\text { State seq }}{\text { o/p eq }} \xrightarrow{\longrightarrow} a \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{a} r \xrightarrow{a} q \xrightarrow{a} r \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{a} r \xrightarrow{a} q a \overrightarrow{ } r$

Calculating probabilities from table

$$
\begin{aligned}
& P(q \xrightarrow{a} r)=5 / 8 \\
& P(q \xrightarrow{b} r)=3 / 8 \\
& P\left(s^{i} \xrightarrow{w_{k}} s^{j}\right)=\frac{c\left(s^{i} \xrightarrow{w_{k}} s^{j}\right)}{\sum_{l=1}^{T} \sum_{m=1}^{A} c\left(s^{i} \xrightarrow{w_{m}} s^{l}\right)}
\end{aligned}
$$

Table of counts

Src	Dest	O/P	Cou nt
q	r	a	5
q	q	b	3
r	q	a	3
r	q	b	2

T=\#states
A=\#alphabet symbols
Now if we have a non-deterministic transitions then multiple state seq possible for the given o/p seq (ref. to previous slide's feature). Our aim is to find expected count through this.

Interplay Between Two Equations

$$
P\left(s^{i} \xrightarrow{W_{k}} s^{j}\right)=\frac{c\left(s^{i} \xrightarrow{W_{k}} s^{j}\right)}{\sum_{l=0}^{T} \sum_{m=0}^{A} c\left(s^{i} \xrightarrow{W m} s^{l}\right)}
$$

$$
\begin{aligned}
& C\left(s^{i} \xrightarrow{W_{k}} S^{j}\right)= \\
& \sum_{s_{0, n+1}} P\left(S_{0, n+1} \mid W_{0, n}\right) \times n\left(s^{i} \xrightarrow{W_{k}} s^{j}, S_{0, n+1}, w_{0, n}\right)
\end{aligned}
$$

No. of times the transitions $s^{w_{k}} s^{j}$ occurs in the string

Illustration

One run of Baum-Welch algorithm: string $a b a b b$

$\in \rightarrow a$	$a \rightarrow b$	$b \rightarrow a$	$a \rightarrow b$	$b \rightarrow b$	$b \rightarrow \in$	P(path)	$q \xrightarrow{a} r$	$r \xrightarrow{b} q$	$q \xrightarrow{a} q$	$q \xrightarrow{b} q$
q	r	q	r	q	q	0.00077	0.00154	0.00154	0	$\begin{gathered} 0.0007 \\ 7 \end{gathered}$
q	r	q	q	q	q	0.00442	0.00442	0.00442	$\begin{gathered} 0.0044 \\ 2 \end{gathered}$	$\begin{gathered} 0.0088 \\ 4 \end{gathered}$
q	q	$\mathrm{q} \uparrow$	r	q	q	0.00442	0.00442	0.00442	$\begin{gathered} 0.0044 \\ 2 \end{gathered}$	$\begin{gathered} 0.0088 \\ 4 \\ \hline \end{gathered}$
q	q	q	q	q	q	0.02548	0.0	0.000	$\begin{gathered} 0.0509 \\ 6 \end{gathered}$	$\begin{gathered} 0.0764 \\ 4 \end{gathered}$
Rounded Total \rightarrow						0.035	0.01	0.01	0.06	0.095
New Probabilities (P) \rightarrow tate sequences							$\begin{gathered} 0.06 \\ =(0.01 /(0 . \\ 01+0.06+ \\ 0.095) \end{gathered}$	1.0	0.36	0.581

* $\quad \varepsilon$ is considered as starting and ending symbol of the input sequence string. Through multiple iterations the probability values will converge.

Computational part (1/2)

$$
\begin{aligned}
& C\left(s^{i} \xrightarrow{W_{k}} s^{j}\right)=\sum_{s_{0, n+1}}\left[P\left(S_{0, n+1} \mid W_{0, n}\right) \times n\left(s^{i} \xrightarrow{W_{k}} s^{j}, S_{0, n+1}, W_{0, n}\right)\right] \\
& =\frac{1}{P\left(W_{0, n}\right)} \sum_{s_{0, n+1}}\left[P\left(S_{0, n+1}, W_{0, n}\right) \times n\left(s^{i} \xrightarrow{W_{k}} s^{j}, S_{0, n+1}, W_{0, n}\right)\right] \\
& =\frac{1}{P\left(W_{0, n}\right)} \sum_{t=0, n} \sum_{s_{0, n+1}}\left[P\left(S_{t}=s^{i}, W_{t}=w_{k}, S_{t+1}=s^{j}, S_{0, n+1}, W_{0, n}\right)\right] \\
& =\frac{1}{P\left(W_{0, n}\right)} \sum_{t=0, n}\left[P\left(S_{t}=s^{i}, W_{t}=w_{k}, S_{t+1}=s^{j}, W_{0, n}\right)\right] \\
& S O \xrightarrow{w_{0}} S 1 \xrightarrow{w_{1}} S 1 \xrightarrow{w_{2}} \ldots S i \xrightarrow{w_{k}} S j \ldots \rightarrow S n-1 \xrightarrow{w_{n-1}} S n^{w_{n}} S n+1
\end{aligned}
$$

