
A Self-Clocked Fair Queueing Scheme for Broadband Applications

S. Jamaloddin Golestani
Bellcore

445 South Street
Morristown, N J 07960-6438

Abstract

A n ef ic ient fa i r queueing scheme which is feasi-
ble f o r broadband implementation i s proposed and i ts
performance i s analyzed. W e define fairness in a self-
contained manner, eliminating the need f o r the hypo-
thetical fluid-flow reference sys tem used in the present
state of art and thereby removing the associated com-
putational complexity. The scheme i s based on the
adoption of an internally generated virtual time as the
index of work progress, hence the name self-clocked
fair queueing. W e prove that the scheme possesses the
desired fairness property and i s nearly optimal, in the
sense that the maximum permissible disparity among
the normalized services offered to the backlogged ses-
sions is newer more than two t imes the corresponding
figure in any packet-based queueing system.

1 Introduction

Queueing systems have been traditionally studied
by using probabilistic methods of analysis. For the
queueing systems encountered in conventional voice
and data networks, this type of analysis has been
adequate, since the performance measures of inter-
est are conveniently expressed in probabilistic terms.
However, the emergence of new technologies in the
field of communications and the possibility of integrat-
ing a wide range of services into multi-media packet-
switched networks have given rise to the need for non-
probabilistic measures of performance, such as the
maximum end-to-end delay or the minimum through-
put. Theoretically, such measures of performance can
still be expressed in probabilistic terms, by requiring
that they be violated, only, by a small probability
such as lo-''. From a practical standpoint, how-
ever, statistical modeling and analysis or simulation
of queueing networks with such precision is often in-
feasible, calling for alternative approaches to the study
of queueing systems.

Recently, there have been attempts to study the

worst-case behavior of queueing networks in determin-
istic ways, and to develop service disciplines which can
provide worst-case performance guarantees [I, 2 , 4 , 11,
5, 6, 8, 9, lo]. Usually, in this type of analysis, the in-
put traffic to the queue also has to be modeled in a
deterministic way, by specifying some kind of permissi-
ble traffic envelope, which is never exceeded by the in-
put. A recent study in this area is the work of Parekh
and Gallager [9, 101 which analyzes the performance
of a queueing network with fair queueing service dis-
cipline and derives upper bounds on the end-to-end
delays when the input traffic streams conform to the
leaky bucket characterization. It is, therefore, shown
that fair queueing can be used in conjunction with the
leaky bucket admission policy to enforce maximum de-
lay guarantees in a packet network. However, the fair
queueing scheme proposed in [9, 101 is based on a hy-
pothetical fluid-flow reference system to determine the
fair order of packet transmissions. This approach leads
to considerable computational complexity and renders
the scheme infeasible for high speed applications.

In this paper, we develop a self-contained approach
to fair queueing which does not involve a hypothetical
queueing system as reference in defining fairness. Our
approach leads to a fair queueing scheme with a much
simpler implementation, thereby enabling the appli-
cation of fair queueing to high speed networks. The
performance of the scheme is analyzed and its fairness
properties are established.

While the recent studies highlight the potential
benefit of fair queueing in the provision of worst-case
performance guarantees, fair queueing was originally
developed as an attempt to maintain fairness in the
amount of services provided at a service point to the
competing users. Unlike the FIFO queueing discipline
where a session can increase its share of service by pre-
senting more demand and keeping a larger number of
packets in the queue, the primary goal in fair queueing
is to serve sessions in proportion to some prespecified
service shares, independent of the queueing load pre-
sented by the sessions. Round robin service discipline
[7], which is an early form of fair queueing, assumes

636
5c.l.1

0743-166m4 $3.00 0 1994 IEEE

an equal service share for all the sessions and an equal
length for all the packets. It provides service to the
sessions in a round robin fashion, picking one packet
for service from each session with backlogged traffic,
and then proceeding to the next session.

When the lengths of packets are not the same
and/or the service shares assigned to the sessions are
not equal, the definition of fair queueing and the right
order of providing service to the sessions becomes a
more subtle matter. To formulate fair queueing in
this more general case, Demers, et al, [3] first apply
the notion of fairness to an idealized fluid-flow traf-
fic environment, and then use the outcome to specify
fair queueing for the actual packet-based traffic sce-
nario. With a fluid flow model of traffic, the service
may be offered to sessions in arbitrarily small incre-
ments. Equivalently, it may be assumed that multiple
sessions can receive service in parallel. As the result,
it is possible to divide the service among the sessions,
at all times, exactly in proportion to the specified ser-
vice shares. In this paper, we shall refer to this form
of service discipline as fluid-flow f a i r queueing (FFQ).

Obviously, fluid-flow fair queueing cannot be ap-
plied to the actual packet-based traffic scenarios,
where only one session can receive service at a time,
and where an entire unit of traffic, referred to here as
a packet, must be served before another unit is picked
up for service. Demers, et al, [3] extend the definition
of fair queueing to this case by requiring that pack-
ets be picked up for service in the order that they
would finish service according to the FFQ scheme in
the fluid flow scenario. The same approach has later
been adopted in [9, 101. We shall refer to this scheme,
following Demers, et al, as packet-by-packet f a i r queve-
ing (PFQ). The FFQ and PFQ schemes, as called here,
are referred to in [9, lo] as generalized processor shar-
ing (GPS) and packet-by-packet generalized processor
sharing (PGPS), respectively.

