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Local Extrema for f(x1, x2.., xn)

Definition
[Local minimum]: A function f : D → ℜ of n variables has a local minimum at x0 if ∃N (x0)

such that ∀ x ∈ N (x0), f(x0) ≤ f(x). In other words, f(x0) ≤ f(x) whenever x
lies in some neighborhood around x0. An example neighborhood is the circular
disc when D = ℜn.

Definition
[Local maximum]: ......................... f(x0) ≥ f(x).

General Reference: Stories About Maxima and Minima (Mathematical World) by Vladimir M.
Tikhomirov
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Local Extrema
These definitions are exactly analogous to the definitions for a function of single variable.
Figure 7 shows the plot of f(x1, x2) = 3x21 − x31 − 2x22 + x42. As can be seen in the plot, the
function has several local maxima and minima.

Figure 1:
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Convexity and Extremum: Slopeless interpretation (SI)

Definition
A function f is convex on D, iff

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (1)

and is strictly convex on D, iff

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2) (2)

whenever x1,x2 ∈ D, x1 ̸= x2 and 0 < α < 1.

Note: This implicitly assumes that whenever x1,x2 ∈ D,
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Convexity and Extremum: Slopeless interpretation (SI)

Definition
A function f is convex on D, iff

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2) (1)

and is strictly convex on D, iff

f(αx1 + (1− α)x2) < αf(x1) + (1− α)f(x2) (2)

whenever x1,x2 ∈ D, x1 ̸= x2 and 0 < α < 1.

Note: This implicitly assumes that whenever x1,x2 ∈ D, αx1 + (1− α)x2 ∈ D
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Local Extrema
Figure 2 shows the plot of f(x1, x2) = 3x21 +3x22 − 9. As can be seen in the plot, the function is
cup shaped and appears to be convex everywhere in ℜ2.

Figure 2:
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From f(x) : ℜ → ℜ to f(x1, x2 . . . xn) : D → ℜ

Need to also extend
Extreme Value Theorem
Rolle’s theorem, Mean Value Theorem, Taylor Expansion
Necessary and Sufficient first and second order conditions for local/extrema
First and second order conditions for Convexity

Need following notions/definitions in D
Neighborhood and open sets/balls (⇐ Local extremum)
Bounded, Closed Sets (⇐ Extreme value theorem)
Convex Sets (⇐ Convex functions of n variables)
Directional Derivatives and Gradients (⇐ Taylor Expansion, all first order conditions)
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Convex Functions, Epigraphs, Sublevel sets, Separating and Supporting
Hyperplane Theorems and required tools
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Convex Functions: Extending Slopeless Definition from ℜ :→ ℜ
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Recall: 



Convex Functions: Extending Slopeless Definition from ℜ :→ ℜ
A function f : D → ℜ is convex if
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D is convex and f at convex combination
is upper bounded by convex combinations
of the f



Convex Functions: Extending Slopeless Definition from ℜ :→ ℜ
A function f : D → ℜ is convex if D is a convex set and

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) ∀ x,y ∈ D 0 ≤ θ ≤ 1 (40)
A function f : D → ℜ is strictly convex if D is convex and

f(θx + (1− θ)y) < θf(x) + (1− θ)f(y)) ∀ x,y ∈ D 0 ≤ θ ≤ 1 (41)
A function f : D → ℜ is strongly convex if D is convex and for some constant c > 0

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y))− 1
2cθ(1− θ)||x − y||2 ∀ x,y ∈ D 0 ≤ θ ≤ 1

A function f : D → ℜ is uniformly convex wrt function c(x) ≥ 0 (vanishing only at 0) if
D is convex and

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y))− c(∥x − y∥)θ(1− θ) ∀ x,y ∈ D 0 ≤ θ ≤ 1 (43)
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guaranteed upperbound increasing quadratically wrt ||x-y||

c is some non-negative function of ||x-y|| 



Figure 5: Example of convex function.
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strict convexity=> positive gap

strong convexity => gap increases atleast quadratically
wrt ||x-y|| (further away is x from
y, weaker the approximation)

uniform convexity ==> weakness is characterized by
a fixed function c(||x-y||)

c is the strength of the convexity



Examples of Convex Functions

Examples of convex functions on the set of reals ℜ as well as on ℜn and ℜm×n are shown
below.

