Epigraph, Convexity, Gradients and Level-sets [OPTIONAL]

Revisiting level sets: We can embed the graph of a function of n variables as the 0-level
set of a function of n+ 1 variables

@ More concretely, if f: D — R, D C R" then we define F: D' — R, D' =D x R as
F(x,z) = flx) — zwith x € D'.

The gradient of F at any point (x, z) is simply, VF(x, z) = [ﬁq, frgs - ooy Fxys —1] with the
first n components of VF(x, z) given by the n components of Vf(x).

The graph of fcan be recovered as the 0—level set of F given by F(x,z) = 0.

The equation of the tangent hyperplane (y, z) to the 0—level set of F at the point
(x,fx)) is! VTF(x, (x)).ly —x,z— fix)]" = [VAx), -1]".[y — x,z— ix)]T = 0.

!(that is, the tangent hyperplane to f(x) at the point x)
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Epigraph, Convexity, Gradients and Level-sets (contd.)  [OPTIONAL]

Substituting appropriate expression for VF(x), the equation of the tangent plane (y, z) can be
written as

(fo, Yi— Xi) ) —(z—flx)) =0
or equivalently as,

<V TAx)(y — x)> +flx)=1z
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Epigraph, Convexity, Gradients and Level-sets (contd.) [OPTIONAL]

Substituting appropriate expression for VF(x), the equation of the tangent plane (y, z) can be
written as

fo, vi—x) | —(z—fix)) =0

or equivalently as,

(V TAx)(y — x)) +flx) =z

Revisiting the gradient-based condition for convexity in (8), we have that for a convex
function, fy) is greater than each such z on the hyperplane: fly) > z= f(x) + V' f(x)(y — x)
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Gradient and Epigraph (contd)

As an example, consider the paraboloid, f(x, x3) = x% =+ x% — 9 that attains its minimum at
(0,0). We see below its epigraph.

-10 -10

10

Tt

fixix2) | .
fo.. aliro i g Supporting hyperplar
.~ S . i(orlower bound)
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[llustrations to understand Gradient

@ For the paraboloid, f{x1,x2) = x} + x3 — 9, the corresponding
F(x1,x2,2) = X3 + x3 — 9 — z and the point X = (x°,z) = (1,1, —7) which lies on the
O-level surface of F. The gradient VF(xi, x2, 2) is [2x1, 2x2, —1], which when evaluated
at X! = (1,1,-7) is [-2, —2, —1]. The equation of the tangent plane to fat x is
therefore given by 2(x; — 1) +2(xx — 1) = 7=z

@ The paraboloid attains its minimum at (0,0). Plot the tanget plane to the surface at
(0,0,1(0,0)) as also the gradient vector VF at (0,0, f{0,0)). What do you expect?
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[llustrations to understand Gradient

@ For the paraboloid, f(x;, x) = X% + x% — 9, the corresponding
F(x1,x2,2) = X3 + x5 — 9 — z and the point X = (x°, z) = (1,1, —7) which lies on the
O-level surface of F. The gradient VF(xi, x2, 2) is [2x;, 2x5, —1], which when evaluated
at X! = (1,1,-7) is [-2, —2, —1]. The equation of the tangent plane to fat x is
therefore given by 2(x; — 1) +2(xp — 1) = 7= z

@ The paraboloid attains its minimum at (0,0). Plot the tanget plane to the surface at
(0,0,1(0,0)) as also the gradient vector VF at (0,0, f{0,0)). What do you expect? Ans:
A horizontal tanget plane and a vertical gradient!

110 -10
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|[First-Order Convexity Conditions: [he complete statement]|

Theorem

© For differentiable f: D — R and open convex set D, f is convex iff, for any x,y € D,

fly) > fx) + VT fix)(y —x) (9)

@ fis strictly convex iff, for any x,y € D, with x #y,

fly) > fix) + V' fix)(y —x) Strict lower bound (10)

© fis strongly convex iff, for any x,y € D, and for some constant ¢ > 0,

) 2 1) + V) (y — %) + elly — x| (11)
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First-Order Convexity Condition: Proof
Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the

theorem. So we will prove only for statement (9). Suppose (9) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

flx1) > fix) + Vx)(x1 — x) multiply by theta
flxz) = fix) + VI fx) (x2 = X) myltiply by 1-theta  (12)

And add..
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First-Order Convexity Condition: Proof
Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the

theorem. So we will prove only for statement (9). Suppose (9) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

fix1) > fix) + VTHx)(x1 - x)

fixz) > flx) + VT ix)(x2 — x) (12)
Adding (1 — 0) times the second inequality to € times the first, we get,
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First-Order Convexity Condition: Proof
Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the

theorem. So we will prove only for statement (9). Suppose (9) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

flx1) > fx) + V' x)(x1 — x)
flxg) > f(x) + V' (x)(x2 — x) (12)
Adding (1 — 0) times the second inequality to 6 times the first, we get,
0f(x1) + (1 — 0)f(x2) > f(x)

which proves that f(x) is a convex function. In the case of strict convexity,
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First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (9). Suppose (9) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