Another work, which shall be cited in connection
with fair queueing, is Zhang’s virtual clock scheme
[12]. Even though this scheme, in spite of the declared
objective, does not provide fair services to the users,
the notion of virtual clock, first adopted by her, has
proven to be an effective tool for formulating fairness
and representing the progress of work in the queueing
system. The similar notion of virtual t ime has been
defined and used by Parekh and Gallager as a major
tool in developing a realization for the PFQ scheme.
It should be noted that the virtual time used in the
realization of the PFQ scheme is defined in association
with the FFQ scheme. This arrangement is only nat-
ural because the FFQ scheme serves as the reference
for specifying the order of services in the PFQ scheme.

However, it leads to considerable computational com-
plexity, especially a t high transmission speeds, due to
the need for simulating events in the hypothetical FFQ
system.

This paper presents a different approach to defining
fair queueing in a packet-based traffic environment.
We define fair queueing in a self-contained manner and
avoid using a hypothetical queueing system as refer-
ence in determining the fair order of services. This
objective is accomplished by adopting a different no-
tion of virtual time. Instead of linking virtual time to
the work progress in the FFQ system, we use a vir-
tual time function which depends on the progress of
work in the actual packet-based queueing system. Re-
ferring to this feature, we call the scheme self-clocked
f a i r queueing (SCFQ). In addition, the internal gener-
ation of the virtual time involves negligible overhead,
as the virtual time is simply extracted from the packet
situated at the head of the queue. This approach elim-
inates the computational complexity that is associated
with the PFQ scheme and provides a simple and fea-
sible method for the realization of fair queueing in
broadband packet networks, such as the ATM.

The rest of this paper is organized as follows. Sec-
tion 2 describes the FFQ and PFQ schemes and de-
velops a virtual time implementation for the latter.
The main ideas and results in this section are due to
Parekh and Gallager [9] and Demers, et al, [3], even
though we have adopted a somewhat different presen-
tation, setting the stage for the rest of the paper. In
Section 3, after studying the computational complex-
ity of the PFQ scheme, the self-clocked fair queueing
(SCFQ) scheme is introduced. Section 4 is devoted to
the analysis of the SCFQ scheme. In this section, we
prove that the services received by any pair of back-
logged sessions, normalized to the corresponding ser-
vice shares, stay close to each other. Moreover, it is
shown that the SCFQ scheme is nearly optimal in the
sense that the maximum permissible difference among
the normalized services offered to the backlogged ses-
sions is never more than two times the corresponding
figure for any packet-based queueing system. The pa-
per is finished with some concluding remarks in Sec-
tion 5.

2 Fair Queueing Systems

We begin by introducing some notations. Consider
the queueing system at a link with the transmission
speed C. Let us denote by K the set of sessions k set
up on this link, and by rk, k E ic, the service share
allocated to session k. Define by A k (t) , t > 0, the
aggregated length of packets of session IC arrived dur-

637
5c.l.2

ing [O,t) . Similarly, define by Wk(t) , t > 0, the ag-
gregated length of the traffic of session k transmitted
during (0 , t) . Notice that included in & (t) are only
the packets which are fully received prior to time t ,
since the arrival time of a packet is determined by the
reception of its last bit. In contrast, our definition of
wk(t) includes any part of the traffic from k transmit-
ted by t imet , whether or not it encompasses complete
packets. We treat Wk(t) as a continuous function, so
it may be defined, more accurately, as the time spent
by the server on session IC during(0, t) , times the server
speed C. Let

A

A 1

rk

&k(t) = Ak(t) - Wk(t), E K, (1)

k E K, (2) W k (t) = -%(t),
and

A
w t (t l , t 2) = wk(t2) - W k (t l) , k E x. (3)

Assuming that the queue has been empty at time 0,
Q k (t) is the total length of the backlogged traffic at
time t associated with session k, including residue of
any packet partially transmitted before t . wk(t) rep-
resents the total service provided to session k dur-
ing (0, t) normalized to the corresponding transmission
rate. We refer to wk as the normalized service received
by session k . Accordingly, wk(t1,12), t 2 > t l , is the
normalized service received by k during (t l , t 2) . De-
fine a session E to be backlogged at time 1 if Q k (t) > 0;
otherwise call it absent at t . Finally, let us define
B (t) as the set of sessions which are backlogged at t ,
B (t1 , t z) as the set of sessions which are backlogged
during the entire interval (t l , t z) , and d(t1, t 2) as the
set of sessions which are absent during the entire in-
terval (t l , t 2) , i.e.,

B(t) {k, s.t. Q k (t) > 0}, (4)

a(t1,t2) e {k, s.t. g k (T) > 0, for t l < T < t 2 } , (5)
A d (t 1 , t z) = { k , s.t. Q ~ (T) = 0, for t l < T < t2}.(6)

Fluid-flow fa i r queueing (FFQ) is defined as the ser-
vice discipline according to which the normalized ser-
vices wk(t) received by different backlogged sessions
k increase in time with the same rate, i.e., for any
interval (t l , t z) ,

Wk(tlyt2) = w j (t l , t Z) , k . , j E B (t l j t 2) . (7)

While a session is not backlogged, it receives no ser-
vice, i.e.,

wk(t i , t2) = 0, k E d (t i , t 2) . (8)
The above notion of ideal fairness is only applica-

ble to a hypothetical fluid-flow traffic scenario where

service can be offered to sessions in arbitrarily small
increments. In a real packet network, entire packets
of a session have to be transmitted before the service
may be shifted to another session. Therefore, it is
not possible to satisfy (7), exactly and for all intervals
of time. It is possible, however, to attempt at keeping
the normalized services wk(t1, tz) received by different
backlogged sessions k close to each other. Depending
on how exactly one tries t o accomplish this task, dif-
ferent fair queueing algorithms may be conceived.

