PAGES 216 TO 231 OF http://www.cse.iitb.ac.in/~ cs709/notes/BasicsOfConvexOptimiz ation.pdf, interspersed with pages between 239 and 253 and summary of material thereafter, which extend univariate concepts to generic spaces

Maximum and Minimum values of univariate functions

Let f be a function with domain \mathcal{D} . Then f has an *absolute maximum* (or global maximum) value at point $c \in \mathcal{D}$ if

 $f(x) \le f(c), \ \forall x \in \mathcal{D}$

and an *absolute minimum* (or global minimum) value at $c \in \mathcal{D}$ if

 $f(x) \ge f(c), \ \forall x \in \mathcal{D}$

If there is an open interval \mathcal{I} containing c in which $f(c) \geq f(x)$, $\forall x \in \mathcal{I}$, then we say that f(c) is a *local maximum value* of f. On the other hand, ifthere is an open interval \mathcal{I} containing c in which $f(c) \leq f(x)$, $\forall x \in \mathcal{I}$, then we say that f(c) is a *local minimum value* of f. If f(c) is either a local maximum or local minimum value of f in an open interval \mathcal{I} with $c \in \mathcal{I}$, the f(c) is called a *local extreme value* of f.

Theorem 39 If f(c) is a local extreme value and if f is differentiable at x = c, then f'(c) = 0. $\rightarrow |f a|| p ds of f exist at <math>x = c \oplus D \subseteq R^{n}$ 4 If f(c) is local extreme $\gamma f(c) = 0$

Theorem 40 A continuous function f(x) on a closed and bounded interval [a,b] attains a minimum value f(c) for some $c \in [a,b]$ and a maximum value f(d) for some $d \in [a,b]$. That is, a continuous function on a closed, bounded interval attains a minimum and a maximum value.

Keplace with sets fork

Note: [a, ∞) is closed bat NOT bounded So both conditions are needed

FOR Rn

Theorem 60 If $f(\mathbf{x})$ defined on a domain $\mathcal{D} \subseteq \Re^n$ has a local maximum or minimum at \mathbf{x}^* and if the first-order partial derivatives exist at \mathbf{x}^* , then $f_{x_i}(\mathbf{x}^*) = 0$ for all $1 \le i \le n$.

Definition 27 [Critical point]: A point \mathbf{x}^* is called a critical point of a function $f(\mathbf{x})$ defined on $\mathcal{D} \subseteq \Re^n$ if

- 1. If $f_{x_i}(\mathbf{x}^*) = 0$, for $1 \le i \le n$.
- 2. OR $f_{x_i}(\mathbf{x}^*)$ fails to exist for any $1 \leq i \leq n$.

A procedure for computing all critical points of a function f is:

- 1. Compute f_{x_i} for $1 \le i \le n$.
- 2. Determine if there are any points where any one of f_{x_i} fails to exist. Add such points (if any) to the list of critical points.
- 3. Solve the system of equations $f_{x_i} = 0$ simultaneously. Add the solution points to the list of saddle points.

