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Abstract 

A n  ef ic ient  fa i r  queueing scheme which is feasi- 
ble f o r  broadband implementation i s  proposed and i ts  
performance i s  analyzed. W e  define fairness  in a self- 
contained manner,  eliminating the need f o r  the hypo- 
thetical fluid-flow reference sys tem used in the present 
state of art and thereby removing the associated com- 
putational complexity. The scheme i s  based on the 
adoption of an internally generated virtual time as the 
index of work progress, hence the name self-clocked 
fair queueing. W e  prove that the scheme possesses the 
desired fairness property and i s  nearly optimal, in the 
sense that the maximum permissible disparity among 
the normalized services offered to  the backlogged ses- 
sions is  newer more than two t imes  the corresponding 
figure in any packet-based queueing system. 

1 Introduction 

Queueing systems have been traditionally studied 
by using probabilistic methods of analysis. For the 
queueing systems encountered in conventional voice 
and data networks, this type of analysis has been 
adequate, since the performance measures of inter- 
est are conveniently expressed in probabilistic terms. 
However, the emergence of new technologies in the 
field of communications and the possibility of integrat- 
ing a wide range of services into multi-media packet- 
switched networks have given rise to the need for non- 
probabilistic measures of performance, such as the 
maximum end-to-end delay or the minimum through- 
put. Theoretically, such measures of performance can 
still be expressed in probabilistic terms, by requiring 
that they be violated, only, by a small probability 
such as lo-''. From a practical standpoint, how- 
ever, statistical modeling and analysis or simulation 
of queueing networks with such precision is often in- 
feasible, calling for alternative approaches to the study 
of queueing systems. 

Recently, there have been attempts to study the 

worst-case behavior of queueing networks in determin- 
istic ways, and to develop service disciplines which can 
provide worst-case performance guarantees [I, 2 , 4 ,  11, 
5, 6, 8, 9, lo]. Usually, in this type of analysis, the in- 
put traffic to the queue also has to be modeled in a 
deterministic way, by specifying some kind of permissi- 
ble traffic envelope, which is never exceeded by the in- 
put. A recent study in this area is the work of Parekh 
and Gallager [9, 101 which analyzes the performance 
of a queueing network with fair queueing service dis- 
cipline and derives upper bounds on the end-to-end 
delays when the input traffic streams conform to the 
leaky bucket characterization. It is, therefore, shown 
that fair queueing can be used in conjunction with the 
leaky bucket admission policy to enforce maximum de- 
lay guarantees in a packet network. However, the fair 
queueing scheme proposed in [9, 101 is based on a hy- 
pothetical fluid-flow reference system to  determine the 
fair order of packet transmissions. This approach leads 
to considerable computational complexity and renders 
the scheme infeasible for high speed applications. 

In this paper, we develop a self-contained approach 
to fair queueing which does not involve a hypothetical 
queueing system as reference in defining fairness. Our 
approach leads to a fair queueing scheme with a much 
simpler implementation, thereby enabling the appli- 
cation of fair queueing to high speed networks. The 
performance of the scheme is analyzed and its fairness 
properties are established. 

While the recent studies highlight the potential 
benefit of fair queueing in the provision of worst-case 
performance guarantees, fair queueing was originally 
developed as an attempt to maintain fairness in the 
amount of services provided at  a service point to the 
competing users. Unlike the FIFO queueing discipline 
where a session can increase its share of service by pre- 
senting more demand and keeping a larger number of 
packets in the queue, the primary goal in fair queueing 
is to serve sessions in proportion to some prespecified 
service shares, independent of the queueing load pre- 
sented by the sessions. Round robin service discipline 
[7], which is an early form of fair queueing, assumes 
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an equal service share for all the sessions and an equal 
length for all the packets. It provides service to the 
sessions in a round robin fashion, picking one packet 
for service from each session with backlogged traffic, 
and then proceeding to the next session. 

When the lengths of packets are not the same 
and/or the service shares assigned to the sessions are 
not equal, the definition of fair queueing and the right 
order of providing service to the sessions becomes a 
more subtle matter. To formulate fair queueing in 
this more general case, Demers, et al, [3] first apply 
the notion of fairness to an idealized fluid-flow traf- 
fic environment, and then use the outcome to specify 
fair queueing for the actual packet-based traffic sce- 
nario. With a fluid flow model of traffic, the service 
may be offered to sessions in arbitrarily small incre- 
ments. Equivalently, it may be assumed that multiple 
sessions can receive service in parallel. As the result, 
it is possible to divide the service among the sessions, 
at all times, exactly in proportion to the specified ser- 
vice shares. In this paper, we shall refer to this form 
of service discipline as fluid-flow f a i r  queueing (FFQ). 

Obviously, fluid-flow fair queueing cannot be ap- 
plied to the actual packet-based traffic scenarios, 
where only one session can receive service at a time, 
and where an entire unit of traffic, referred to here as 
a packet, must be served before another unit is picked 
up for service. Demers, et al, [3] extend the definition 
of fair queueing to this case by requiring that pack- 
ets be picked up for service in the order that they 
would finish service according to the FFQ scheme in 
the fluid flow scenario. The same approach has later 
been adopted in [9, 101. We shall refer to this scheme, 
following Demers, et al, as packet-by-packet f a i r  queve- 
ing (PFQ). The FFQ and PFQ schemes, as called here, 
are referred to in [9, lo] as generalized processor shar- 
ing (GPS) and packet-by-packet generalized processor 
sharing (PGPS), respectively. 