Computational part (2/2)

$$
\begin{aligned}
& \sum_{t=0}^{n} P\left(S_{t}=s^{i}, S_{t+1}=s^{j}, W_{t}=w_{k}, W_{0, n}\right) \\
= & \sum_{t=0}^{n} P\left(W_{0, t-1}, S_{t}=s^{i}, S_{t+1}=s^{j}, W_{t}=w_{k}, W_{t+1, n}\right) \\
= & \sum_{t=0}^{n} P\left(W_{0, t-1}, S_{t}=s^{i}\right) P\left(S_{t+1}=s^{j}, W_{t}=w_{k} \mid W_{0, t-1}, S_{t}=s^{i}\right) P\left(W_{t+1, n} \mid S_{t+1}=s^{j}\right) \\
= & \sum_{t=0}^{n} F(t-1, i) P\left(S_{t+1}=s^{j}, W_{t}=w_{k} \mid S_{t}=s^{i}\right) B(t+1, j) \\
= & \sum_{t=0}^{n} F(t-1, i) P\left(S_{t+1}=s^{j}, W_{t}=w_{k} \mid S_{t}=s^{i}\right) B(t+1, j) \\
= & \sum_{t=0}^{n} F(t-1, i) P\left(s^{i} \xrightarrow{w_{k}} s^{j}\right) B(t+1, j)
\end{aligned}
$$

$$
S O \xrightarrow{w_{0}} S 1 \rightarrow S 1 \xrightarrow{w_{1}} \ldots S i \xrightarrow{w_{2}} S j \ldots \rightarrow S n-1 \xrightarrow{w_{n}} S n \xrightarrow{w_{n}} S n+1
$$

Discussions

1. Symmetry breaking:

Example: Symmetry breaking leads to no change in initial values

2 Struck in Local maxima
3. Label bias problem

Probabilities have to sum to 1 .
Values can rise at the cost of fall of values for others.

Indian Language POS tag standard

SI. No	Category			Label	Annotation	Remarks
	Top level	Subtype (level 1)	Subtype (level 2)			
1	Noun			N	N	
1.1		Common		NN	N	
1.2		Proper		NNP	N__NNP	
1.3		Verbal		NNV	N __NNV	The verbal noun type is only for languages such as Tamil and Malyalam)
1.4		Nloc		NST	N__NST	
2	Pronoun			PR	PR	
2.1		Personal		PRP	PR__PRP	
2.2		Reflexive		PRF	PR__PRF	
2.3		Relative		PRL	PR__PRL	
2.4		Reciprocal		PRC	PR__PRC	
2.5		Wh-word		PRQ	PR__PRQ	
3	Demonstrative			DM	DM	
3.1		Deictic		DMD	DM__DMD	
3.2		Relative		DMR	DM__DMR	
3.3		Wh-word		DMQ	DM__DMQ	
4	Verb			V	v	
4.1		Main		VM	V__VM	
$\begin{array}{\|l\|} \hline 04 / 01 / \\ 01 \end{array}$			Finite	VF	V__VM__VF	
$\begin{array}{\|l\|} \hline 04 / 01 / \\ 02 \\ \hline \end{array}$			Non-finite	VNF	V__VM__VNF	
$\begin{array}{\|l} \hline 04 / 01 / \\ 03 \end{array}$			Infinitive	VINF	V__VM__VINF	
$\begin{array}{\|l\|} \hline 04 / 01 / \\ 04 \end{array}$			Gerund	VNG	V__VM__VNG	
4.2		Auxiliary		VAUX	V__VAUX	
5	Adjective			J.J		
6	Adverb			RB		Only manner adverbs
7	Postposition			PSP		

8	Conjunction			CC	CC	
8.1		Co-ordinator		CCD	CC__CCD	
8.2		Subordinator		CCS	CC__CCS	
$\begin{aligned} & 08 / 02 / \\ & 01 \end{aligned}$			Quotative	UT	CC_CCS__UT	
9	Particles			RP	RP	
9.1		Default		RPD	RP__RPD	
9.2		Classifier		CL	RP_CL	
9.3		Interjection		INJ	RP__INJ	
9.4		Intensifier		INTF	RP__INTF	
9.5		Negation		NEG	RP__NEG	
10	Quantifiers			QT	QT	
10.1		General		QTF	QT__QTF	
10.2		Cardinals		QTC	QT__QTC	
10.3		Ordinals		QTO	QT__QTO	
11	Residuals			RD	RD	
11.1		Foreign word		RDF	RD__RDF	A word written in script other than the script of the original text
11.2		Symbol		SYM	RD__SYM	For symbols such as \$, \& etc
11.3		Punctuation		PUNC	RD__PUNC	Only for punctuations
11.4		Unknown		UNK	RD__UNK	
11.5		Echowords		ECH	RD__ECH	