The packet-by-packet f a i r queueing (PFQ) algo-
rithm, originally proposed by Demers, et a1 [3], and
later studied by Parekh and Gallager [9], is defined as
follows. First a fluid-flow fair queueing (FFQ) system
is considered and the order that packets finish ser-
vice in accordance with the fair queueing rule of (7)
is determined. Notice that in this FFQ system, ser-
vice can be provided in arbitrarily small increments
and several packets may be served in parallel. In the
actual packet-based queueing system, each time the
server becomes free, service is offered to that packet
which would be the first, among the packets present
in the queue, t o finish service in the hypothetical FFQ
system.

It has been proven [3, 91 that in the PFQ system,
as defined above, each packet will finish service within
B seconds of its finishing time in the corresponding
FFQ system, where B is the transmission time of a
packet with the largest possible size. Based on this
result, it can be easily shown that the PFQ scheme
conforms to our notion of fairness, i.e., the normal-
ized service wk(t1, t 2) received by different sessions
k that are backlogged during (t l , t z) remain close to
each other. Unfortunately, the realization of the PFQ
scheme is not simple since, by definition, it requires
that the events in the corresponding FFQ system be
simulated in the real-time.

The simplest realization that has been suggested
for the PFQ scheme [9] is based on the evaluation of a
time function associated with the corresponding FFQ
system, which represents the progress of work in that
system. This function, called virtual t ime , has a rate
of increase in time equal to that of the normalized
service received by any backlogged session in the FFQ
system. Next, we present some definitions.

Definition 1 A n y maximal interval of t ime during
which the server is busy without interruption, is called
a busy period.

Clearly, busy periods only depend on the traffic ar-
rival pattern and the server speed, and are indepen-
dent of the specific queueing scheme used, provided i t
is work-conserving. Therefore, we conclude that the

5c.l.3
638

busy periods of the PFQ and the associated FFQ sys-
tem coincide with each other. In this paper, each time
a busy period is considered, without loss of generality,
we assume that it starts a t t = 0.

We define the virtual t ime of the FFQ system, v(t) ,
as a function of time which changes with a rate equal
to the rate of increase of W k (t) , for any backlogged
session 6 , i.e.,

(9)

Since the existence of the derivative on the right hand
side of (9) has not been established, we provide a more
formal definition:

Definition 2 Consider a busy period of the FFQ sys-
t em, beginning at t = 0. The virtual time of the FFQ
system, v (t) , i s defined as the function which saiisfies
the following:

v(0) = 0, (10)
v(t2) - v (t l) = w k (t l , t Z) , k. E a (t l , t Z) , (11)

where (t l , t 2) is an arbitrary subinterval of the busy
period.

Therefore, while a session is backlogged in the FFQ
system, the normalized service it receives is equal to
the growth of the virtual time of the system. To
derive an expression for the evaluation of v (t) , con-
sider any subinterval (t 1 , t z) of the busy period dur-
ing which no session changes status. It follows that
each session k belongs to either B (t 1 , t ~) or d (t 1 , t z) ,
i.e., B(t1 , t 2) U d (t l , t 2) = I C . Multiplying both sides
of (11) by rk , and summing up the equation over ses-
sions k E B (t l , t z) , we get

(V (t 2) - v (t l)) r k = rk . W k (t l , t 2)
6 E B(t 1 , t z) k E B(t i , t 2)

= rk ' W k (t 1 , t 2) -k rk ' W k (t l , t 2)

k E B(t 1 , t z) k E B(t 1 , t z)

= r k ' w k (t l , t Z) , (12)
k € I C

where the second equality follows from (8). Next, no-
tice that x k E ~ . r k . w k (t l , t 2) is the total work done in
the system during (t l , t z) . Since (t 1 , t 2) is contained
in a busy period,

r k ' W k (t l , t 2) = C ' (t 2 - t l) . (13)
kEK

It follows that

v(t2) - v(t1) = c . (t 2 - t l) (r k) - ' . (14)
k€B(t t . tz)

We conclude that v (t) is a piecewise linear function
with the slope

which changes whenever the set of backlogged sessions,
B (t) , undergoes some change.

Now consider a busy period beginning at t = 0,
a session k E IC, and the sequence of packets of k
which arrive during this busy period. Denote the i'th
packet of the sequence by p i , its arrival time by a i ,
the time it finishes service in the FFQ system by d)k,
and its length by LE. Define F i , i = 1 , 2 , . . . , as
the virtual time when packet p i finishes service in the
FFQ system, i.e.,

F L S v (& i) , i = 1 , 2 , . . . , k E K . (16)

F i may be referred to as the virtual finishing t ime of
packet p i , in the FFQ system.