Function type Domain Additional Constraints
The affine function: ax + b ℜ Any a, b ∈ ℜ
The exponential function: eax ℜ Any a ∈ ℜ
Powers: xα ℜ++ α ≥ 1 or α ≤ 1

Powers of absolute value: |x|p ℜ p ≥ 1

Negative entropy: x log x ℜ++

Affine functions of vectors: aTx + b ℜn

p-norms of vectors: ||x||p =




n∑

i=1

|xi|p



1/p

ℜn p ≥ 1

inf norms of vectors: ||x||∞ = maxk |xk| ℜn

Affine functions of matrices: tr(ATX) + b =

m∑

i=1

n∑

j=1

AijXij + b ℜm×n

Spectral (maximum singular value) matrix norm: ||X||2 = σmax(X) = (λmax(XTX))1/2 ℜm×n

Table 1: Examples of convex functions on ℜ, ℜn and ℜm×n.
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Not strictly
convex

Strictly 
convex

Strictly convex



Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:
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x^2
ax^2 + bx + c



Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:
▶ f(x) = x2
▶ f(x) = x2 − cos(x)
▶ For f : ℜn → ℜ,

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 129 / 212

||x||^2
||A||_F (Frobeinius norm)
x^TAx + bx + c



Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:
▶ f(x) = x2
▶ f(x) = x2 − cos(x)
▶ For f : ℜn → ℜ, f(x) = xTAx + bTx + c

Strictly Convex but not Strongly Convex:
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x^4
x^6
exp(x)



Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:
▶ f(x) = x2
▶ f(x) = x2 − cos(x)
▶ For f : ℜn → ℜ, f(x) = xTAx + bTx + c

Strictly Convex but not Strongly Convex:
▶ f(x) = x4
▶ f(x) = x4

Convex but not Strictly Convex:
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|x|

piecewise linear functions



Strict, Strong and Uniform Convexity for f : ℜ → ℜ

Strictly, Strongly Convex Function:
▶ f(x) = x2
▶ f(x) = x2 − cos(x)
▶ For f : ℜn → ℜ, f(x) = xTAx + bTx + c

Strictly Convex but not Strongly Convex:
▶ f(x) = x4
▶ f(x) = x4

Convex but not Strictly Convex:
▶ f(x) = |x|
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A function f : ℜn → ℜ is said to be concave if the function −f is convex. Examples of concave
functions on the set of reals ℜ are shown below. If a function is both convex and concave, it
must be affine, as can be seen in the two tables.

Function type Domain Additional Constraints
The affine function: ax + b ℜ Any a, b ∈ ℜ
Powers: xα ℜ++ 0 ≤ α ≤ 1

logarithm: log x ℜ++

Table 2: Examples of concave functions on ℜ.

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 130 / 212

All properties we discuss for min of convex fns should hold for max of
concave functions

Note: Domain D of a concave function should still remain convex

H/W: Can you prove this? 



Convexity and Global Minimum

Fundamental chracteristics:
1 Any point of local minimum point is also a point of global minimum.
2 For any stricly convex function, the point corresponding to the gobal minimum is also
unique.

To discuss these further, we need to extend the defitions of Local Minima/Maxima to arbitrary
sets D
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Illustrating Local Extrema for f : ℜ2 → ℜ
These definitions are exactly analogous to the definitions for a function of single variable.
Figure below shows the plot of f(x1, x2) = 3x21 − x31 − 2x22 + x42. As can be seen in the plot, the
function has several local maxima and minima.

Figure 6:
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Local Extrema in Normed Spaces: Extending from ℜ → ℜ
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Recap: 



Local Extrema in Normed Spaces: Extending from ℜ → ℜ
Definition
[Local maximum]: A function f of n variables has a local maximum at x0 ∈ D in a normed

space D if ∃ϵ > 0 such that ∀ ||x − x0|| < ϵ. f(x) ≤ f(x0). In other words,
f(x) ≤ f(x0) whenever x lies in the interior of some norm ball around x0.

Definition
[Local minimum]: A function f of n variables has a local minimum at x0 ∈ D in a normed

space D if ∃ϵ > 0 such that ∀ ||x − x0|| < ϵ. f(x) ≥ f(x0). In other words,
f(x) ≥ f(x0) whenever x lies in the interior of some norm ball around x0.

1 These definitions can be easily extended to metric spaces or topological spaces. But we
need definitions of open sets and interior in those spaces (and in fact some other
foundations will also help).