Another work, which shall be cited in connection 
with fair queueing, is Zhang’s virtual clock scheme 
[12]. Even though this scheme, in spite of the declared 
objective, does not provide fair services to the users, 
the notion of virtual clock, first adopted by her, has 
proven to be an effective tool for formulating fairness 
and representing the progress of work in the queueing 
system. The similar notion of virtual t ime has been 
defined and used by Parekh and Gallager as a major 
tool in developing a realization for the PFQ scheme. 
It should be noted that the virtual time used in the 
realization of the PFQ scheme is defined in association 
with the FFQ scheme. This arrangement is only nat- 
ural because the FFQ scheme serves as the reference 
for specifying the order of services in the PFQ scheme. 

However, it leads to considerable computational com- 
plexity, especially a t  high transmission speeds, due to 
the need for simulating events in the hypothetical FFQ 
system. 

This paper presents a different approach to defining 
fair queueing in a packet-based traffic environment. 
We define fair queueing in a self-contained manner and 
avoid using a hypothetical queueing system as refer- 
ence in determining the fair order of services. This 
objective is accomplished by adopting a different no- 
tion of virtual time. Instead of linking virtual time to 
the work progress in the FFQ system, we use a vir- 
tual time function which depends on the progress of 
work in the actual packet-based queueing system. Re- 
ferring to this feature, we call the scheme self-clocked 
f a i r  queueing (SCFQ). In addition, the internal gener- 
ation of the virtual time involves negligible overhead, 
as the virtual time is simply extracted from the packet 
situated at the head of the queue. This approach elim- 
inates the computational complexity that is associated 
with the PFQ scheme and provides a simple and fea- 
sible method for the realization of fair queueing in 
broadband packet networks, such as the ATM. 

The rest of this paper is organized as follows. Sec- 
tion 2 describes the FFQ and PFQ schemes and de- 
velops a virtual time implementation for the latter. 
The main ideas and results in this section are due to 
Parekh and Gallager [9] and Demers, et al, [3], even 
though we have adopted a somewhat different presen- 
tation, setting the stage for the rest of the paper. In 
Section 3, after studying the computational complex- 
ity of the PFQ scheme, the self-clocked fair queueing 
(SCFQ) scheme is introduced. Section 4 is devoted to 
the analysis of the SCFQ scheme. In this section, we 
prove that the services received by any pair of back- 
logged sessions, normalized to the corresponding ser- 
vice shares, stay close to each other. Moreover, it is 
shown that the SCFQ scheme is nearly optimal in the 
sense that the maximum permissible difference among 
the normalized services offered to the backlogged ses- 
sions is never more than two times the corresponding 
figure for any packet-based queueing system. The pa- 
per is finished with some concluding remarks in Sec- 
tion 5. 

2 Fair Queueing Systems 

We begin by introducing some notations. Consider 
the queueing system at a link with the transmission 
speed C. Let us denote by K the set of sessions k set 
up on this link, and by rk,  k E ic, the service share 
allocated to session k. Define by A k ( t ) ,  t > 0, the 
aggregated length of packets of session IC arrived dur- 
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ing [O,t) .  Similarly, define by Wk(t ) ,  t > 0, the ag- 
gregated length of the traffic of session k transmitted 
during ( 0 , t ) .  Notice that included in & ( t )  are only 
the packets which are fully received prior to time t ,  
since the arrival time of a packet is determined by the 
reception of its last bit. In contrast, our definition of 
wk(t) includes any part of the traffic from k transmit- 
ted by t imet  , whether or not it encompasses complete 
packets. We treat Wk(t) as a continuous function, so 
it may be defined, more accurately, as the time spent 
by the server on session IC during(0, t ) ,  times the server 
speed C. Let 

A 

A 1  

rk 

&k(t) = Ak( t ) -  Wk(t), E K, (1) 

k E K, (2) W k ( t )  = -%(t), 
and 

A 
w t ( t l , t 2 )  = wk(t2) - W k ( t l ) ,  k E x. (3) 

Assuming that the queue has been empty at  time 0, 
Q k ( t )  is the total length of the backlogged traffic at  
time t associated with session k, including residue of 
any packet partially transmitted before t .  wk(t)  rep- 
resents the total service provided to session k dur- 
ing (0, t )  normalized to the corresponding transmission 
rate. We refer to wk as the normalized service received 
by session k .  Accordingly, wk(t1,12),  t 2  > t l ,  is the 
normalized service received by k during ( t l ,  t 2 ) .  De- 
fine a session E to be backlogged at time 1 if Q k ( t )  > 0; 
otherwise call it absent at t .  Finally, let us define 
B ( t )  as the set of sessions which are backlogged at  t ,  
B ( t1 , t z )  as the set of sessions which are backlogged 
during the entire interval ( t l ,  t z ) ,  and d(t1, t 2 )  as the 
set of sessions which are absent during the entire in- 
terval ( t l , t 2 ) ,  i.e., 

B( t )  {k, s.t. Q k ( t )  > 0}, (4) 

a(t1,t2) e {k, s.t. g k ( T )  > 0, for t l  < T < t 2 } , ( 5 )  
A d ( t 1 , t z )  = { k ,  s.t. Q ~ ( T )  = 0, for t l  < T < t2}.(6) 

Fluid-flow fa i r  queueing (FFQ) is defined as the ser- 
vice discipline according to which the normalized ser- 
vices wk(t )  received by different backlogged sessions 
k increase in time with the same rate, i.e., for any 
interval ( t l ,  t z ) ,  

Wk(tlyt2) = w j ( t l , t Z ) ,  k . , j  E B ( t l j t 2 ) .  (7) 

While a session is not backlogged, it receives no ser- 
vice, i.e., 

wk(t i , t2 )  = 0, k E d ( t i , t 2 ) .  (8) 
The above notion of ideal fairness is only applica- 

ble to a hypothetical fluid-flow traffic scenario where 

service can be offered to sessions in arbitrarily small 
increments. In a real packet network, entire packets 
of a session have to be transmitted before the service 
may be shifted to another session. Therefore, it is 
not possible to satisfy (7), exactly and for all intervals 
of time. It is possible, however, to attempt at keeping 
the normalized services wk(t1, tz)  received by different 
backlogged sessions k close to  each other. Depending 
on how exactly one tries t o  accomplish this task, dif- 
ferent fair queueing algorithms may be conceived. 

