
CS626: NLP, Speech and the
Web

Pushpak Bhattacharyya
CSE Dept.,
IIT Bombay

Lecture 6, 7, 8, 9: Viterbi; forward and
backward; Baum Welch; IL POS tags

6th, 8th, 9th, 13th August, 2012

HMM

Problem

Part of Speech
Tagging

Parsing

Semantics NLP

Trinity

Algorithm

Language
Hindi

Marathi

English

French
Morph
Analysis

CRF

HMM

MEMM

HMM Definition

� Set of states: S where |S|=N

� Start state S0 /*P(S0)=1*/

� Output Alphabet: O where |O|=M

� Transition Probabilities: A= {aij} /*state i to
state j*/

ij

state j*/

� Emission Probabilities : B= {bj(ok)} /*prob. of
emitting or absorbing ok from state j*/

� Initial State Probabilities: Π={p1,p2,p3,…pN}

� Each pi=P(o0=ε,Si|S0)

Markov Processes

� Properties

� Limited Horizon: Given previous t states, a
state i, is independent of preceding 0 to t-state i, is independent of preceding 0 to t-
k+1 states.

� P(Xt=i|Xt-1, Xt-2 ,… X0) = P(Xt=i|Xt-1, Xt-2… Xt-k)

� Order k Markov process

� Time invariance: (shown for k=1)

� P(Xt=i|Xt-1=j) = P(X1=i|X0=j) …= P(Xn=i|Xn-1=j)

Three basic problems (contd.)

� Problem 1: Likelihood of a sequence

� Forward Procedure

� Backward Procedure� Backward Procedure

� Problem 2: Best state sequence

� Viterbi Algorithm

� Problem 3: Re-estimation

� Baum-Welch (Forward-Backward
Algorithm)

Probabilistic Inference

� O: Observation Sequence

� S: State Sequence

Given O find S* where called * arg max (/)S p S O=� Given O find S* where called
Probabilistic Inference

� Infer “Hidden” from “Observed”

� How is this inference different from logical inference
based on propositional or predicate calculus?

* arg max (/)
S

S p S O=

Essentials of Hidden
Markov Model

1. Markov + Naive Bayes

2. Uses both transition and observation probability

3. Effectively makes Hidden Markov Model a Finite State

Machine (FSM) with probability

1 1() (/) (/)kO
k k k k k kp S S p O S p S S+ +→ =

Probability of Observation
Sequence

() (,)

 = () (/)
S

p O p O S

p S p O S

=∑

∑

� Without any restriction,

� Search space size= |S||O|

 = () (/)
S

p S p O S∑

Continuing with the Urn example

Urn 1 Urn 3Urn 2

Colored Ball choosing

Urn 1

of Red = 30

of Green = 50

of Blue = 20

Urn 3

of Red =60

of Green =10

of Blue = 30

Urn 2

of Red = 10

of Green = 40

of Blue = 50

Example (contd.)

U1 U2 U3

U1 0.1 0.4 0.5

U2 0.6 0.2 0.2

U3 0.3 0.4 0.3

Given :

Observation : RRGGBRGR

and

R G B

U1 0.3 0.5 0.2

U2 0.1 0.4 0.5

U3 0.6 0.1 0.3

Transition Probability Observation/output Probability

Observation : RRGGBRGR

What is the corresponding state sequence ?

Diagrammatic representation (1/2)

U U
0.1

0.3 0.3

R, 0.6

B, 0.2

R, 0.3 G, 0.5

U1

U2

U3

0.1

0.2

0.4

0.6

0.4

0.5

0.2

R, 0.6

G, 0.1

B, 0.3

R, 0.1

B, 0.5

G, 0.4

Diagrammatic representation (2/2)

U U
R,0.15

R,0.18

G,0.03

B,0.09

R,0.18

R,0.03

G,0.05

B,0.02

U1

U2

U3

R,0.02

G,0.08

B,0.10

R,0.24

G,0.04

B,0.12

R,0.06

G,0.24

B,0.30
R, 0.08

G, 0.20

B, 0.12

R,0.15

G,0.25

B,0.10

R,0.18

G,0.03

B,0.09

R,0.02

G,0.08

B,0.10

Probabilistic FSM

(a
1
:0.3)

(a
2
:0.4)(a

1
:0.1) (a

1
:0.3)

S
1

S
2

(a
1
:0.2)

(a
2
:0.3)

(a
2
:0.2) (a

2
:0.2)

The question here is:

“what is the most likely state sequence given the output sequence

seen”

S
1

S
2

Developing the tree

Start

S1 S2

S1 S2 S1 S2

1.0 0.0

0.1 0.3 0.2 0.3

1*0.1=0.1 0.3 0.0 0.0
�. �.