Lemma 1 The virtual finishing t imes F i , i =
1 , 2 , . . . , associated with the packets of each session
k E I C , satisfy the following relationship:

Fi = LL', +max(FL-',v(at,)),
r k

i = 1,2; . . , k E K , (17)

where
F i = 0, IC € I C . (18)

Proof. Let

A where, for consistency, d i = 0. Service of packet p i
cannot start before b i , since either p i arrives a t b'

b i) . Moreover, all of the previous packets of k are
completely served by b i . Therefore,

(ut, = b i) , or p;-' is in service until b i , (4- 1' =

LLt , = Wk(bt,, $,)
rk

= v(di) - v (b i) , i = 1 , 2 , . . . , (20)

where the last equality follows because k is constantly
backlogged during (b ; , d i) . Since, during the busy
period, v (t) is monotonically increasing, it follows
from (19) that

~ (b t ,) = max at,), v(d;- ')) , i = 1 , 2 , (21)

5c.l.4
639

We conclude from (20) and (21) that

u (d i) = --L\+max (.(ai), v(d;-')) , i = 1 , 2 ,

Now, in view of (16) and the fact that F i = 0 = v (d ;) ,
the lemma follows from (22).
0

The best known implementation method for the
PFQ scheme follows from Lemma 1. Since v (t) is an
increasing function of time during a busy period, it
would be identical to order the packets in terms of the
corresponding finishing times d i or to order them in
terms of the corresponding virtual finishing times Fi ;
hence the following corollary.

Corollary 1 In the P F Q system, each t ime the s e m e r
becomes free, that packet is picked up f o r transmission
which has the smallest virtual finishing t ime in the
FFQ system, among the packets present in the queue.

Equation (17) provides an iterative algorithm for
computing virtual finishing time of a packet in terms
of the packet length, virtual finishing time of the pre-
vious packet of the same session, and the system's vir-
tual time when the packet arrives. Therefore, the PFQ
scheme may be implemented by stamping each packet,
upon arrival into the queue, with a service tag equal
to the corresponding virtual finishing time, and then
serving the packets from the queue in increasing order
of the associated service tags. The service tag of a
packet may be computed, iteratively, from (17).

1 '
rt

(22)

3 Self-clocked Fair Queueing

Implementation of the PFQ scheme, as outlined
above, requires the evaluation of the virtual time v (t)
of the FFQ system, which is used in (17). Accord-
ing to (15), v(t) is a piecewise linear function with
its slope at any point of time t inversely proportional
to the sum of the service shares of sessions in the set
B(t). Whenever some session k becomes backlogged
or ceases to be backlogged in the FFQ system, the
slope of v (t) changes, constituting a breakpoint in its
piecewise linear form. Therefore, evaluation of v (t) is
conceptually simple; it requires keeping track of the
set B(t) and its evolution in time.

From a practical standpoint, however, the compu-
tational complexity associated with the evaluation of
v (t) depends on the frequency of breakpoints in v (t) ,
i.e., the frequency of transitions in and out of the set
B(t). Unfortunately, while such transitions can be
rather infrequent on the average, occasionally, a large
number of them could happen during a single packet

transmission time. The reason for this peculiar phe-
nomenon is that in the FFQ system, where v (t) is to be
determined, packets are not served one after another;
instead one packet from every backlogged session is
in service, simultaneously. It is therefore possible that
many packets finish service almost simultaneously, but
not at exactly the same time. With each packet fin-
ishing service, the corresponding session could become
absent, should there be no other packet from that ses-
sion in the queue, thereby forming a new breakpoint
in v (t) . We conclude that, in general, the number of
breakpoints in v (t) in an arbitrarily short period of
time, can approach the total number of sessions set
up on the transmission link.

The evaluation of v (t) has to be performed in real
time, for the implementation of the PFQ algorithm.
To state this requirement more accurately, in the PFQ
system, let a packet be picked up for service at t l and
finish service at t z . At t z , in order to select the next
packet for service, the virtual finishing time of pack-
ets arrived during (t 1 , t z) must be known. Therefore,
evaluation of v (t) for the interval (t l , t z) must be com-
pleted by t z . According to the previous arguments, the
number of breakpoints in v (t) during (t l , t z) can be as
high as the total number of sessions in K.

We now consider the computational complexity as-
sociated with implementing the PFQ scheme in a
broadband ATM network. A packet in our discussion
refers to a unit of data which must be transmitted as
a whole, before another unit is picked up for service.
For an ATM network, the unit of data whose trans-
mission should not be preempted by others is an ATM
cell. Therefore, the term packet as used in the present
context is synonymous to a cell in case of an ATM
network. With respect to the above discussion, t z - t l
is the transmission time of one cell. This time may be
a fraction to a few microseconds for broadband trans-
mission speeds, while the number of sessions can be in
the hundreds. We conclude that the PFQ scheme can-
not be accurately implemented in a broadband ATM
network, since real-time evaluation of v (t) is not fea-
sible.

Here, we present an alternative fair queueing
scheme which is much simpler, even though it con-
forms to our notion of fairness and provides desirable
performance. The source of complexity in the PFQ
scheme is that it defines fairness with reference to
events in a hypothetical system, i.e., the FFQ sys-
tem. This approach, combined with the fact that in
the FFQ system several packets receive service simul-
taneously, contributes to the computational complex-
ity of the PFQ scheme. The self-clocked f a i r queueing
(SCFQ) scheme described in this section is also based

5c.l.5
640

on the notion of the system's virtual time, viewed as
the indicator of progress of work in the system, ex-
cept that the virtual time is referenced to the actual
queueing system itself, rather than to a hypothetical
system. Moreover, instead of using an abstract ana-

the order of service provisions. Some insight into this
question may be gained by first considering a simpler
queueing scheme in which the packet service tags are
computed as,

~. 1 . *

Fi = --L; + Fi-' , i = 1 , 2 , . . - , k E K, (26) lytical definition for the virtual time, we have adopted
as the virtual time a quantity that naturally arises in rk

the process of the algorithm. To understand the idea,
observe from (16) that for the PFQ scheme the ser-
vice tag stamped in a packet is equal to the virtual
time when the packet finishes service. This observa-
tion suggests that the system's virtual time a t any
moment t may be estimated from the service tag of
the packet receiving service at t . With the above re-
marks in mind, we now proceed to define the SCFQ
scheme based on the following algorithm.