2 We will first provide these defintions in ℜn and then provide the idea for extending them
to more abstract topological/metric/normed spaces.
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Recap: Basic Prerequisite Topological Concepts in ℜn

Definition
[Balls in ℜn]: Consider a point x ∈ ℜn. Then the closed norm ball around x of radius ϵ is

B[x, ϵ] =
{

y ∈ ℜn|||y − x|| ≤ ϵ
}

Likewise, the open nborm all around x of radius ϵ is defined as

B(x, ϵ) =
{

y ∈ ℜn|||y − x|| < ϵ
}

For the 1-D case, open and closed balls degenerate to open and closed intervals respectively.
Definition
[Boundedness in ℜn]: We say that a set S ⊂ ℜn is bounded when
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Open norm ball = int(closed
norm ball)

there is a closed
ball B[x,\epsilon]
containing S



Recap: Basic Prerequisite Topological Concepts in ℜn

Definition
[Balls in ℜn]: Consider a point x ∈ ℜn. Then the closed norm ball around x of radius ϵ is

B[x, ϵ] =
{

y ∈ ℜn|||y − x|| ≤ ϵ
}

Likewise, the open nborm all around x of radius ϵ is defined as

B(x, ϵ) =
{

y ∈ ℜn|||y − x|| < ϵ
}

For the 1-D case, open and closed balls degenerate to open and closed intervals respectively.
Definition
[Boundedness in ℜn]: We say that a set S ⊂ ℜn is bounded when there exists an ϵ > 0 such

that S ⊆ B[0, ϵ].

In other words, a set S ⊆ ℜn is bounded means that there exists a number ϵ > 0 such that for
all x ∈ S, ||x|| ≤ ϵ.
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Note that the centre of the closed ball is 0

Eg: the positive quadrant is not bounded. But any rectangle is bounded! 



Interpretation of bounded set (the rectangle in green is
      bounded by the circle in
      green)



More Basic Prerequisite Topological Concepts in ℜn

Definition
[Interior and Boundary points]: A point x is called an interior point of a set S if
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there exists an open call B(x,\epsilon) contained in S



More Basic Prerequisite Topological Concepts in ℜn

Definition
[Interior and Boundary points]: A point x is called an interior point of a set S if there

exists an ϵ > 0 such that B(x, ϵ) ⊆ S.

In other words, a point x ∈ S is called an interior point of a set S if there exists an open ball
of non-zero radius around x such that the ball is completely contained within S.

Definition
[Interior of a set]: Let S ⊆ ℜn. The set of all points
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that are interior points



More Basic Prerequisite Topological Concepts in ℜn

Definition
[Interior and Boundary points]: A point x is called an interior point of a set S if there

exists an ϵ > 0 such that B(x, ϵ) ⊆ S.

In other words, a point x ∈ S is called an interior point of a set S if there exists an open ball
of non-zero radius around x such that the ball is completely contained within S.

Definition
[Interior of a set]: Let S ⊆ ℜn. The set of all points lying in the interior of S is denoted by

int(S) and is called the interior of S. That is,

int(S) =
{

x|∃ϵ > 0 s.t. B(x, ϵ) ⊂ S
}

In the 1−D case, the open interval obtained by excluding endpoints from an interval I is the
interior of I, denoted by int(I). For example, int([a, b]) = (a, b) and int([0,∞)) = (0,∞).
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More Basic Prerequisite Topological Concepts in ℜn

Definition
[Boundary of a set]: Let S ⊆ ℜn. The boundary of S, denoted by ∂(S) is defined as
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1) If the boundary were to belong to S:
set of all points x such that any open ball (with any epsilon) around x
is partly outside S (and implicitly partly contained in S)
2) In general:
set of all points x such that any open ball (with any epsilon) around x
is partly outside S and partly contained in S



More Basic Prerequisite Topological Concepts in ℜn

Definition
[Boundary of a set]: Let S ⊆ ℜn. The boundary of S, denoted by ∂(S) is defined as

∂(S) =
{

y|∀ ϵ > 0, B(y, ϵ) ∩ S ̸= ∅ and B(y, ϵ) ∩ SC ̸= ∅
}

For example, partial([a, b]) = {a, b}.
Definition
[Open Set]: Let S ⊆ ℜn. We say that S is an open set when,
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part of ball
in the set

part of ball
outside (in the complement)

the boundary does not belong to the set



More Basic Prerequisite Topological Concepts in ℜn

Definition
[Boundary of a set]: Let S ⊆ ℜn. The boundary of S, denoted by ∂(S) is defined as

∂(S) =
{

y|∀ ϵ > 0, B(y, ϵ) ∩ S ̸= ∅ and B(y, ϵ) ∩ SC ̸= ∅
}

For example, partial([a, b]) = {a, b}.
Definition
[Open Set]: Let S ⊆ ℜn. We say that S is an open set when, for every x ∈ S, there exists

an ϵ > 0 such that B(x, ϵ) ⊂ S.