€

a1

S1 S2 S1 S2

S1 S2 S1 S2

1*0.1=0.1 0.3 0.0 0.0

0.1*0.2=0.02 0.1*0.4=0.04 0.3*0.3=0.09 0.3*0.2=0.06

�. �.

a2

Choose the winning

sequence per state

per iteration

0.2 0.4 0.3 0.2

Tree structure contd…

S1 S2

S1 S2 S1 S2

0.1 0.3 0.2 0.3

0.027 0.012
�.�.

0.09 0.06

0.09*0.1=0.009 0.018

a1

S1

0.3

0.0081

S2

0.2

0.0054

S2

0.4

0.0048

S1

0.2

0.0024

�.

a2

The problem being addressed by this tree is)|(maxarg* ,2121 µaaaaSPS
s

−−−=

a1-a2-a1-a2 is the output sequence and µ the model or the machine

Tabular representation of the
tree

€ a1 a2 a1 a2

S 1.0 (1.0*0.1,0.0*0.2 (0.02, (0.009, 0.012) (0.0024,

Ending state

Latest symbol

observed

S1
1.0 (1.0*0.1,0.0*0.2

)=(0.1,0.0)

(0.02,

0.09)

(0.009, 0.012) (0.0024,

0.0081)

S2
0.0 (1.0*0.3,0.0*0.3

)=(0.3,0.0)

(0.04,0.0

6)

(0.027,0.018) (0.0048,0.005

4)

Note: Every cell records the winning probability ending in that state

Final winner
The bold faced values in each cell shows the
sequence probability ending in that state. Going backward
from final winner sequence which ends in state S2 (indicated
By the 2nd tuple), we recover the sequence.

Algorithm
(following James Alan, Natural Language Understanding
(2nd edition), Benjamin Cummins (pub.), 1995

Given:
1. The HMM, which means:

a. Start State: S1
b. Alphabet: A = {a1, a2, … ap}

Set of States: S = {S , S , … S }c. Set of States: S = {S1, S2, … SN}

d. Transition probability

which is equal to

2. The output string a1a2…aM

To find:

The most likely sequence C1C2…CM which produces the given
output sequence, i.e., C1C2…CM = argmaxC(P(C|a1a2…aM)

kjij
k

i SaSP ,,)(∀ →

)|,(ikj SaSP

Algorithm contd…
Data Structure:

1. A N*M array called SEQSCORE to maintain the
winner sequence always (N=#states, M=length of
o/p sequence)

2. Another N*M array called BACKPTR to recover the 2. Another N*M array called BACKPTR to recover the
path.

Three distinct steps in the Viterbi implementation
1. Initialization

2. Iteration

3. Sequence Identification

1. Initialization
SEQSCORE(1,1)=1.0

BACKPTR(1,1)=0

For(i=2 to N) do

SEQSCORE(i,1)=0.0

[expressing the fact that first state
is S1]

2. Iteration
For(t=2 to T) do

For(i=1 to N) do

SEQSCORE(i,t) = Max(j=1,N)

BACKPTR(I,t) = index j that gives the MAX above

)](*))1(,([SiaSjPtjSEQSCORE k →−

3. Seq. Identification

C(M) = i that maximizes SEQSCORE(i,M)

For i from (M-1) to 1 do

C(i) = BACKPTR[C(i+1),(i+1)]

Optimizations possible:Optimizations possible:

1. BACKPTR can be 1*M

2. SEQSCORE can be M*2

Homework:- Compare this with A*, Beam Search [Homework]

Reason for this comparison:

Both of them work for finding and recovering sequence

Viterbi Algorithm for the Urn
problem (first two symbols)

S0

U U U

0.5

0.3

0.2ε

U1 U2 U3

U1 U2 U3

0.03

0.08

0.15

U1 U2 U3 U1 U2 U3

0.06

0.02

0.02

0.18

0.24

0.18

0.015 0.04 0.075* 0.018 0.006 0.006 0.048* 0.036

*: winner sequences

R

Markov process of order>1 (say 2)

Same theory works

P(S).P(O|S)

= P(O0|S0).P(S1|S0).

We introduce the states
S0 and S9 as initial
and final states

O0 O1 O2 O3 O4 O5 O6 O7 O8

Obs: ε R R G G B R G R

State: S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

= P(O0|S0).P(S1|S0).

[P(O1|S1). P(S2|S1S0)].

[P(O2|S2). P(S3|S2S1)].

[P(O3|S3).P(S4|S3S2)].

[P(O4|S4).P(S5|S4S3)].

[P(O5|S5).P(S6|S5S4)].

[P(O6|S6).P(S7|S6S5)].

[P(O7|S7).P(S8|S7S6)].

[P(O8|S8).P(S9|S8S7)].

and final states
respectively.