1. Each arriving packet p i is tagged with a service
tag Fi before it is placed in the queue. The pack-
ets in the queue are picked up for service in in-
creasing order of the associated service tags.

2. For each session k, the service tags of the arriving
packets are iteratively computed as

where-
F l = 0, k E K. (24)

3. c (t) , regarded as the system's virtual time at time
1, is defined equal to the service tag of the packet
receiving service a t that time. More specifically,

where 3 and d{ respectively denote the times
packet starts and finishes service.

with Fl = 0. In this scheme, each time a packet
p i finishes service, its service tag Fi becomes equal
to the total normalized service provided to 6 , up to
that time. Therefore, by always offering service to the
packet with the lowest service tag in the queue, the
scheme tries to equate the normalized services of all
the sessions, regardless of how long each session has
been backlogged or absent. This arrangement leads
to the accumulation of service credit by the absent
sessions. For example, at time t , when a packet with
the service tag F is in service, let a session k become
backlogged for the first time, with the arrival of a long
sequence of packets. According to (26), the service
tags assigned to the packets of k will start increment-
ing from zero. Until the service tags assigned to the
packets of k reach F , they will override packets from
sessions who have been backlogged for some time. In
order to prevent this behavior in the queueing system,
the following solution should work: once a session be-
comes backlogged anew, the normalized service op-
portunity it has missed while being absent, should be
added to the service tag of its first new packet. Substi-
tution of the term mux (Pl-', s (u i)) in (23), in lieu

of Fl-' in (26), accomplishes the above task exactly,
since it amounts to replacing FL-' with the service
tag of the packet in service, if the latter is larger. A
similar compensation takes place in (17).

The unfair outcome of computing service tags in
accordance with (26) has been previously noted by
Zhang in her paper on virtual clock algorithm [12],
who then suggests that the term Fi-' in (26) should
be replaced with mux (P i - ' , U :) , to circumvent the

This solution does not work, however, since contrary
to the virtual time, the real time U; is not a true rep-
resentation of the progress of work in the system upon
arrival of packet p i . We see that the virtual clock al-

4. Once a busy period is over, i.e., when the server

queue, the algorithm is reinitialized by setting to
and the packet counts

i for each session I C .

becomes free and no more packets are found in the Problem Of credit the bursty

the virtual time

Based on the previous discussions, it is intuitively ex-
pected that the above algorithm should closely resem-
ble the performance of the FFQ and PFQ schemes.
The validity of this conjecture will be shown in the
next section.

It is worthwhile to develop some qualitative under-
standing as to how the computation of service tags,
in accordance with (23) or (17), enforces fairness in

gorithm, structurally, gets close to what is needed to
accomplish fairness, but falls short of actually provid-
ing it.

Before turning to the next section, we would like to
caution against the hasty conclusion that the SCFQ
algorithm is identical to the PFQ scheme, or that G (t) ,
as determined in the process of the algorithm, is equal
to the virtual time of the FFQ system. In fact we

641
5c.l.6

have shown that the difference between 6 (t) and v(t)
is not necessarily bounded and may approach infin-
ity! Another hasty conclusion that one might draw
is that a new fair queueing scheme results by defin-
ing 6 (t) equal to the service tag of the most recent
packet transmitted prior to t , instead of the service
tag of the packet receiving service at time t . We have
shown that this slight modification is sufficient to com-
pletely break down the fairness property of the SCFQ
algorithm! A detailed discussion of these important
and counter-intuitive observations are deferred to the
forthcoming publications.

4 Fairness Analysis of the SCFQ
Scheme

The rest of this paper is partly concerned with com-
paring the performance of the SCFQ system and the
hypothetical FFQ system associated with it. By the
FFQ system associated with the SCFQ system, we
mean a queueing system with the same service speed,
same set of sessions and service shares, and same pat-
tern of arriving traffic, but the FFQ scheme replacing
the SCFQ scheme. While the set IC and parameters r k ,

a i , and L i are identical for these two systems, other
parameters are not. To distinguish between the two
systems, we use a hat sign (-) over parameters associ-
ated with the SCFQ system. For example, while Q k (t)
stands for the size of backlogged traffic of session k at
time t in the FFQ system, the corresponding parame-
ter in the SCFQ system is shown by Q k (l) . Note that
the busy periods of the SCFQ system are identical to
those of the FFQ or PFQ systems, since the SCFQ
scheme is also work-conserving.

Whenever we need to generically speak of a param-
eter in either system, we use a superscript S over that
parameter, where S may stand for either of the two
queueing systems. For example, v s (t) would repre-
sent both v(t) and G (t) , depending on the system rep-
resented by S. Another notational convention that we
use is the double-argument function f (t l , 1 2) to repre-
sent f (t 2) - f (t 1) , where f(t) could be any function
of time. The only exception to this notation is the set
B(t1 , t z) , already defined in a different way.

To be precise in the analysis, we need to assume
that no packet arrives at exactly the same time as the
time when a packet starts service in the SCFQ system.
The obvious exception is a t the beginning of a busy
period, when the queue is empty and, by definition,
the first arriving packet is immediately picked up for
service. The above assumption is necessary to keep
the definition of the SCFQ scheme and some of its

properties intact. However, it does not constitute a
limitation to the practicality of the scheme. From a
practical stand point, this assumption is equivalent to
enforcing mutually exclusive access to the variable G (t)
in the implementation of the algorithm responsible for
updating service tags and the system’s virtual time.
This mutually exclusive access to 6 (t) is necessary, in
any case.