The packet-by-packet f a i r  queueing (PFQ) algo- 
rithm, originally proposed by Demers, et a1 [3], and 
later studied by Parekh and Gallager [9], is defined as 
follows. First a fluid-flow fair queueing (FFQ) system 
is considered and the order that packets finish ser- 
vice in accordance with the fair queueing rule of (7) 
is determined. Notice that in this FFQ system, ser- 
vice can be provided in arbitrarily small increments 
and several packets may be served in parallel. In the 
actual packet-based queueing system, each time the 
server becomes free, service is offered to that packet 
which would be the first, among the packets present 
in the queue, t o  finish service in the hypothetical FFQ 
system. 

It has been proven [3, 91 that in the PFQ system, 
as defined above, each packet will finish service within 
B seconds of its finishing time in the corresponding 
FFQ system, where B is the transmission time of a 
packet with the largest possible size. Based on this 
result, it can be easily shown that the PFQ scheme 
conforms to our notion of fairness, i.e., the normal- 
ized service wk(t1, t 2 )  received by different sessions 
k that are backlogged during ( t l ,  t z )  remain close to 
each other. Unfortunately, the realization of the PFQ 
scheme is not simple since, by definition, it requires 
that the events in the corresponding FFQ system be 
simulated in the real-time. 

The simplest realization that has been suggested 
for the PFQ scheme [9] is based on the evaluation of a 
time function associated with the corresponding FFQ 
system, which represents the progress of work in that 
system. This function, called virtual t ime ,  has a rate 
of increase in time equal to that of the normalized 
service received by any backlogged session in the FFQ 
system. Next, we present some definitions. 

Definition 1 A n y  maximal interval of t ime during 
which the server  is busy without interruption, is  called 
a busy period. 

Clearly, busy periods only depend on the traffic ar- 
rival pattern and the server speed, and are indepen- 
dent of the specific queueing scheme used, provided i t  
is work-conserving. Therefore, we conclude that the 
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busy periods of the PFQ and the associated FFQ sys- 
tem coincide with each other. In this paper, each time 
a busy period is considered, without loss of generality, 
we assume that it starts a t  t = 0. 

We define the virtual t ime of the FFQ system, v(t) ,  
as a function of time which changes with a rate equal 
to the rate of increase of W k ( t ) ,  for any backlogged 
session 6 ,  i.e., 

(9) 

Since the existence of the derivative on the right hand 
side of (9) has not been established, we provide a more 
formal definition: 

Definition 2 Consider  a busy period of the FFQ sys- 
t em,  beginning at t = 0. The virtual time of the FFQ 
system, v ( t ) ,  i s  defined as the function which saiisfies 
the following: 

v(0) = 0, (10) 
v( t2)  - v ( t l )  = w k ( t l , t Z ) ,  k. E a ( t l , t Z ) ,  (11) 

where ( t l , t 2 )  is an arbitrary subinterval of the busy 
period. 

Therefore, while a session is backlogged in the FFQ 
system, the normalized service it receives is equal to  
the growth of the virtual time of the system. To 
derive an expression for the evaluation of v ( t ) ,  con- 
sider any subinterval ( t 1 , t z )  of the busy period dur- 
ing which no session changes status. It follows that 
each session k belongs to either B ( t 1 ,  t ~ )  or d ( t 1 ,  t z ) ,  
i.e., B( t1 ,  t 2 )  U d ( t l , t 2 )  = I C .  Multiplying both sides 
of (11) by rk , and summing up the equation over ses- 
sions k E B ( t l , t z ) ,  we get 

( V ( t 2 )  - v ( t l ) )  r k  = rk . W k ( t l , t 2 )  
6 E B(t 1 , t z )  k E B(t i , t 2 )  

= rk ' W k ( t 1 ,  t 2 )  -k rk ' W k ( t l ,  t 2 )  

k E B(t 1 , t  z) k E B(t  1 , t  z )  

= r k  ' w k ( t l , t Z ) ,  (12) 
k € I C  

where the second equality follows from (8). Next, no- 
tice that x k E ~ . r k  . w k ( t l ,  t 2 )  is the total work done in 
the system during ( t l ,  t z ) .  Since ( t 1 ,  t 2 )  is contained 
in a busy period, 

r k ' W k ( t l , t 2 ) = C ' ( t 2 - t l ) .  (13) 
kEK 

It follows that 

v(t2) - v( t1)  = c . ( t 2  - t l )  ( r k ) - ' .  (14) 
k€B(t t . tz)  

We conclude that v ( t )  is a piecewise linear function 
with the slope 

which changes whenever the set of backlogged sessions, 
B ( t ) ,  undergoes some change. 

Now consider a busy period beginning at t = 0, 
a session k E IC, and the sequence of packets of k 
which arrive during this busy period. Denote the i'th 
packet of the sequence by p i ,  its arrival time by a i ,  
the time it finishes service in the FFQ system by d)k, 
and its length by LE. Define F i ,  i = 1 , 2 , . . . ,  as 
the virtual time when packet p i  finishes service in the 
FFQ system, i.e., 

F L S v ( & i ) ,  i = 1 , 2 , . . . ,  k E K .  (16) 

F i  may be referred to  as the virtual finishing t ime of 
packet p i ,  in the FFQ system. 

