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We defined notions of "local" (open sets
and resultant 
closed/bounded etc)



Recap: Some Interesting Connections in ℜn

1 The closure of a set is the smallest closed set containing the set. The closure of a closed
set is the set itself.

2 S is closed if and only if closure(S) = S.
3 A bounded set can be defined in terms of a closed set; A set S is bounded if and only if it

is contained strictly inside a closed set.
4 A relationship between the interior, boundary and closure of a set S is

closure(S) = int(S) ∪ ∂(S).
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Extending Open, Closed sets, Boundary, Interior, etc to Topological Sets
This is for Optinal Reading

1 Recap: Open Set follows from Defintion 1 of Topology. Neighborhood follows from
Definition 2 of Topology.

2 Limit Point: Let S be a subset of a topological set X. A point x ∈ X is a limit point of S
if every neighborhood of x contains atleast one point of S different from x itself.

▶ If X has an associated metric d and S ⊆ X then x ∈ S is a limit point of S iff ∀ ϵ > 0,
{y ∈ S s.t. 0 < d(y, x) < ϵ} ̸= ∅}.

3 Closure of S = closure(S) = S ∪ {limit points of S}.
4 Boundary ∂S of S: Is the subset of S such that every neighborhood of a point from ∂S

contains atleast one point in S and one point not in S.
▶ If S has a metric d then:

∂S = {x ∈ S|∀ ϵ > 0, ∃ y s.t. d(x, y) < ϵ and y ∈ S and∃ z s.t. d(x, z) < ϵ and z /∈ S}
5 Open set S: Does not contain any of its boundary points

▶ If X has an associated metric d and S ⊆ X is called open if for any x ∈ S, ∃ ϵ > 0 such that
given any y ∈ S with d(y, x) < ϵ, y ∈ S.

6 Closed set S: Has an open complement SC
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Revisiting Example for Local Extrema
Figure below shows the plot of f(x1, x2) = 3x21 − x31 − 2x22 + x42. As can be seen in the plot, the
function has several local maxima and minima.

Figure 1:
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Convexity and Global Minimum

Fundamental chracteristics: Let us now prove them
1 Any point of local minimum point is also a point of global minimum.
2 For any stricly convex function, the point corresponding to the gobal minimum is also

unique.
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Convexity: Local and Global Minimum

Theorem
Let f : D → ℜ be a convex function on a convex domain D. Any point of locally minimum
solution for f is also a point of its globally minimum solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of global
minimum. Thus,
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there is an open ball of radius \epsilon around x in which 
the function takes a value greater than or equal to f(x)



Convexity: Local and Global Minimum

Theorem
Let f : D → ℜ be a convex function on a convex domain D. Any point of locally minimum
solution for f is also a point of its globally minimum solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of global
minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum, there exists an ϵ > 0
such that
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Note: since we began with different points for local and global
minima (x and y respectively), we have implicitly assumed that
f(y) < f(x)



Convexity: Local and Global Minimum

Theorem
Let f : D → ℜ be a convex function on a convex domain D. Any point of locally minimum
solution for f is also a point of its globally minimum solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of global
minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum, there exists an ϵ > 0
such that

∀ z ∈ D, ||z − x|| < ϵ ⇒ f(z) ≥ f(x)

Consider a point z
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that lies on the line segment
x--y while lying inside the open ball around x

For convenience assume the Eucledian norm
(H/w what about other norms?)



Convexity: Local and Global Minimum

Theorem
Let f : D → ℜ be a convex function on a convex domain D. Any point of locally minimum
solution for f is also a point of its globally minimum solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of global
minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum, there exists an ϵ > 0
such that

∀ z ∈ D, ||z − x|| < ϵ ⇒ f(z) ≥ f(x)

Consider a point z = θy + (1− θ)x with θ = ϵ
2||y−x|| . Since x is a point of local minimum (in

a ball of radius ϵ), and since f(y) < f(x), it must be that
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f(z) >= f(x) and
f(z) > f(y)



Convexity: Local and Global Minimum

Theorem
Let f : D → ℜ be a convex function on a convex domain D. Any point of locally minimum
solution for f is also a point of its globally minimum solution.