We now introduce some new definitions which shall
facilitate our analysis of the SCFQ scheme.

Definit ion 3 During a busy period beginning with t =
0 , the missed normalized service of session k in system
SI u f (t) , is defined as the function which satisfies the
following:

S uk (0) = 0,

where (t l , t 2) is any subinterval of the busy period dur-
ing which k remains either backlogged o r absent.

Notice from (28) that u f (t) equals the total growth
of the system’s virtual time up to time t , while k has
not been backlogged. Therefore, it represents the ser-
vice opportuni5e.s missed by session k during (0 , t)
due to being absent; hence the name missed normal-
ized service. In order to check the fairness of queueing
system S, it is not reasonable to compare the received
normalized services w f (t) , k E I C , with each other
or with v S (t) , since the service opportunities missed
by sessions during their absence intervals should also
be accounted for. The following definitions are moti-
vated by this observation:

Definit ion 4 The virtual time of session k in system
S , v f (t) , is defined as the sum of the missed and the
received normalized services of k an sys tem S , i . e . ,

vf (t) u f (t) + w f (t) , k E IC. (29)

Definit ion 5 The service lag of a session k in system
S is defined as the diflerence between the system’s and
the session’s virtual t imes, i . e . ,

The packetized nature of traffic arrivals leads to a
staircase shape for the arrival functions Ak(t) . On the
other hand, W F (t) is a continuous function. There-
fore, in view of (1) as applied to the queueing system

5c.l.7
642

S, we can argue that while Q f (t) = 0, no service can
be provided to session k, i.e.,

W k (t 1 , t2) = 0, k E As(ti, 22). (31)

Combining (27)-(29) and (31), we get the following
corollary:

Corollary 2 The session virtual times v f (t) satisfy
the following:

S vk (0) = 0,

In regard to the FFQ system, we notice from (11)
and (33) that

vk(t11t2) = v (t i , t z) , k E B (t i , t z) U d (t i , t 2) . (34)

Next, notice that a busy period can always be di-
vided into subintervals (t j , t j + l) , j = l l 2 , . . . , dur-
ing which no session changes status and B(t j , tj+') U
d (t j , t j + l) = IC. Applying (34) to such subintervals
and summing up, leads to the following result:

Corollary 3 I n the FFQ system, the virtual time of
each session is always equal to the virtual time of the
system, i. e. ,

Vk(t) = v (t) , k E IC. (35)

Equivalently, the service lag of each session is always
zero:

6k(t) = 0, k E K. (36)
While for a fluid-flow fair queueing system the ser-

vice lag of each session always remains zero, for other
queueing systems, a session's service lag is the indica-
tion of how far behind that session is in comparison
to the progress of work in the system, as measured by
the system's virtual time.

Theorem 1 The service lag of each session k in the
SCFQ system is bounded as follows:

1
0 5 8 k (t) 5 -Lraxl k E]cl (37)

r k

where LP"" is the maximum size of packets of session
k .

This theorem, which lays down the basis for the
fairness of the SCFQ scheme, is proven through a se-
quence of 5 lemmas.

Lemma 2 During each busy period of the SCFQ sys-
tem, 6 (t) is a nondecreasing function o f t ime .

Proof. Consider a busy period and any pair of packets
p and p', consecutively served in this period. Let the
transmission of p and p' start a t t and t ' , t'-> t , and
let the service tags associated with them be F and F',
respectively. Denote the arrival time of p' by a'. We
argue that

We have previously assumed that a' # t . If a' < t , (38)
follows since packet p must have the smallest service
tag of any packet in the queue at time t . Otherwise,
t < a' 5 t', and according t,o (23), F' > 6(a'). Also,
according to (25)' 6(a') = F . Therefore, (38) is valid
in either case. Since p and p' are an arbitrary pair
of consecutively served packets, we conclude that the
service tags of all packets transmitted during a busy
period form a nondecreasing sequence. The lemma
now follows from the definition of C(t) in (25).
0

F' 2 F. (38)

Lemma 3 For each session k and packet p i ,

fik($;-', 2;) =

max 0,6(2;-', 6;)) , k E K, i = 1 , 2 ,

A

(
where d: = 0.

Proof. Since k is backlogged during (U ; , 8
ing to (28),

, accord-

c k (4 - ' , &) = Gk($i- ' , a i) + G k (U i , &)

= Gk(&- ' , ai). (40)

If U; < &-', session k is backlogged during (a i , 2;:')
; otherwise k is not backlogged during (#;',U;).

Therefore, it follows from (28) and (40) that

From the nondecreasing property of 6 (t) stated in
Lemma 2, we get

The lemma follows from (41) and (42).
0

Lemma 4 Each tame a packet finishes service in the
SCFQ system, the service lag of the corresponding ses-
sion becomes zero, i.e.,

s k (&) = 0, for all packets p t . (43)

5c.l.8
643

Proof. We observe from Definition 4 and Lemma 3
that

G k (& - ' , $ i) = 2irk(&-',&) + G k ($; - ' , &)

= J - L ~ + max (0, ~ (2 i - 1 , a i) >

= L L ~ + max (~ (4 - 1 1 , ~(ii;)) - ~ (2 i - l) .

f k

(44)

We also notice from the definition of Q (1) and the up-
dating rule in (23) that

rk

(
^. 1 .