1 The simplest examples of an open set are the open ball, the empty set ∅ and ℜn.
2 Further, arbitrary union of opens sets is open. Also, finite intersection of open sets is
open.

3 The interior of any set is always open. It can be proved that a set S is open if and only if
int(S) = S.
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Recall Topology: Basic entry point of open sets



More Basic Prerequisite Topological Concepts in ℜn

The complement of an open set is the closed set.

Definition
[Closed Set]: Let S ⊆ ℜn. We say that S is a closed set when

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 137 / 212

its complement is open



More Basic Prerequisite Topological Concepts in ℜn

The complement of an open set is the closed set.

Definition
[Closed Set]: Let S ⊆ ℜn. We say that S is a closed set when SC (that is the complement

of S) is an open set. It can be proved that ∂S ⊆ S, that is, a closed set contains
its boundary.

The closed ball, the empty set ∅ and ℜn are three simple examples of closed sets. Arbitrary
intersection of closed sets is closed. Furthermore, finite union of closed sets is closed.

Definition
[Closure of a Set]: Let S ⊆ ℜn. The closure of S, denoted by closure(S) is given by
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union of S with its boundary



More Basic Prerequisite Topological Concepts in ℜn

The complement of an open set is the closed set.

Definition
[Closed Set]: Let S ⊆ ℜn. We say that S is a closed set when SC (that is the complement

of S) is an open set. It can be proved that ∂S ⊆ S, that is, a closed set contains
its boundary.

The closed ball, the empty set ∅ and ℜn are three simple examples of closed sets. Arbitrary
intersection of closed sets is closed. Furthermore, finite union of closed sets is closed.

Definition
[Closure of a Set]: Let S ⊆ ℜn. The closure of S, denoted by closure(S) is given by

closure(S) =
{

y ∈ ℜn|∀ ϵ > 0,B(y, ϵ) ∩ S ̸= ∅
}
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Some more Interesting Connections

1 The closure of a set is the smallest closed set containing the set. The closure of a closed
set is the set itself.

2 S is closed if and only if closure(S) = S.
3 A bounded set can be defined in terms of a closed set; A set S is bounded if and only if it
is contained strictly inside a closed set.

4 A relationship between the interior, boundary and closure of a set S is
closure(S) = int(S) ∪ ∂(S).
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Extending Open, Closed sets, Boundary, Interior, etc to Topological Sets
This is for Optinal Reading

1 Recap: Open Set follows from Defintion 1 of Topology. Neighborhood follows from
Definition 2 of Topology.

2 Limit Point: Let S be a subset of a topological set X. A point x ∈ X is a limit point of S
if every neighborhood of x contains atleast one point of S different from x itself.

▶ If X has an associated metric d and S ⊆ X then x ∈ S is a limit point of S iff ∀ ϵ > 0,
{y ∈ S s.t. 0 < d(y, x) < ϵ} ̸= ∅}.

3 Closure of S = closure(S) = S ∪ {limit points of S}.
4 Boundary ∂S of S: Is the subset of S such that every neighborhood of a point from ∂S
contains atleast one point in S and one point not in S.

▶ If S has a metric d then:
∂S = {x ∈ S|∀ ϵ > 0, ∃ y s.t. d(x, y) < ϵ and y ∈ S and∃ z s.t. d(x, z) < ϵ and z /∈ S}

5 Open set S: Does not contain any of its boundary points
▶ If X has an associated metric d and S ⊆ X is called open if for any x ∈ S, ∃ ϵ > 0 such that
given any y ∈ S with d(y, x) < ϵ, y ∈ S.

6 Closed set S: Has an open complement SC
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Revisiting Example for Local Extrema
Figure below shows the plot of f(x1, x2) = 3x21 − x31 − 2x22 + x42. As can be seen in the plot, the
function has several local maxima and minima.

Figure 7:
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Convexity and Global Minimum

Fundamental chracteristics: Let us now prove them
1 Any point of local minimum point is also a point of global minimum.
2 For any stricly convex function, the point corresponding to the gobal minimum is also
unique.

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 141 / 212