flx1) > fx) + V' x)(x1 — x)
flxg) > f(x) + V' (x)(x2 — x) (12)
Adding (1 — 0) times the second inequality to 6 times the first, we get,
0f(x1) + (1 — 0)f(x2) > f(x)

which proves that f(x) is a convex function. In the case of strict convexity, strict inequality
holds in (12) and it follows through. In the case of strong convexity,
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First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (9). Suppose (9) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

flx1) > fx) + V' x)(x1 — x)
flxg) > f(x) + V' (x)(x2 — x) (12)
Adding (1 — 0) times the second inequality to 6 times the first, we get,
0f(x1) + (1 — 0)f(x2) > f(x)

which proves that f(x) is a convex function. In the case of strict convexity, strict inequality
holds in (12) and it follows through. In the case of strong convexity, we need to additionally
prove that

1 1
O5cllx = xal[” + (1 = 0)5ellx — %o * =
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First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (9). Suppose (9) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

flx1) > fx) + V' x)(x1 — x)
flxg) > f(x) + V' (x)(x2 — x) (12)
Adding (1 — 0) times the second inequality to 6 times the first, we get,
0f(x1) + (1 — 0)f(x2) > f(x)
which proves that f(x) is a convex function. In the case of strict convexity, strict inequality

holds in (12) and it follows through. In the case of strong convexity, we need to additionally
prove that

1 1 1
9§CHX — le2 +(1- 0)§c||x — X2H2 = §c9(1 —0)||x2 — le2
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First-Order Convexity Conditions: Proofs
Necessity: Suppose fis convex. Then for all # € (0,1) and x1,%x2 € D, we must have

f(9X2 + (1 — 9)X1) < (9f(X2) + (1 — e)f(Xl)

Thus,

VTf(x1)(x2 — x1) = Directional derivative of f at x1 along
X2 - x1

e August 24, 2018
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First-Order Convexity Conditions: Proofs
Necessity: Suppose fis convex. Then for all # € (0,1) and x1,%x2 € D, we must have

f(GXQ + (1 — 9)X1) < (9f(X2) + (1 — e)f(Xl)

Thus,
- f(x1 +0(x2 — x1)) — f(x1)

o) s =) = ;
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First-Order Convexity Conditions: Proofs
Necessity: Suppose fis convex. Then for all # € (0,1) and x1,%x2 € D, we must have

f(0X2 + (1 — 9)X1) < af-(Xg) + (1 — G)f(Xl)

Thus,
f(x1+0(x2—x1)) — f(x
va(Xl)(XQ —x1) = lim ( ! (x2 1)) (x1)
0—0 0
This proves necessity for (9). The necessity proofs for (10) and (11) are very similar, except
for a small difference for the case of strict convexity; the strict inequality is not preserved when

we take limits. Suppose equality does hold in the case of strict convexity, that is for a strictly
convex function f, let

< flx2) — fix1)

fixa) = fix1) + V7 flx1)(x2 — x1) (13)

for some x5 # xj.
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First-Order Convexity Conditions: Proofs

Necessity (contd for strict case):
Because fis stricly convex, for any 6 € (0,1) we can write

F((1 = 0)x1 4 0xa) = f(x1 +0(x2 — x1)) < (1 —0)f(x1) + Of(x2) (14)

Since (9) is already proved for convex functions, we use it in conjunction with (13), and (14),
to get
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First-Order Convexity Conditions: Proofs

Necessity (contd for strict case):
Because fis stricly convex, for any 6 € (0,1) we can write

F((1—0)x1 + 0x2) = f(x1 + 0(x2 — x1)) < (1 — 0)f(x1) + Of(x2) (14)

Since (9) is already proved for convex functions, we use it in conjunction with (13), and (14),
to get

fx1) + gva(X1)<X2 —x1) < f(x1 +0(xg — Xl)) <f(x1) + Hva(Xl)(XQ —X1)
which is a contradiction. Thus, equality can never hold in (9) for any x; # x2. This proves

the necessity of (10).
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First-Order Convexity Conditions: The complete statement

The geometrical interpretation of this theorem is that at any point, the linear approximation
based on a local derivative gives a lower estimate of the function, i.e. the convex function
always lies above the supporting hyperplane at that point. This is pictorially depicted below:

f(y)

flz)+ Vi(z) (y —x)

“(x, f(x))
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(Tight) Lower-bound for any (non-differentiable) Convex Function?

For any convex function f (even if non-differentiable) An intuitive argument
@ The epi-graph epi(f) will be convex though not rigourous
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(Tight) Lower-bound for any (non-differentiable) Convex Function?

For any convex function f (even if non-differentiable)
@ The epi-graph epi(f) will be convex

@ The convex epi-graph epi(f) will have a supporting hyperplane at any
boundary point (x,f(x))
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(Tight) Lower-bound for any (non-differentiable) Convex Function?

For any convex function f (even if non-differentiable)
@ The epi-graph epi(f) will be convex
@ The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point x

There exist kﬁultiple supporting hyperplanes
Let a supporting hyperplane be characterized by a normal vector [h(x), -1]
When f was differentiable, this vector was [gradient(x), -1]
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(Tight) Lower-bound for any (non-differentiable) Convex Function?