~ (c i ;) = -LL; + max ~(ai-l), ~ (a ;)) . (45)
r k

It follows from (44) and (45) that

Gh(ci';) - G k (4 - l) = 6 (&) - G(2i-l). (46)

By rearranging the terms and applying Definition 5,
we get

Finally, since by definition c$ = 0,
8 k (&) = j k (2 i - l) . (47)

8 k (d ^ !) = c(0) - Vk(0) = 0, (48)

where the last equality follows from (10) and (32).
Considering that (47) holds for any i = 1 , 2 , . . ., the
lemma follows from (47) and (48).
0

Lemma 5 While a session is absent or each time a
session becomes backlogged in the SCFQ system, its
service lag i s zero, i.e.,

Proof. Define
that

e max (& - ' , a i) . First, we argue

i k (6) = 0. (53)
If = 4-', (53) follows from Lemma 4. Otherwise,

, in which case k becomes backlogged
at b; , and (53) follows from Lemma 5. We conclude
from (53) that

p - a' > 2-1
k , k k

6 k (t) = 6 k (&) + d k (& , t)

= 8 k (& , t)

= 6(&i , t) - 6 k (b i , t) . (54)

Next, it follows from the (23) and (25) that

~ (2 ;) = J - L ~ + max (~(ai-l), ~(6;))
r k

(55)
= - L k 1 i + 6(&),

r k

where the second equality follows from the nondecreas-
ing property of G(t). Therefore,

Next, notice that 2i-l 5 1 < since p i is the first
packet to finish service after t . Also, a i 5 t , since k is
backlogged at t . It follows that

& (t) = 0, k @ b(t), or k bec,omes backlogged at 1. a; 5 ai, 5 t < ai, (57)
(49)

Proof. Consider a session k $2 B(t) , or a session k
which becomes backlogged a t 1. Let there be i pack-
ets served from k during (0 , t) . It follows that k is not

Us-

and that k is backlogged in the SCFQ system dur-
ing (bi,t). Since G (t) is nondecreasing, we conclude
from (56) and (57) that

backlogged in the SCFQ system during ($i, t) . 0 5 G (& , t) 5 G (P i , &) = LLi. (58) ing (331, rk

ik((i l , t) = G (2 i , t) - ck(ai, t) = 0. (50)

We conclude from (50) and Lemma 4, or (48) in case
of i = 0, that

Since k is backlogged during (& f , t) , according to (33)

c k (b i , t) = @ k (p i , t) . (59)

The lemma may now be proven by considering two
alternative cases. The first case is when the service
of p i starts on or after t . In this case, T i ? k (g h , t) = 0,
since 2i-l 5 bi. So, we conclude from (59) that

(51) 8 k (t) = 8k(&.) + i k (a i , t) = 0.

0

Lemma 6 For any session k E &t),

The Lemma, for this case, follows from (54), (58),
and (60). The second case is when the service of p';
starts before t . Since, in this case, the only service

where p i is the first packet of k to finish service an the
SCFQ system after t .

5c.l.9 644

provided to k during (a i , t) is partial transmission of
P i ,

1 '
0 5 6 k (p i l t) = '&k(p i , t) < - L i . (61)

r k

On the other hand, in this case, G(t) = Fi = G(r&) .
Therefore, in view of (56),

(62)
^ . 1 '

6 (b ; , t) = 6(&.,2i) = - L i .
r k

The lemma, for this case, follows from (54), (61), and

0

Consider the differential service lag function

(62).

Lemmas 5 and 6 conclude the proof of Theorem 1.

j k (t I l t 2) = dk(t2) - j k (t 1)
= 6(21 , t2) - V k (t l , t 2) , C E K. (63)

By Theorem 1,

1
r k

l j k (t l , t 2)1 5 -LpaXl k E x. (64)

Since Gk(t1,tZ) = ' & k (t l , t g) , f o r k E b (t l , t 2) , the fol-
lowing corollaries result from (63) and (64).

Corollary 4 For any session k E b (t 1 , t ~) ,

1
lG(t l j t2) - G k (t l r t 2) l 5 -,pax. (65) rk

Corollary-5 For any pair of sessions k and
j , k , j E a (t l , t z) ,

1 1

rk r j
I'tilk(tl,t2) - @ j (t l , t 2) 1 5 -Lpax + -LFax. (66)

Corollary 5 follows by subtracting the expressions
in Corollary 4 as applied to sessions k and j. This
result establishes the basic fairness property of the
SCFQ scheme. It shows that the normalized services
received by different backlogged sessions remain close
to each other and that the disparity among them is
always bounded. Notice that the upper bound in
Corollary 5 is independent of the comparison inter-
val (t l , t z) . Therefore, as the comparison interval ex-
pands, the average rates of normalized services offered
to the backlogged sessions converge and the disparity
among them vanishes.

We could actually arrive at Corollary 5, in a sim-
pler and more direct way, by starting from Lemma 2,
then arguing that while a session k is backlogged
Fi = kLi + Fi-' , and then proceeding with some
additional details. Instead, we have preferred to carry
out this longer but more comprehensive analysis of the

SCFQ system, since the additional results obtained
here are useful.

While Corollary 5 confirms that in the SCFQ sys-
tem, the disparity in the normalized services received
by different backlogged sessions is bounded, it does
not provide an idea of how good this bound is. This
question is answered by the following theorem, stated
here without proof.