Lemma 1 The virtual finishing t imes  F i ,  i = 
1 , 2 , . . . ,  associated with the packets of each session 
k E I C ,  satisfy the following relationship: 

Fi  = LL', +max(FL-',v(at,)), 
r k  

i =  1,2; . . ,  k E K ,  (17) 

where 
F i  = 0, IC € I C .  (18) 

Proof. Let 

A where, for consistency, d i  = 0. Service of packet p i  
cannot start before b i ,  since either p i  arrives a t  b' 

b i ) .  Moreover, all of the previous packets of k are 
completely served by b i .  Therefore, 

(ut, = b i ) ,  or p;-' is in service until b i ,  (4- 1' = 

LLt ,  = Wk(bt,, $,) 
rk 

= v(di) - v ( b i ) ,  i = 1 , 2 , . . . ,  (20) 

where the last equality follows because k is constantly 
backlogged during ( b ; ,  d i ) .  Since, during the busy 
period, v ( t )  is monotonically increasing, it follows 
from (19) that 

~ ( b t , )  = max  at,), v(d;- ' ) )  , i = 1 , 2 , .  . .. (21) 
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We conclude from (20) and (21) that 

u ( d i )  = --L\+max (.(ai),  v(d;-')) , i = 1 , 2 , .  . .. 

Now, in view of (16) and the fact that F i  = 0 = v ( d ; ) ,  
the lemma follows from (22). 
0 

The best known implementation method for the 
PFQ scheme follows from Lemma 1. Since v ( t )  is an 
increasing function of time during a busy period, it 
would be identical to order the packets in terms of the 
corresponding finishing times d i  or to order them in 
terms of the corresponding virtual finishing times Fi ; 
hence the following corollary. 

Corollary 1 In the P F Q  system, each t ime the s e m e r  
becomes free, that packet is picked up f o r  transmission 
which has the smallest virtual finishing t ime in the 
FFQ system, among the packets present in the queue. 

Equation (17) provides an iterative algorithm for 
computing virtual finishing time of a packet in terms 
of the packet length, virtual finishing time of the pre- 
vious packet of the same session, and the system's vir- 
tual time when the packet arrives. Therefore, the PFQ 
scheme may be implemented by stamping each packet, 
upon arrival into the queue, with a service tag equal 
to the corresponding virtual finishing time, and then 
serving the packets from the queue in increasing order 
of the associated service tags. The service tag of a 
packet may be computed, iteratively, from (17).  

1 '  
rt 

(22) 

3 Self-clocked Fair Queueing 

Implementation of the PFQ scheme, as outlined 
above, requires the evaluation of the virtual time v ( t )  
of the FFQ system, which is used in (17). Accord- 
ing to (15), v(t) is a piecewise linear function with 
its slope at  any point of time t  inversely proportional 
to the sum of the service shares of sessions in the set 
B( t). Whenever some session k becomes backlogged 
or ceases to be backlogged in the FFQ system, the 
slope of v ( t )  changes, constituting a breakpoint in its 
piecewise linear form. Therefore, evaluation of v ( t )  is 
conceptually simple; it requires keeping track of the 
set B(t) and its evolution in time. 

From a practical standpoint, however, the compu- 
tational complexity associated with the evaluation of 
v ( t )  depends on the frequency of breakpoints in v ( t ) ,  
i.e., the frequency of transitions in and out of the set 
B( t). Unfortunately, while such transitions can be 
rather infrequent on the average, occasionally, a large 
number of them could happen during a single packet 

transmission time. The reason for this peculiar phe- 
nomenon is that  in the FFQ system, where v ( t )  is to be 
determined, packets are not served one after another; 
instead one packet from every backlogged session is 
in service, simultaneously. It is therefore possible that 
many packets finish service almost simultaneously, but 
not at exactly the same time. With each packet fin- 
ishing service, the corresponding session could become 
absent, should there be no other packet from that ses- 
sion in the queue, thereby forming a new breakpoint 
in v ( t ) .  We conclude that, in general, the number of 
breakpoints in v ( t )  in an arbitrarily short period of 
time, can approach the total number of sessions set 
up on the transmission link. 

The evaluation of v ( t )  has to be performed in real 
time, for the implementation of the PFQ algorithm. 
To state this requirement more accurately, in the PFQ 
system, let a packet be picked up for service at t l  and 
finish service at  t z .  At t z ,  in order to select the next 
packet for service, the virtual finishing time of pack- 
ets arrived during ( t 1 , t z )  must be known. Therefore, 
evaluation of v ( t )  for the interval ( t l ,  t z )  must be com- 
pleted by t z .  According to the previous arguments, the 
number of breakpoints in v ( t )  during ( t l ,  t z )  can be as 
high as the total number of sessions in K. 

We now consider the computational complexity as- 
sociated with implementing the PFQ scheme in a 
broadband ATM network. A packet in our discussion 
refers to a unit of data  which must be transmitted as 
a whole, before another unit is picked up for service. 
For an ATM network, the unit of data whose trans- 
mission should not be preempted by others is an ATM 
cell. Therefore, the term packet as used in the present 
context is synonymous to a cell in case of an ATM 
network. With respect to the above discussion, t z  - t l  
is the transmission time of one cell. This time may be 
a fraction to a few microseconds for broadband trans- 
mission speeds, while the number of sessions can be in 
the hundreds. We conclude that the PFQ scheme can- 
not be accurately implemented in a broadband ATM 
network, since real-time evaluation of v ( t )  is not fea- 
sible. 