Proof: Suppose x ∈ D is a point of local minimum and let y ∈ D be a point of global
minimum. Thus, f(y) < f(x). Since x corresponds to a local minimum, there exists an ϵ > 0
such that

∀ z ∈ D, ||z − x|| < ϵ ⇒ f(z) ≥ f(x)

Consider a point z = θy + (1− θ)x with θ = ϵ
2||y−x|| . Since x is a point of local minimum (in

a ball of radius ϵ), and since f(y) < f(x), it must be that ||y − x|| > ϵ. Thus, 0 < θ < 1
2 and

z ∈ D. Furthermore, ||z − x|| = ϵ
2 .
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Convexity: Local and Global Minimum (contd.)

Since f is a convex function
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(f(z) <= convex combination of f(x) and f(y))



Convexity: Local and Global Minimum (contd.)

Since f is a convex function
f(z) ≤ θf(x) + (1− θ)f(y)

Since f(y) < f(x), we also have
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Convexity: Local and Global Minimum (contd.)

Since f is a convex function
f(z) ≤ θf(x) + (1− θ)f(y)

Since f(y) < f(x), we also have

θf(x) + (1− θ)f(y) < f(x)

The two equations imply that
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Convexity: Local and Global Minimum (contd.)

Since f is a convex function
f(z) ≤ θf(x) + (1− θ)f(y)

Since f(y) < f(x), we also have

θf(x) + (1− θ)f(y) < f(x)

The two equations imply that f(z) < f(x), which contradicts our assumption that x
corresponds to a point of local minimum. That is f cannot have a point of local minimum,
which does not coincide with the point y of global minimum.
Since any locally minimum point for a convex function also corresponds to its global minimum,
we will drop the qualifiers ‘locally’ as well as ‘globally’ while referring to the points
corresponding to minimum values of a convex function.
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f(x) for any claimed point of local min x is being pulled to the f(y) 
at real point of global min (through the constructed z) by virtue of convexity 
of f



Strict Convexity and Uniqueness of Global Minimum
For any stricly convex function, the point corresponding to the gobal minimum is also unique,
as stated in the following theorem.

Theorem
Let f : D → ℜ be a strictly convex function on a convex domain D. Then f has a unique point
corresponding to its global minimum.

Proof: Suppose x ∈ D and y ∈ D with y ̸= x are two points of global minimum. That is
f(x) = f(y) for y ̸= x. The point x+y

2 also
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has f(.) less than either of the two
points x and y..



Strict Convexity and Uniqueness of Global Minimum
For any stricly convex function, the point corresponding to the gobal minimum is also unique,
as stated in the following theorem.

Theorem
Let f : D → ℜ be a strictly convex function on a convex domain D. Then f has a unique point
corresponding to its global minimum.

Proof: Suppose x ∈ D and y ∈ D with y ̸= x are two points of global minimum. That is
f(x) = f(y) for y ̸= x. The point x+y

2 also belongs to the convex set D and since f is strictly
convex, we must have

f
(

x + y
2

)
<

1

2
f(x) + 1

2
f(y) = f(x)

which is a contradiction. Thus, the point corresponding to the minimum of f must be
unique.
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Convexity and Differentiability

1 Recap for differentiable f : ℜ → ℜ the equivalent definition of convexity
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Convexity and Differentiability

1 Recap for differentiable f : ℜ → ℜ the equivalent definition of convexity
2 What would be an equivalent notion of diffentiability and convexity for f : ℜn → ℜ?
3 What will be critical points? First and second order necessary (and sufficient) conditions

for local and global optimality?
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Optimization Principles for Multivariate Functions
In the following, we state some important properties of convex functions, some of which
require knowledge of ‘derivatives’ in ℜn. These also include relationships between convex

functions and convex sets, and first and second order conditions for convexity.
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The Direction Vector

Consider a function f(x), with x ∈ ℜn.
We start with the concept of the direction at a point x ∈ ℜn.
We will represent a vector by x and the kth component of x by xk.
Let uk be a unit vector pointing along the kth coordinate axis in ℜn;
uk

k = 1 and uk
j = 0, ∀j ̸= k

An arbitrary direction vector v at x is a vector in ℜn with unit norm (i.e., ||v|| = 1) and
component vk in the direction of uk.
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Directional derivative and the gradient vector

Let f : D → ℜ, D ⊆ ℜn be a function.