Theorem 2 Consider the class of packet-based
queueing systems S for which, given any t ime interval
(t l , t 2) and any pair of backlogged sessions k and j ,
the following bound holds,

where D s (k , j) does not dependent on the t ime in-
terval (t 1 , t 2) . Then, f o r any system S of this class,
D s (k , j) always satisfies the following:

By comparing (66) and (68), we conclude that the
SCFQ scheme is a near-optimal fair queueing scheme,
in the sense that the maximum service disparity al-
lowed by it between any pair of backlogged sessions is
never more than two times the corresponding figure in
any packet-based queueing system.

5 Conclusion

In this paper, a self-clocked fair queueing scheme
(SCFQ) for packet networks has been developed,
which is based on a novel self-contained approach to
fair queueing. Compared to the packet-by-packet fair
queueing (PFQ) [3, 91, the scheme proposed here pro-
vides substantial simplicity and ease of implementa-
tion. The reason is that, in the PFQ scheme, fairness
is defined in reference to the events in the hypothetical
FFQ system. Accordingly, the virtual time function,
which serves as the measure of the work progress in
the system, has to be evaluated for the correspond-
ing FFQ system, for every packet. We avoid this
computation by using an internally generated virtual
time to reflect the progress of work in the system.
Hence the name self-clocked fair queueing. Further-
more, since the virtual time is simply extracted from
the packet in the head of the queue, its generation in-
volves minimal data processing. These features make

5c.l .I 0
645

the SCFQ scheme well-suited for broadband imple-
mentation, whereas the computational complexity of
the PFQ scheme makes i t difficult to implement.

We have studied the performance of the SCFQ
scheme from 2 perspectives. The first line of analysis
compared the normalized services received by different
sessions which are backlogged (in the SCFQ system
itself), and proved that the service disparity among
sessions is always bounded. Then, it was stated that
the maximum permissible service disparity between
a pair of backlogged sessions in the SCFQ scheme is
never more than two times the corresponding figure
for any packet-based queueing system. Therefore, we
concluded that the SCFQ scheme represents a near
optimal fair queueing scheme.

There are some other important properties that we
have been able to demonstrate for the SCFQ scheme,
which will be presented in the forthcoming publica-
tions. One property concerns the comparison of the
services received in accordance with the SCFQ and the
FFQ schemes, when the same set of session traffic ar-
rivals is considered. We have shown that the disparity
between services received by any session in accordance
with the SCFQ and FFQ schemes is always bounded.
A more specific property concerns the end-to-end ses-
sion delays in a network employing the SCFQ scheme
in conjunction with the leaky bucket admission policy.
For such a network, we have derived end-to-end ses-
sion delay bounds which are comparable to the bounds
established by Parekh and Gallager [9, 101 for a net-
work employing packet-by-packet fair queueing (PFQ)
in conjunction with the leaky bucket admission policy.

Based on the above results, we conclude that the
SCFQ scheme retains the desirable bounded delay
property of the PFQ scheme, while eliminating its
undesirable computational complexity. The bounded
end-to-end delay feature is an important property use-
ful in multi-media networks carrying real-time traffic.
Hence we believe that the SCFQ scheme is well-suited
for broadband multi-media networks.

Acknowledgements

The author would like to appreciate T. V. Lak-
shman, Yow-jian Lin, Mark W. Garrett, and Walter
Willinger for helpful comments.

References

[2] R. L. Cruz. A calculus for network delay, part ii:
Network analysis. IEEE Transactions on Infor-
mation Theory, 37(1):132-141, January 1991.

[3] A. Demers, S. Keshav, and S. Shenkar. Analysis
and simulation of a fair queueing algorithm. In
Proc. SIGCOMM’89, pages 1-12, Austin, Texas,
September 1989.

[4] D. Ferrari and D. Verma. A scheme for real-
time channel establishment in wide-area net-
works. IEEE Journal on Selected Areas in Com-
munications, 8(3):368-379, 1990.

[5] S . J . Golestani. Congestion free communication in
high speed packet networks. IEEE Transactions
on Communications, 32(12):1802-1812, Decem-
ber 1991.

[6] S. J . Golestani. A framing strategy for congestion
management. IEEE Journal on Selected Areas
in Communications, 9(7):1064-1077, September
1991.

[7] E. Hahn. Round Robin Scheduling f o r Fair Flow
Control. PhD thesis, Department of Electrical
Engineering and Computer Science, MIT, Decem-
ber 1986.

[8] J . F. Kurose. On computing per-session per-
formance bounds in high-speed multi-hop com-
puter networks. In PTOC. ACM SIGMETRICS’92
Con!., pages 128-139, Newport, RI, June 1991.

[9] A. K. Parekh and R. G. Gallager. A general-
ized processor sharing approach to flow control
in integrated services networks. In Proc. IEEE
INFOCOM’92, pages 915-924, 1992.

[lo] A. K. Parekh and R. G. Gallager. A general-
ized processor sharing approach to flow control
in integrated services networks. In Proc. IEEE
INFOCOM’93, pages 521-530, 1993.

[ll] D. Verma, H . Zhang, and D. Ferrari. Guaran-
teed delay jitter bounds in packet switching net-
works. In Proc. TriComm’92, Chapel Hill, NC,
April 1991.

[12] L. Zhang. Virtual clock: A new traffic control al-
gorithm for packet switching. A C M Transactions
on Computer Systems, 9(2):101-124, may 1991.

[l] R. L. Cruz. A calculus for network delay, part
i: Network elements in isolation. IEEE Transac-
tions on Information Theory, 37(1):114-131, Jan-
uary 1991.

5c.l.11
646