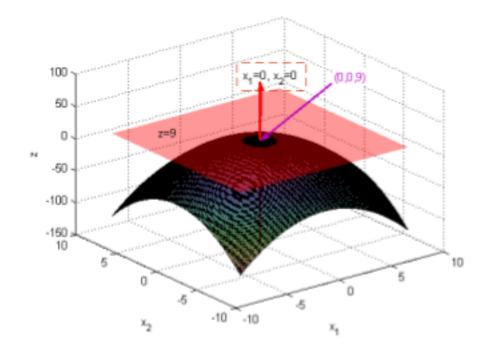
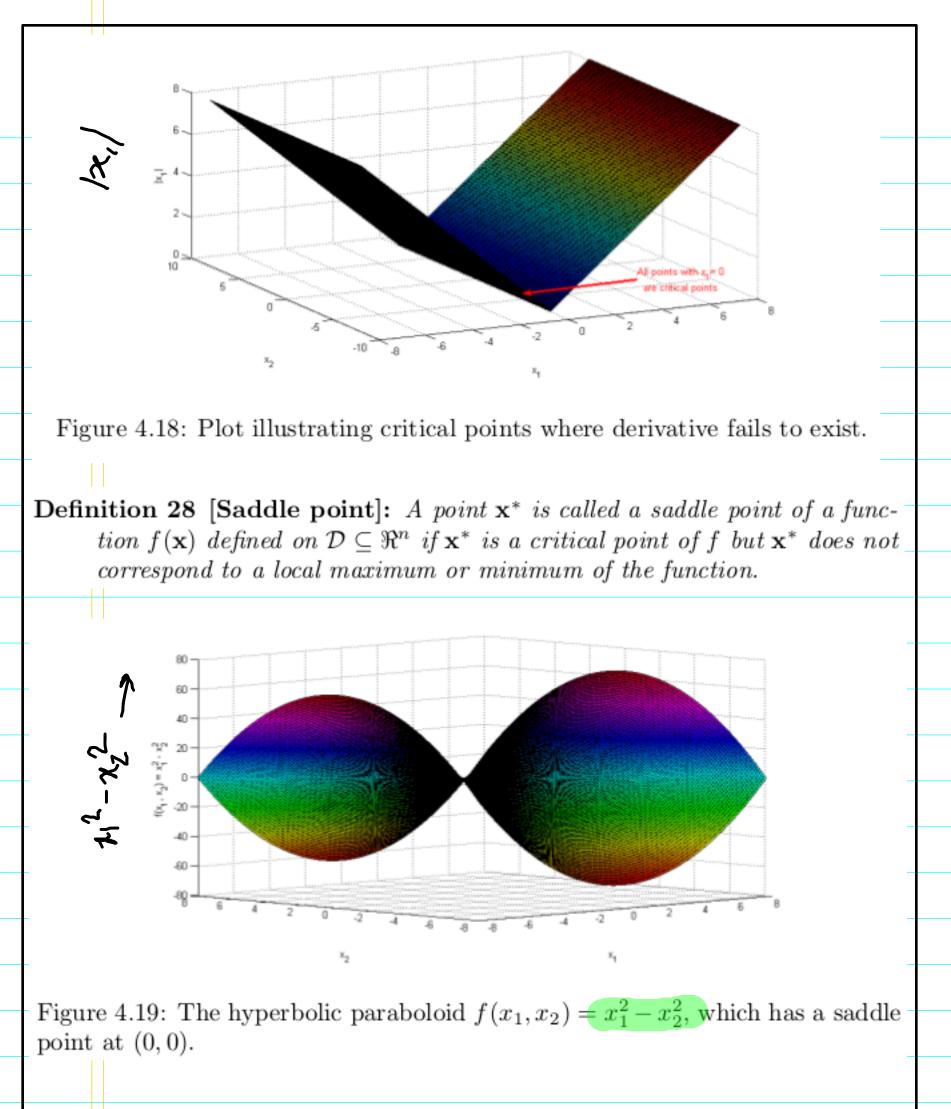


Figure 4.17: The paraboloid $f(x_1, x_2) = 9 - x_1^2 - x_2^2$ attains its maximum at (0,0). The tanget plane to the surface at (0,0, f(0,0)) is also shown, and so is



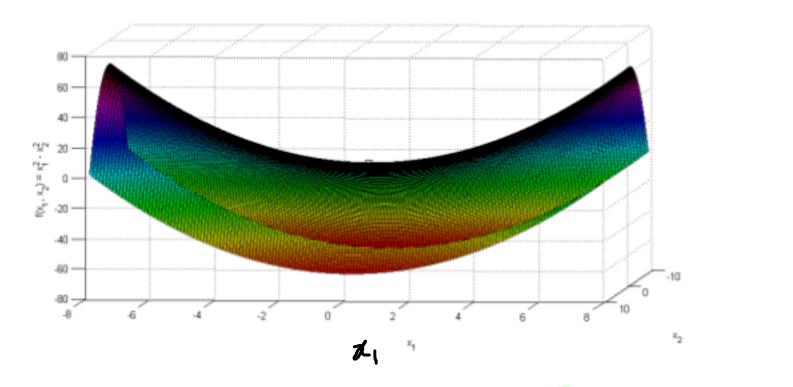


Figure 4.20: The hyperbolic paraboloid $f(x_1, x_2) = x_1^2 - x_2^2$, when viewed from the x_1 axis is concave up.