Here, we present an alternative fair queueing 
scheme which is much simpler, even though it con- 
forms to our notion of fairness and provides desirable 
performance. The source of complexity in the PFQ 
scheme is that it defines fairness with reference to 
events in a hypothetical system, i.e., the FFQ sys- 
tem. This approach, combined with the fact that in 
the FFQ system several packets receive service simul- 
taneously, contributes to the computational complex- 
ity of the PFQ scheme. The self-clocked f a i r  queueing 
(SCFQ) scheme described in this section is also based 
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on the notion of the system's virtual time, viewed as 
the indicator of progress of work in the system, ex- 
cept that the virtual time is referenced to the actual 
queueing system itself, rather than to a hypothetical 
system. Moreover, instead of using an abstract ana- 

the order of service provisions. Some insight into this 
question may be gained by first considering a simpler 
queueing scheme in which the packet service tags are 
computed as, 

~. 1 .  * 

Fi = --L; + Fi-' ,  i = 1 , 2 , . . - ,  k E K, (26) lytical definition for the virtual time, we have adopted 
as the virtual time a quantity that naturally arises in rk 

the process of the algorithm. To understand the idea, 
observe from (16) that for the PFQ scheme the ser- 
vice tag stamped in a packet is equal to the virtual 
time when the packet finishes service. This observa- 
tion suggests that the system's virtual time a t  any 
moment t may be estimated from the service tag of 
the packet receiving service at t .  With the above re- 
marks in mind, we now proceed to define the SCFQ 
scheme based on the following algorithm. 

1. Each arriving packet p i  is tagged with a service 
tag Fi before it is placed in the queue. The pack- 
ets in the queue are picked up for service in in- 
creasing order of the associated service tags. 

2. For each session k, the service tags of the arriving 
packets are iteratively computed as 

where- 
F l  = 0, k E K. (24) 

3. c ( t ) ,  regarded as the system's virtual time at time 
1,  is defined equal to the service tag of the packet 
receiving service a t  that time. More specifically, 

where 3 and d{ respectively denote the times 
packet starts and finishes service. 

with Fl = 0. In this scheme, each time a packet 
p i  finishes service, its service tag Fi becomes equal 
to the total normalized service provided to 6 ,  up to 
that time. Therefore, by always offering service to the 
packet with the lowest service tag in the queue, the 
scheme tries to equate the normalized services of all 
the sessions, regardless of how long each session has 
been backlogged or absent. This arrangement leads 
to the accumulation of service credit by the absent 
sessions. For example, at time t ,  when a packet with 
the service tag F is in service, let a session k become 
backlogged for the first time, with the arrival of a long 
sequence of packets. According to (26), the service 
tags assigned to the packets of k will start increment- 
ing from zero. Until the service tags assigned to the 
packets of k reach F ,  they will override packets from 
sessions who have been backlogged for some time. In 
order to prevent this behavior in the queueing system, 
the following solution should work: once a session be- 
comes backlogged anew, the normalized service op- 
portunity it has missed while being absent, should be 
added to the service tag of its first new packet. Substi- 
tution of the term mux (Pl-', s ( u i ) )  in (23), in lieu 

of Fl-' in (26), accomplishes the above task exactly, 
since it amounts to replacing FL-' with the service 
tag of the packet in service, if the latter is larger. A 
similar compensation takes place in (17). 

The unfair outcome of computing service tags in 
accordance with (26) has been previously noted by 
Zhang in her paper on virtual clock algorithm [12], 
who then suggests that the term Fi-' in (26) should 
be replaced with mux (P i - ' ,  U : ) ,  to circumvent the 

This solution does not work, however, since contrary 
to the virtual time, the real time U; is not a true rep- 
resentation of the progress of work in the system upon 
arrival of packet p i .  We see that the virtual clock al- 

4. Once a busy period is over, i.e., when the server 

queue, the algorithm is reinitialized by setting to 
and the packet counts 

i for each session I C .  

becomes free and no more packets are found in the Problem Of credit the bursty 

the virtual time 

Based on the previous discussions, it is intuitively ex- 
pected that the above algorithm should closely resem- 
ble the performance of the FFQ and PFQ schemes. 
The validity of this conjecture will be shown in the 
next section. 

It is worthwhile to develop some qualitative under- 
standing as to how the computation of service tags, 
in accordance with (23) or (17), enforces fairness in 

gorithm, structurally, gets close to what is needed to 
accomplish fairness, but falls short of actually provid- 
ing it. 

Before turning to the next section, we would like to 
caution against the hasty conclusion that the SCFQ 
algorithm is identical to the PFQ scheme, or that G ( t ) ,  
as determined in the process of the algorithm, is equal 
to the virtual time of the FFQ system. In fact we 
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have shown that the difference between 6 ( t )  and v(t)  
is not necessarily bounded and may approach infin- 
ity! Another hasty conclusion that one might draw 
is that a new fair queueing scheme results by defin- 
ing 6 ( t )  equal to the service tag of the most recent 
packet transmitted prior to t ,  instead of the service 
tag of the packet receiving service at time t .  We have 
shown that this slight modification is sufficient to com- 
pletely break down the fairness property of the SCFQ 
algorithm! A detailed discussion of these important 
and counter-intuitive observations are deferred to the 
forthcoming publications. 

4 Fairness Analysis of the SCFQ 
Scheme 

The rest of this paper is partly concerned with com- 
paring the performance of the SCFQ system and the 
hypothetical FFQ system associated with it. By the 
FFQ system associated with the SCFQ system, we 
mean a queueing system with the same service speed, 
same set of sessions and service shares, and same pat- 
tern of arriving traffic, but the FFQ scheme replacing 
the SCFQ scheme. While the set IC and parameters r k ,  

a i ,  and L i  are identical for these two systems, other 
parameters are not. To distinguish between the two 
systems, we use a hat sign (-) over parameters associ- 
ated with the SCFQ system. For example, while Q k ( t )  
stands for the size of backlogged traffic of session k at 
time t in the FFQ system, the corresponding parame- 
ter in the SCFQ system is shown by Q k ( l ) .  Note that 
the busy periods of the SCFQ system are identical to 
those of the FFQ or PFQ systems, since the SCFQ 
scheme is also work-conserving. 