After S8 the next state
is S9 with probability
1, i.e., P(S9|S8S7)=1

O0 is ε-transition

Adjustments

� Transition probability table will have tuples on
rows and states on columns

� Output probability table will remain the same

� In the Viterbi tree, the Markov process will
take effect from the 3rd input symbol (εRR)take effect from the 3 input symbol (εRR)

� There will be 27 leaves, out of which only 9
will remain

� Sequences ending in same tuples will be
compared

� Instead of U1, U2 and U3

� U1U1, U1U2, U1U3, U2U1, U2U2,U2U3, U3U1,U3U2,U3U3

Forward and Backward
Probability Calculation

Forward probability F(k,i)

� Define F(k,p)= Probability of being in
state Si having seen o0o1o2…ok
� F(k,i)=P(o0o1o2…ok , Sp)

� With m as the length of the observed � With m as the length of the observed
sequence

� P(observed sequence)=P(o0o1o2..om)

=Σp=0,N P(o0o1o2..om , Sp)

=Σp=0,N F(m , p)

Forward probability (contd.)
F(k , q)

= P(o0o1o2..ok , Sq)

= P(o0o1o2..ok , Sq)

= P(o0o1o2..ok-1 , ok ,Sq)

= Σp=0,N P(o0o1o2..ok-1 , Sp , ok ,Sq)

= Σp=0,N P(o0o1o2..ok-1 , Sp).= Σp=0,N P(o0o1o2..ok-1 , Sp).

P(om ,Sq|o0o1o2..ok-1 , Sp)

= Σp=0,N F(k-1,p). P(ok ,Sq|Sp)

= Σp=0,N F(k-1,p). P(Sp � Sq)
ok

O0 O1 O2 O3 … Ok Ok+1 … Om-1 Om

S0 S1 S2 S3 … Sp Sq … Sm Sfinal

Backward probability B(k,i)

� Define B(k,i)= Probability of seeing
okok+1ok+2…om given that the state was
Si
� B(k,i)=P(okok+1ok+2…om \ Si)k k+1 k+2 m i

� With m as the length of the observed
sequence

� P(observed sequence)=P(o0o1o2..om)

= P(o0o1o2..om| S0)

=B(0,0)

Backward probability (contd.)
B(k , p)

= P(okok+1ok+2…om \ Sp)

= P(ok+1ok+2…om , ok |Sp)

= Σq=0,N P(ok+1ok+2…om , ok , Sq|Sp)

= Σq=0,N P(ok ,Sq|Sp)

P(ok+1ok+2…om|ok ,Sq ,Sp)

= Σq=0,N P(ok+1ok+2…om|Sq). P(ok ,

Sq|Sp)

= Σq=0,N B(k+1,q). P(Sp � Sq)
ok

O0 O1 O2 O3 … Ok Ok+1 … Om-1 Om

S0 S1 S2 S3 … Sp Sq … Sm Sfinal

Assignment 2

� Prove that a language model based on
POS tagged text is better than one
developed from raw textdeveloped from raw text

LMpos > Lmraw

� Choose a suitable NLP task to compare
the models

� Eg: next word prediction

Example

• Sentence: People laugh.
– People and laugh can both be used as noun
and verb

– N V : P(“people laugh”, N V) = – N V : P(“people laugh”, N V) =
P(N).P(V|N).P(people|N).P(laugh|V)

– N N : P(“people laugh”, N N) =
P(N).P(N|N).P(people|N).P(laugh|N)

– V N : P(“people laugh”, V N) =
P(V).P(N|V).P(people|V).P(laugh|N)

– V V : P(“people laugh”, V V) =
P(V).P(V|V).P(people|V).P(laugh|V)

Forward Probability

� ^ People laugh $

� ^ N N $

V VV V

P(People laugh)

= F(People laugh, $)

= F(People, N).P(N->laugh$)+F(people,
V).P(V->laugh$)

Label Sequence to Automaton

people

people

ε

N

N

V

laugh

laugh

people

people

N

V

V

V

^ $

laugh

laugh

laugh

ε

Forward Probability (contd.)

� P(people laugh) = F(people laugh, $)

= F(people, N).P(N->laugh$)+F(people,
V).P(V->laugh$)V).P(V->laugh$)

� F(people, N)=F(^ people, N)

=F(^, N).P(N->peopleN)+F(^, V).P(V-
>peopleN)

� F(people, V)=F(^ people, V)

=F(^, N).P(N->peopleV)+F(^, V).P(V-
>peopleV)