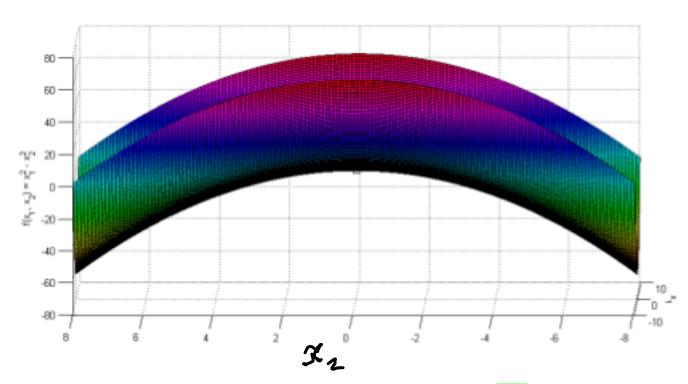
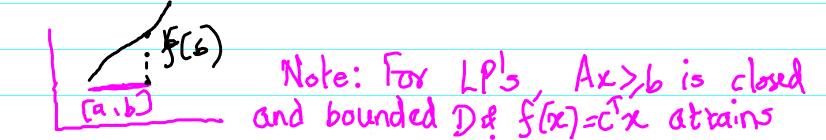


Figure 4.21: The hyperbolic paraboloid $f(x_1, x_2) = x_1^2 - x_2^2$, when viewed from the x_2 axis is concave down.



Theorem 41 A continuous function f(x) on a closed and bounded interval [a, b]attains a minimum value f(c) for some $c \in [a, b]$ and a maximum value f(d)for some $d \in [a, b]$. If a < c < b and f'(c) exists, then f'(c) = 0. If a < d < band f'(d) exists, then f'(d) = 0. If f = 0 is closed f bounded f = 1 is closed f = 0. If f = 0 is closed f = 0. If f = 0 is closed f = 0. Theorem 42 If f is continuous on [a, b] and differentiable at all $x \in (a, b)$ and if f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.

Figure 4.1 illustrates Rolle's theorem with an example function $f(x) = 9-x^2$ on the interval [-3, +3].

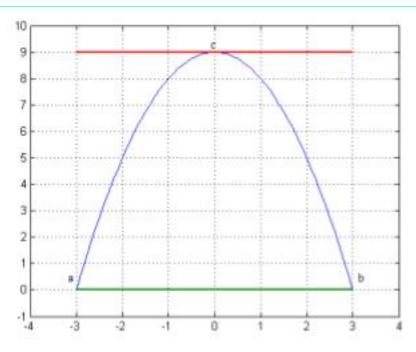


Figure 4.1: Illustration of Rolle's theorem with $f(x) = 9 - x^2$ on the interval [-3, +3]. We see that f'(0) = 0.

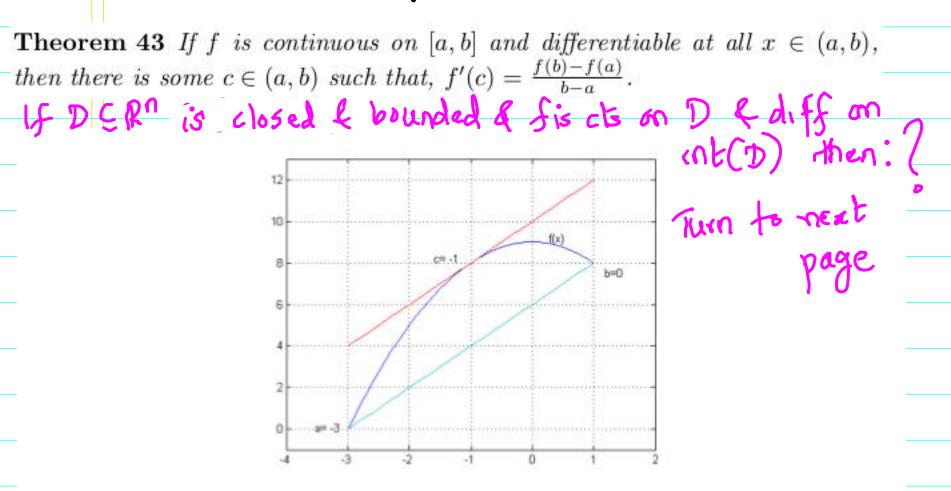


Figure 4.2: Illustration of mean value theorem with $f(x) = 9 - x^2$ on the interval [-3, 1]. We see that $f'(-1) = \frac{f(1) - f(-3)}{4}$.