For any convex function f (even if non-differentiable)
@ The epi-graph epi(f) will be convex
@ The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point x

v,2) = ([h(x),—1], [x, f(x)])} for all [v, z] on the hyperplane and
h(x),—1], [x, ix)]) for all [y, 2] € epi(f) which also includes
Ly f(y)]
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(Tight) Lower-bound for any (non-differentiable) Convex Function?

For any convex function f (even if non-differentiable)
@ The epi-graph epi(f) will be convex
@ The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point x

@ The normal to such a supporting hyperplane serves the same purpose as the
[gradient(x),-11]
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(Tight) Lower-bound for any (non-differentiable) Convex Function?

For any convex function f (even if non-differentiable)
@ The epi-graph epi(f) will be convex
@ The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point x

» v, 7 [([h(x),—1],[v,2) = ([h(x), 1] , [x, f(x)])} for all [v, z] on the hyperplane and
h(x),—1],[y,2) < ([h(x), 1], [x, fix)]) for all [y, Z] € epi(f) which also includes

Thus: ([h(x), 1], [y, f(y)]) < ([h(x), 1], [x, (x)]) for all y € domain of f

@ The normal to such a supporting hyperplane serves the same purpose as the gradient
vector. It is called a Sub-gradient vector
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The What, Why and How of (sub)gradients

@ What of (sub)gradient: Normal to supporting hyperplane at point (x,f(x) of epi(f)
Need not be unique
Gradient is a subgradient when the function is differentiable



The What, Why and How of (sub)gradients

© What of (sub)gradient: Normal to the tightly lower bounding linear approximation to a
convex function
@ Why of (sub)gradient: (sub)Gradient necessary and sufficient conditions of optimality
for convex functions
Important for algorithms for optimization
Subgradients are important for non-differentiable functions
and constraint optimization
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The What, Why and How of (sub)gradients

@ What of (sub)gradient: Normal to the tightly lower bounding linear approximation to a
convex function

© Why of (sub)gradient: Ability to deal with Constraints, Optimality Conditions,
Optimization Algorithms
© How of (sub)gradient: How to compute subgradient of complex non-differentiable

convex functions
Calculus of convex functions and of subgradients
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The What, Why and How of (sub)gradients

@ What of (sub)gradient: Normal to the tightly lower bounding linear approximation to a
convex function

@ Why of (sub)gradient: Ability to deal with Constraints, Optimality Conditions,
Optimization Algorithms

© How of (sub)gradient: Calculus of Convex functions and of (sub)gradients
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The What of (Sub)Gradient



First-Order Convexity Conditions: Subgradients

The foregoing result motivates the definition of the subgradient for non-differentiable convex

functions, which has properties very similar to the gradient vector.

Definition

[Subgradient]: Let f: D — R be a convex function defined on a convex set D. A vector
h € R" is said to be a subgradient of f at the point x € D if

fly) > fix) + h'(y — x)

for all y € D. The set of all such vectors is called the subdifferential of f at x.

For a differentiable convex function, the gradient at point x is the only subgradient at that
point. Most properties of differentiable convex functions that hold in terms of the gradient
also hold in terms of the subgradient for non-differentiable convex functions.

Eg: Subgradient for f(x) = [[x/[1 is ? Once we develop tools (the HOW part) we will
see that the subdifferential contains infinite such h
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(Sub)Gradients and Convexity (contd)

f

Can you think of a non-convex function
f which has a non-empty subdifferential
(atleast at some points x)?

Could this be for the negative of the
Gaussian?

X 9{117

To say that a function f: R" — R is differentiable at x is to say that there is a (single unique)
linear tangent that under estimates the function:

fly) > fix) + Vi) (y —x), vx,y
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(Sub)Gradients and Convexity (contd)

mlk

In this figure we see the function f at x has many possible linear tangents that may fit
appropriately. Recall that a subgradient is any h € R" (same dimension as x) such that:

fly) > fix) +h'(y — x), Vy

Thus, intuitively, if a function is differentiable at a point x then

e August 24,2018 60 / 403



(Sub)Gradients and Convexity (contd)

mlk

In this figure we see the function f at x has many possible linear tangents that may fit
appropriately. Recall that a subgradient is any h € R" (same dimension as x) such that:

fly) > fix) +h'(y — x), Vy

Thus, intuitively, if a function is differentiable at a point x then it has a unique subgradient at
that point (v/f(x)). Formal Proof?
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(Sub)Gradients and Convexity (contd)
o A subdifferential is the closed convex set of all subgradients of the convex function f.
0flx) = {h € R" : h is a subgradient of fat x}

Note that this set is guaranteed to be nonempty unless fis not convex.
@ Often an indicator function, /¢ : " — R, is employed to remove the contraints of an
optimization problem (note that convex set C C R"):

0 ifxe C

)r?elrgf(x) <= min fix) + lc(x), where Ic(x)=Kxe€ C} = { s ifxédC

The subdifferential of the indicator function at xis H/W

I 4 a4 August 24, 2018
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