HMM Training

Baum Welch or Forward Backward
Algorithm

Key Intuition a

b

a

a

b

a

b

q r

Given: Training sequence

Initialization: Probability values

Compute: Pr (state seq | training seq)

get expected count of transition

compute rule probabilities

Approach: Initialize the probabilities and recompute them…
EM like approach

b

Baum-Welch algorithm: counts

a, b

a,b

q r

a,b

a,b

String = abb aaa bbb aaa

Sequence of states with respect to input symbols

rqrqqqrqrqqrq aaabbbaaabba →→→→→→→→→→→→→
o/p seq

State seq

Calculating probabilities from table

Table of counts

8/3)(=→ rqP b

Src Dest O/P Cou

nt

q r a 5

q q b 3

r q a 3

8/5)(=→ rqP a

 →
 → =

T A

ji
ji swsc

swsP
k

k
)(

)(

T=#states

A=#alphabet symbols

Now if we have a non-deterministic transitions then
multiple state seq possible for the given o/p seq (ref. to
previous slide’s feature). Our aim is to find expected
count through this.

r q a 3

r q b 2∑∑
= =

 →

 → =
T

l

A

m

li swsc
ssP

m

1 1

)(
)(

Interplay Between Two
Equations

∑∑
= =

→

→=→ T

l

A

m

lWmi

jWi
jWi

ssc

ssc
ssP

k

k

0 0

)(

)(
)(

∑
+

++ →×

=→

1,0

),,()|(

)(

,01,0,01,0

n

k

k

s
nn

jWi
nn

jWi

wSssnWSP

ssC

wk

No. of times the transitions si�sj occurs in the string

Illustration

a:0.67

b:1.0

b:0.17

a:0.16

q r

Actual (Desired) HMM

a:0.04

b:1.0

b:0.48

a:0.48

q r

Actual (Desired) HMM

Initial guess

One run of Baum-Welch algorithm: string
ababb

P(path)

q r q r q q 0.00077 0.00154 0.00154 0 0.0007
7

q r q q q q 0.00442 0.00442 0.00442 0.0044
2

0.0088
4

q q q r q q 0.00442 0.00442 0.00442 0.0044 0.0088

q
b

q →q
a

q →r
a

q → q
b

r →a∈→ ba → ab → bb → →∈bba →

q q q r q q 0.00442 0.00442 0.00442 0.0044
2

0.0088
4

q q q q q q 0.02548 0.0 0.000 0.0509
6

0.0764
4

Rounded Total � 0.035 0.01 0.01 0.06 0.095

New Probabilities (P) � 0.06
=(0.01/(0.

01+0.06+

0.095)

1.0 0.36 0.581

* ε is considered as starting and ending symbol of the input sequence
string.

State sequences

Through multiple iterations the probability values will converge.

Computational part (1/2)

∑

∑

++

++

→×=

→×=→

+

+

s
nn

jWi
nn

n

s
nn

jWi
nn

jWi

WSssnWSP
WP

WSssnWSPssC

n

k

n

kk

,01,0,01,0
,0

,01,0,01,0

)],,(),([
)(

1

)],,()|([)(

1,0

1,0

∑

∑ ∑

=
+

=
++

====

====
+

+

nt
n

j
tkt

i
t

n

nt s
nn

j
tkt

i
t

n

n

WsSwWsSP
WP

WSsSwWsSP
WP

n

n

,0
,01

,0

,0
,01,01

,0

,0

)],,,([
)(

1

)],,,,([
)(

1

1,0

1,0

w0 w1 w2 wk wn-1 wn

S0 � S1 � S1 � … Si � Sj … � Sn-1 � Sn � Sn+1

Computational part (2/2)

)|(),|,(),(

),,,,(

),,,(

1

0
,11,011,0

0
,111,0

0
,01

sSWPsSWwWsSPsSWP

WwWsSsSWP

WwWsSsSP

j
t

n

t
nt

i
ttkt

j
t

i
tt

n

t
ntkt

j
t

i
tt

n

t
nkt

j
t

i
t

======

====

===

∑

∑

∑

+

=
+−+−

=
++−

=

+

),1()(),1(

),1()|,(),1(

),1()|,(),1(

0

0

1

0

1

0

jtBswsPitF

jtBsSwWsSPitF

jtBsSwWsSPitF

n

t

ji

n

t

i
tkt

j
t

n

t

i
tkt

j
t

t

k +−=

+===−=

+===−=

∑

∑

∑

=

 →

=

+

=

+

=

w0 w1 w2 wk wn-1 wn

S0 � S1 � S1 � … Si � Sj … � Sn-1 � Sn � Sn+1

Discussions

1. Symmetry breaking:

Example: Symmetry breaking leads to no change in initial values

s
s

b:1.0

a:0.5

a:1.0

s
s

a:0.5

a:0.25

a:0.5
b:0.5

b:0.25

2 Struck in Local maxima

3. Label bias problem

Probabilities have to sum to 1.

Values can rise at the cost of fall of values for others.

s

sb:1.0

b:0.5

a:1.0

s

sa:0.5

b:0.5

a:0.5
b:0.5

a:0.25
b:0.5

Desired Initialized

Indian Language POS tag
standard