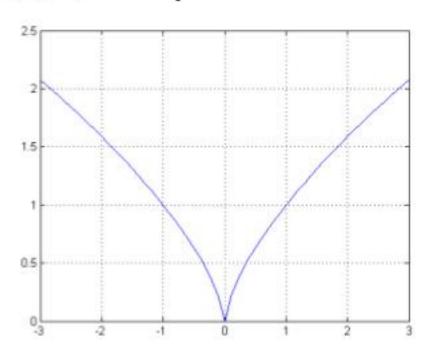


Figure 4.4: The mean value theorem can be violated if f(x) is not differentiable at even a single point of the interval. Illustration on $f(x) = x^{2/3}$ with the

The mean value theorem in one variable generalizes to several variables by applying the theorem in one variable via parametrization. Let G be an open subset of \mathbf{R}^n , and let $f: G \to \mathbf{R}$ be a differentiable function. Fix points $x, y \in G$ such that the interval x y lies in G, and define g(t) = f((1 - t)x + ty). Since g is a differentiable function in one variable, the mean value theorem gives:

$$g(1) - g(0) = g'(c)$$

for some c between 0 and 1. But since g(1) = f(y) and g(0) = f(x), computing g'(c) explicitly we have:

$$f(y) - f(x) = \nabla f((1-c)x + cy) \cdot (y - x)$$
Convexity of the domain is fundamental
ance $y \in C[0, \int], \frac{\chi(1-t) + ty \in Ponies}{1 + ty \in Ponies}$
That is, we taguise convexity if
set in some sense