Definition
[Directional derivative]: The directional derivative of f(x) at x in the direction of the unit

vector v is
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Rate of change of the function at point x
along direction v



Directional derivative and the gradient vector

Let f : D → ℜ, D ⊆ ℜn be a function.

Definition
[Directional derivative]: The directional derivative of f(x) at x in the direction of the unit

vector v is

Dvf(x) = lim
h→0

f(x + hv)− f(x)
h (1)

provided the limit exists.
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Intuitively: A function is convex if the directional derivative increases
along every direction v. But we want to do away with the 
"for all v" quantification here! Something canonical possible?



Directional Derivative

As a special case, when v = uk the directional derivative reduces to the partial derivative of f
with respect to xk.

Dukf(x) = ∂f(x)
∂xk

Claim
If f(x) is a differentiable function of x ∈ ℜn, then f has a directional derivative in the direction
of any unit vector v, and

Dvf(x) =
n∑

k=1

∂f(x)
∂xk

vk (2)
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Directional Derivative: Simplified Expression

Define g(h) = f(x + vh). Now:
g′(0) =
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Directional Derivative: Simplified Expression

Define g(h) = f(x + vh). Now:
g′(0) = lim

h→0

g(0+h)−g(0)
h = lim

h→0

f(x+hv)−f(x)
h , which is the expression for the directional

derivative defined in equation 1. Thus, g′(0) = Dvf(x).
By definition of the chain rule for partial differentiation, we get another expression for
g′(0) as

g′(0) =
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From first principles 
(substituting)

Applying chain rule for differentiation



Directional Derivative: Simplified Expression

Define g(h) = f(x + vh). Now:
g′(0) = lim

h→0

g(0+h)−g(0)
h = lim

h→0

f(x+hv)−f(x)
h , which is the expression for the directional

derivative defined in equation 1. Thus, g′(0) = Dvf(x).
By definition of the chain rule for partial differentiation, we get another expression for
g′(0) as

g′(0) =
n∑

k=1

∂f(x)
∂xk

vk

Therefore, g′(0) = Dvf(x) =
n∑

k=1

∂f(x)
∂xk

vk

Homeworks:
1 Consider the polynomial f(x, y, z) = x2y + z sin xy and the unit vector vT = 1√

3
[1, 1, 1]T. Consider the point p0 = (0, 1, 3). Compute the

directional derivative of f at p0 in the direction of v.
2 find the rate of change of f(x, y, z) = exyz at p0 = (1, 2, 3) in the direction from p1 = (1, 2, 3) to p2 = (−4, 6,−1).

February 9, 2018 14 / 77



The Gradient Vector and Directional Derivative
We can see that the right hand side of (2) can be realized as the dot product of two
vectors, viz.,

[
∂f(x)
∂x1 , ∂f(x)

∂x2 , . . . , ∂f(x)
∂xn

]T
and v.

Let us denote ∂f(x)
∂xi

by fxi(x). Then we assign a name to this special vector:

Definition
[Gradient Vector]: If f is differentiable function of x ∈ ℜn, then the gradient of f(x) is the

vector function ∇f(x), defined as:

∇f(x) =
[
fx1(x), fx2(x), . . . , fxn(x)

]

The directional derivative of a function f at a point x in the direction of a unit vector v can be
now written as
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The Gradient Vector and Directional Derivative
We can see that the right hand side of (2) can be realized as the dot product of two
vectors, viz.,

[
∂f(x)
∂x1 , ∂f(x)

∂x2 , . . . , ∂f(x)
∂xn

]T
and v.

Let us denote ∂f(x)
∂xi

by fxi(x). Then we assign a name to this special vector:

Definition
[Gradient Vector]: If f is differentiable function of x ∈ ℜn, then the gradient of f(x) is the

vector function ∇f(x), defined as:

∇f(x) =
[
fx1(x), fx2(x), . . . , fxn(x)

]

The directional derivative of a function f at a point x in the direction of a unit vector v can be
now written as

Dvf(x) = ∇Tf(x).v (3)
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