Whenever we need to generically speak of a param- 
eter in either system, we use a superscript S over that 
parameter, where S may stand for either of the two 
queueing systems. For example, v s ( t )  would repre- 
sent both v(t)  and G ( t ) ,  depending on the system rep- 
resented by S. Another notational convention that we 
use is the double-argument function f ( t l ,  1 2 )  to repre- 
sent f ( t 2 )  - f ( t 1 ) ,  where f(t)  could be any function 
of time. The only exception to this notation is the set 
B(t1 ,  t z ) ,  already defined in a different way. 

To be precise in the analysis, we need to assume 
that no packet arrives at exactly the same time as the 
time when a packet starts service in the SCFQ system. 
The obvious exception is a t  the beginning of a busy 
period, when the queue is empty and, by definition, 
the first arriving packet is immediately picked up for 
service. The above assumption is necessary to keep 
the definition of the SCFQ scheme and some of its 

properties intact. However, it does not constitute a 
limitation to the practicality of the scheme. From a 
practical stand point, this assumption is equivalent to 
enforcing mutually exclusive access to the variable G ( t )  
in the implementation of the algorithm responsible for 
updating service tags and the system’s virtual time. 
This mutually exclusive access to 6 ( t )  is necessary, in 
any case. 

We now introduce some new definitions which shall 
facilitate our analysis of the SCFQ scheme. 

Definit ion 3 During a busy period beginning with t = 
0 ,  the missed normalized service of session k in  system 
SI u f ( t ) ,  is defined as the function which satisfies the 
following: 

S uk (0) = 0, 

where ( t l ,  t 2 )  is any subinterval of the busy period dur- 
ing which k remains either backlogged o r  absent. 

Notice from (28) that u f ( t )  equals the total growth 
of the system’s virtual time up to time t ,  while k has 
not been backlogged. Therefore, it represents the ser- 
vice opportuni5e.s missed by session k during ( 0 , t )  
due to being absent; hence the name missed normal- 
ized service. In order to check the fairness of queueing 
system S, it is not reasonable to compare the received 
normalized services w f ( t ) ,  k E I C ,  with each other 
or with v S ( t ) ,  since the service opportunities missed 
by sessions during their absence intervals should also 
be accounted for. The following definitions are moti- 
vated by this observation: 

Definit ion 4 The virtual time of session k in system 
S ,  v f ( t ) ,  is defined as the sum of the missed and the 
received normalized services of k an sys tem S ,  i . e . ,  

vf ( t )  u f ( t )  + w f ( t ) ,  k E IC. (29) 

Definit ion 5 The service lag of a session k in  system 
S is defined as the diflerence between the system’s and 
the session’s virtual t imes,  i . e . ,  

The packetized nature of traffic arrivals leads to a 
staircase shape for the arrival functions Ak(t ) .  On the 
other hand, W F ( t )  is a continuous function. There- 
fore, in view of (1) as applied to  the queueing system 
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S, we can argue that while Q f ( t )  = 0, no service can 
be provided to session k, i.e., 

W k ( t 1 ,  t2)  = 0, k E As(ti, 22). (31) 

Combining (27)-(29) and (31), we get the following 
corollary: 

Corollary 2 The session virtual times v f ( t )  satisfy 
the following: 

S vk (0) = 0, 

In regard to the FFQ system, we notice from (11) 
and (33) that 

vk( t11t2)  = v ( t i , t z ) ,  k E B ( t i , t z ) U d ( t i , t 2 ) .  (34 )  

Next, notice that a busy period can always be di- 
vided into subintervals ( t j ,  t j + l ) ,  j = l l  2 , .  . . , dur- 
ing which no session changes status and B(t j  , tj+') U 
d ( t j , t j + l )  = IC. Applying (34) to such subintervals 
and summing up, leads to the following result: 

Corollary 3 I n  the FFQ system, the virtual time of 
each session is always equal to  the virtual time of the 
system, i. e. , 

Vk(t)  = v ( t ) ,  k E IC. (35) 

Equivalently, the service lag of each session is always 
zero: 

6k( t )  = 0, k E K. (36) 
While for a fluid-flow fair queueing system the ser- 

vice lag of each session always remains zero, for other 
queueing systems, a session's service lag is the indica- 
tion of how far behind that session is in comparison 
to the progress of work in the system, as measured by 
the system's virtual time. 

Theorem 1 The service lag of each session k in the 
SCFQ system is bounded as follows: 

1 
0 5 8 k ( t )  5 -Lraxl k E ]cl (37) 

r k  

where LP"" is the maximum size of packets of session 
k .  

This theorem, which lays down the basis for the 
fairness of the SCFQ scheme, is proven through a se- 
quence of 5 lemmas. 

Lemma 2 During each busy period of the SCFQ sys- 
tem,  6 ( t )  is a nondecreasing function o f t ime .  