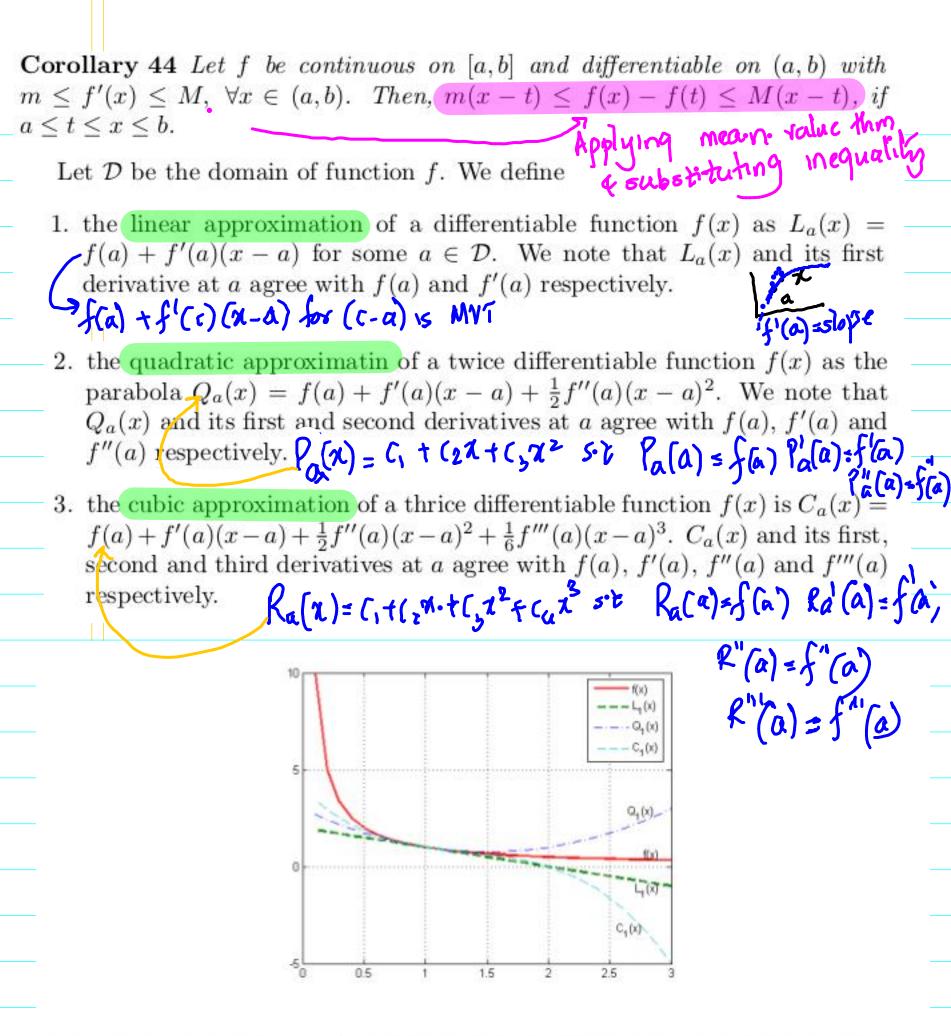


Figure 4.3: Plot of $f(x) = \frac{1}{x}$, and its linear, quadratic and cubic approximations.

Can be thought if as general all order **Theorem 45** The Taylor's theorem states that if f and its first n aerivatives f(f) $f', f'', \ldots, f^{(n)}$ are continuous on the closed interval [a, b], and differentiable on (a, b), then there exists a number $c \in (a, b)$ such that

$$f(b) = f(a) + f'(a)(b-a) + \frac{1}{2!}f''(a)(b-a)^2 + \dots + \frac{1}{n!}f^{(n)}(a)(b-a)^n + \frac{1}{(n+1)!}f^{(n+1)}(c)(b-a)$$

$$MVT is operiod Cose$$

$$MVT : \exists c \in (a, b) \ s \ f(b) = f(a) + f'(c)(b-a) \ ho \ c \ in \ he$$

$$f_{0} \ prove use \ MVT \ successively \ on \ f(\cdot), f'(\cdot), \dots f^{(n)}(\cdot) \ approximations$$

$$Consider the function \ \phi(t) = f(x + th) \ considered \ in \ theorem \ 71, \ defined \ on \ the \ domain \ \mathcal{D}_{\phi} = [0, 1].$$
Using the chain rule,
$$\phi'(t) = \sum_{i=1}^n f_{x_i}(x + th) \frac{dx_i}{dt} = h^T \cdot \nabla f(x + th)$$
Since f has partial and mixed partial derivatives, ϕ' is a differentiable function of t on \mathcal{D}_{ϕ} and
$$\phi''(t) = h^T \nabla^2 f(x + th)h$$
Since ϕ and ϕ' are continous on \mathcal{D}_{ϕ} and ϕ' is differentiable on $int(\mathcal{D}_{\phi})$, we can make use of the Taylor's theorem (45) with $n = 3$ to obtain:
$$\phi(t) = \phi(0) + t \cdot \phi'(0) + t^2 \cdot \frac{1}{2} \phi''(0) + O(t^3)$$
Writing this equation in terms of f gives
$$f(x + th) = f(x) + th^T \nabla f(x) + t^2 \frac{1}{2}h^T \nabla^2 f(x)h + O(t^3)$$

$$f(x + th) = f(x) + th^T \nabla f(x) + t^2 \frac{1}{2}h^T \nabla^2 f(x)h + O(t^3)$$

We discussed in class, derivation of the second order Taylor expression. We also discussed that the matrix $\nabla^2 f$ of mixed partial derivatives is symmetric if f has continuous mixed partial derivatives

We will introduce some definitions at this point:

- A function f is said to be *increasing* on an interval \mathcal{I} in its domain \mathcal{D} if f(t) < f(x) whenever t < x.
- The function f is said to be *decreasing* on an interval $\mathcal{I} \in \mathcal{D}$ if f(t) > f(x) whenever t < x.

These definitions help us derive the following theorem: