
Convex Optimization — Boyd & Vandenberghe

1. Introduction

• mathematical optimization

• least-squares and linear programming

• convex optimization

• example

• course goals and topics

• nonlinear optimization

• brief history of convex optimization
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Mathematical optimization

(mathematical) optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . , m

• x = (x1, . . . , xn): optimization variables

• f0 : Rn → R: objective function

• fi : Rn → R, i = 1, . . . , m: constraint functions

optimal solution x⋆ has smallest value of f0 among all vectors that
satisfy the constraints
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Examples

portfolio optimization

• variables: amounts invested in different assets

• constraints: budget, max./min. investment per asset, minimum return

• objective: overall risk or return variance

device sizing in electronic circuits

• variables: device widths and lengths

• constraints: manufacturing limits, timing requirements, maximum area

• objective: power consumption

data fitting

• variables: model parameters

• constraints: prior information, parameter limits

• objective: measure of misfit or prediction error
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Solving optimization problems

general optimization problem

• very difficult to solve

• methods involve some compromise, e.g., very long computation time, or
not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

• least-squares problems

• linear programming problems

• convex optimization problems
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Least-squares

minimize ‖Ax − b‖2

2

solving least-squares problems

• analytical solution: x⋆ = (ATA)−1AT b

• reliable and efficient algorithms and software

• computation time proportional to n2k (A ∈ Rk×n); less if structured

• a mature technology

using least-squares

• least-squares problems are easy to recognize

• a few standard techniques increase flexibility (e.g., including weights,
adding regularization terms)
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Linear programming

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . ,m

solving linear programs

• no analytical formula for solution

• reliable and efficient algorithms and software

• computation time proportional to n2m if m ≥ n; less with structure

• a mature technology

using linear programming

• not as easy to recognize as least-squares problems

• a few standard tricks used to convert problems into linear programs
(e.g., problems involving ℓ1- or ℓ∞-norms, piecewise-linear functions)
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Convex optimization problem

minimize f0(x)
subject to fi(x) ≤ bi, i = 1, . . . , m

• objective and constraint functions are convex:

fi(αx + βy) ≤ αfi(x) + βfi(y)

if α + β = 1, α ≥ 0, β ≥ 0

• includes least-squares problems and linear programs as special cases
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solving convex optimization problems

• no analytical solution

• reliable and efficient algorithms

• computation time (roughly) proportional to max{n3, n2m,F}, where F
is cost of evaluating fi’s and their first and second derivatives

• almost a technology

using convex optimization

• often difficult to recognize

• many tricks for transforming problems into convex form

• surprisingly many problems can be solved via convex optimization
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Example

m lamps illuminating n (small, flat) patches

lamp power pj

illumination Ik

rkj

θkj

intensity Ik at patch k depends linearly on lamp powers pj:

Ik =

m∑

j=1

akjpj, akj = r−2

kj max{cos θkj, 0}

problem: achieve desired illumination Ides with bounded lamp powers

minimize maxk=1,...,n | log Ik − log Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m
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how to solve?

1. use uniform power: pj = p, vary p

2. use least-squares:

minimize
∑n

k=1
(Ik − Ides)

2

round pj if pj > pmax or pj < 0

3. use weighted least-squares:

minimize
∑n

k=1
(Ik − Ides)

2 +
∑m

j=1
wj(pj − pmax/2)2

iteratively adjust weights wj until 0 ≤ pj ≤ pmax

4. use linear programming:

minimize maxk=1,...,n |Ik − Ides|
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

which can be solved via linear programming

of course these are approximate (suboptimal) ‘solutions’
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5. use convex optimization: problem is equivalent to

minimize f0(p) = maxk=1,...,n h(Ik/Ides)
subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m

with h(u) = max{u, 1/u}
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f0 is convex because maximum of convex functions is convex

exact solution obtained with effort ≈ modest factor × least-squares effort
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additional constraints: does adding 1 or 2 below complicate the problem?

1. no more than half of total power is in any 10 lamps

2. no more than half of the lamps are on (pj > 0)

• answer: with (1), still easy to solve; with (2), extremely difficult

• moral: (untrained) intuition doesn’t always work; without the proper
background very easy problems can appear quite similar to very difficult
problems
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Course goals and topics

goals

1. recognize/formulate problems (such as the illumination problem) as
convex optimization problems

2. develop code for problems of moderate size (1000 lamps, 5000 patches)

3. characterize optimal solution (optimal power distribution), give limits of
performance, etc.

topics

1. convex sets, functions, optimization problems

2. examples and applications

3. algorithms
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Nonlinear optimization

traditional techniques for general nonconvex problems involve compromises

local optimization methods (nonlinear programming)

• find a point that minimizes f0 among feasible points near it

• fast, can handle large problems

• require initial guess

• provide no information about distance to (global) optimum

global optimization methods

• find the (global) solution

• worst-case complexity grows exponentially with problem size

these algorithms are often based on solving convex subproblems

Introduction 1–14



Brief history of convex optimization

theory (convex analysis): ca1900–1970

algorithms

• 1947: simplex algorithm for linear programming (Dantzig)

• 1960s: early interior-point methods (Fiacco & McCormick, Dikin, . . . )

• 1970s: ellipsoid method and other subgradient methods

• 1980s: polynomial-time interior-point methods for linear programming
(Karmarkar 1984)

• late 1980s–now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

applications

• before 1990: mostly in operations research; few in engineering

• since 1990: many new applications in engineering (control, signal
processing, communications, circuit design, . . . ); new problem classes
(semidefinite and second-order cone programming, robust optimization)
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