Proof. Consider a busy period and any pair of packets 
p and p', consecutively served in this period. Let the 
transmission of p and p' start a t  t and t ' ,  t'-> t ,  and 
let the service tags associated with them be F and F', 
respectively. Denote the arrival time of p' by a'. We 
argue that 

We have previously assumed that a' # t .  If a' < t ,  (38) 
follows since packet p must have the smallest service 
tag of any packet in the queue at time t .  Otherwise, 
t < a' 5 t', and according t,o (23), F' > 6(a'). Also, 
according to (25)' 6(a') = F .  Therefore, (38) is valid 
in either case. Since p and p' are an arbitrary pair 
of consecutively served packets, we conclude that the 
service tags of all packets transmitted during a busy 
period form a nondecreasing sequence. The lemma 
now follows from the definition of C(t) in (25). 
0 

F' 2 F. (38) 

Lemma 3 For each session k and packet p i ,  

fik($;-', 2;) = 

max 0,6(2;-', 6;)) , k E K, i = 1 , 2 ,  

A 

( 
where d: = 0. 

Proof. Since k is backlogged during ( U ; ,  8 
ing to (28), 

, accord- 

c k ( 4 - ' ,  &) = Gk($i- ' ,  a i )  + G k ( U i ,  &) 

= Gk(&- ' ,  ai). (40) 

If U; < &-', session k is backlogged during ( a i ,  2;:') 
; otherwise k is not backlogged during (#;',U;). 

Therefore, it follows from (28) and (40) that 

From the nondecreasing property of 6 ( t )  stated in 
Lemma 2, we get 

The lemma follows from (41) and (42). 
0 

Lemma 4 Each tame a packet finishes service in  the 
SCFQ system, the service lag of the corresponding ses- 
sion becomes zero, i.e., 

s k ( & )  = 0, for all packets p t .  (43) 
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Proof. We observe from Definition 4 and Lemma 3 
that 

G k ( & - ' , $ i )  = 2irk(&-',&) + G k ( $ ; - ' , & )  

= J - L ~  + max (0, ~ ( 2 i - 1 ,  a i ) >  

= L L ~  + max ( ~ ( 4 - 1 1 ,  ~(ii;)) - ~ ( 2 i - l ) .  

f k  

(44) 

We also notice from the definition of Q ( 1 )  and the up- 
dating rule in (23) that  

rk 

( 
^. 1 . 

~ ( c i ; )  = -LL; + max ~(ai-l), ~ ( a ; ) )  . (45) 
r k  

It follows from (44) and (45) that 

Gh(ci';)  - G k ( 4 - l )  = 6 ( & )  - G(2i-l). (46) 

By rearranging the terms and applying Definition 5,  
we get 

Finally, since by definition c$ = 0, 
8 k ( & )  = j k ( 2 i - l ) .  (47) 

8 k ( d ^ ! )  = c(0) - Vk(0) = 0, (48) 

where the last equality follows from (10) and (32). 
Considering that (47) holds for any i = 1 , 2 , .  . ., the 
lemma follows from (47) and (48). 
0 

Lemma 5 While a session is absent or each time a 
session becomes backlogged in the SCFQ system, its 
service lag i s  zero, i.e., 

Proof. Define 
that 

e max ( & - ' , a i ) .  First, we argue 

i k ( 6 )  = 0. (53) 
If = 4-', (53)  follows from Lemma 4. Otherwise, 

, in which case k becomes backlogged 
at  b; ,  and (53) follows from Lemma 5. We conclude 
from (53) that 

p - a' > 2-1 
k ,  k k 

6 k ( t )  = 6 k ( & )  + d k ( & , t )  

= 8 k ( & , t )  

= 6(&i , t )  - 6 k ( b i , t ) .  (54) 

Next, it follows from the (23) and (25) that 

~ ( 2 ; )  = J - L ~  + max (~(ai-l), ~(6;)) 
r k  

(55) 
= - L k  1 i  + 6(&), 

r k  

where the second equality follows from the nondecreas- 
ing property of G(t).  Therefore, 

Next, notice that 2i-l 5 1 < since p i  is the first 
packet to finish service after t . Also, a i  5 t ,  since k is 
backlogged at  t .  It follows that 

& ( t )  = 0, k @ b(t), or k bec,omes backlogged at  1. a; 5 ai, 5 t < ai, (57) 
(49) 

Proof. Consider a session k $2 B(t) ,  or a session k 
which becomes backlogged a t  1. Let there be i pack- 
ets served from k during (0 , t ) .  It follows that k is not 

Us- 

and that k is backlogged in the SCFQ system dur- 
ing (bi,t). Since G ( t )  is nondecreasing, we conclude 
from (56) and (57) that  

backlogged in the SCFQ system during ($i, t) .  0 5 G ( & , t )  5 G ( P i , & )  = LLi. (58) ing (331, rk 

ik((i l , t)  = G ( 2 i , t )  - ck(ai, t)  = 0. (50) 

We conclude from (50) and Lemma 4,  or (48) in case 
of i = 0, that  

Since k is backlogged during (& f , t ) ,  according to (33) 

c k ( b i , t )  = @ k ( p i , t ) .  (59) 

The lemma may now be proven by considering two 
alternative cases. The first case is when the service 
of p i  starts on or after t .  In this case, T i ? k ( g h , t )  = 0, 
since 2i-l 5 bi. So, we conclude from (59) that 

(51) 8 k ( t )  = 8k(&.) + i k ( a i , t )  = 0. 

0 

Lemma 6 For any session k E &t),  

The Lemma, for this case, follows from (54), (58), 
and (60). The second case is when the service of p'; 
starts before t .  Since, in this case, the only service 

where p i  is the first packet of k to  finish service an the 
SCFQ system after t .  
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provided to k during ( a i ,  t )  is partial transmission of 
P i  , 

1 '  
0 5 6 k ( p i l t )  = '&k(p i , t )  < - L i .  (61) 

r k  

On the other hand, in this case, G(t )  = Fi = G(r&) .  
Therefore, in view of (56), 

(62) 
^ .  1 '  

6 ( b ; , t )  = 6(&.,2i) = - L i .  
r k  

The lemma, for this case, follows from (54), (61), and 

0 

Consider the differential service lag function 

(62). 

Lemmas 5 and 6 conclude the proof of Theorem 1. 

j k ( t I l t 2 )  = dk(t2)  - j k ( t 1 )  
= 6(21 , t2 )  - V k ( t l , t 2 ) ,  C E K. (63) 

By Theorem 1, 

1 
r k  

l j k ( t l , t 2 )1  5 -LpaXl k E x. (64) 

Since Gk(t1,tZ) = ' & k ( t l , t g ) ,  f o r k  E b ( t l , t 2 ) ,  the fol- 
lowing corollaries result from (63) and (64). 

Corollary 4 For any session k E b ( t 1 ,  t ~ ) ,  

1 
lG(t l j t2)  - G k ( t l r t 2 ) l  5 -,pax. (65) rk 

Corollary-5 For any pair of sessions k and 
j ,  k , j  E a ( t l , t z ) ,  

1 1 

rk r j  
I'tilk(tl,t2) - @ j ( t l , t 2 ) 1  5 -Lpax + -LFax. (66) 

Corollary 5 follows by subtracting the expressions 
in Corollary 4 as applied to sessions k and j. This 
result establishes the basic fairness property of the 
SCFQ scheme. It shows that the normalized services 
received by different backlogged sessions remain close 
to each other and that the disparity among them is 
always bounded. Notice that the upper bound in 
Corollary 5 is independent of the comparison inter- 
val ( t l ,  t z ) .  Therefore, as the comparison interval ex- 
pands, the average rates of normalized services offered 
to the backlogged sessions converge and the disparity 
among them vanishes. 

We could actually arrive at Corollary 5, in a sim- 
pler and more direct way, by starting from Lemma 2, 
then arguing that while a session k is backlogged 
Fi = kLi + Fi-' ,  and then proceeding with some 
additional details. Instead, we have preferred to carry 
out this longer but more comprehensive analysis of the 

SCFQ system, since the additional results obtained 
here are useful. 

While Corollary 5 confirms that in the SCFQ sys- 
tem, the disparity in the normalized services received 
by different backlogged sessions is bounded, it does 
not provide an idea of how good this bound is. This 
question is answered by the following theorem, stated 
here without proof. 

Theorem 2 Consider the class of packet-based 
queueing systems S for  which, given any t ime interval 
( t l , t 2 )  and any pair of backlogged sessions k and j ,  
the following bound holds, 

where D s ( k , j )  does not dependent on the t ime in- 
terval ( t 1 , t 2 ) .  Then, f o r  any system S of this class, 
D s ( k ,  j )  always satisfies the following: 

By comparing (66) and (68), we conclude that the 
SCFQ scheme is a near-optimal fair queueing scheme, 
in the sense that the maximum service disparity al- 
lowed by it between any pair of backlogged sessions is 
never more than two times the corresponding figure in 
any packet-based queueing system. 

5 Conclusion 

In this paper, a self-clocked fair queueing scheme 
(SCFQ) for packet networks has been developed, 
which is based on a novel self-contained approach to 
fair queueing. Compared to the packet-by-packet fair 
queueing (PFQ) [3, 91, the scheme proposed here pro- 
vides substantial simplicity and ease of implementa- 
tion. The reason is that, in the PFQ scheme, fairness 
is defined in reference to the events in the hypothetical 
FFQ system. Accordingly, the virtual time function, 
which serves as the measure of the work progress in 
the system, has to be evaluated for the correspond- 
ing FFQ system, for every packet. We avoid this 
computation by using an internally generated virtual 
time to reflect the progress of work in the system. 
Hence the name self-clocked fair queueing. Further- 
more, since the virtual time is simply extracted from 
the packet in the head of the queue, its generation in- 
volves minimal data processing. These features make 
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the SCFQ scheme well-suited for broadband imple- 
mentation, whereas the computational complexity of 
the PFQ scheme makes i t  difficult to implement. 

We have studied the performance of the SCFQ 
scheme from 2 perspectives. The first line of analysis 
compared the normalized services received by different 
sessions which are backlogged (in the SCFQ system 
itself), and proved that the service disparity among 
sessions is always bounded. Then, it was stated that 
the maximum permissible service disparity between 
a pair of backlogged sessions in the SCFQ scheme is 
never more than two times the corresponding figure 
for any packet-based queueing system. Therefore, we 
concluded that the SCFQ scheme represents a near 
optimal fair queueing scheme. 

There are some other important properties that we 
have been able to demonstrate for the SCFQ scheme, 
which will be presented in the forthcoming publica- 
tions. One property concerns the comparison of the 
services received in accordance with the SCFQ and the 
FFQ schemes, when the same set of session traffic ar- 
rivals is considered. We have shown that the disparity 
between services received by any session in accordance 
with the SCFQ and FFQ schemes is always bounded. 
A more specific property concerns the end-to-end ses- 
sion delays in a network employing the SCFQ scheme 
in conjunction with the leaky bucket admission policy. 
For such a network, we have derived end-to-end ses- 
sion delay bounds which are comparable to the bounds 
established by Parekh and Gallager [9, 101 for a net- 
work employing packet-by-packet fair queueing (PFQ) 
in conjunction with the leaky bucket admission policy. 

Based on the above results, we conclude that the 
SCFQ scheme retains the desirable bounded delay 
property of the PFQ scheme, while eliminating its 
undesirable computational complexity. The bounded 
end-to-end delay feature is an important property use- 
ful in multi-media networks carrying real-time traffic. 
Hence we believe that the SCFQ scheme is well-suited 
for broadband multi-media networks. 
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