
Epigraph, Convexity, Gradients and Level-sets

Revisiting level sets: We can embed the graph of a function of n variables as the 0-level
set of a function of n+ 1 variables
More concretely, if f : D → ℜ, D ⊆ ℜn then we define F : D′ → ℜ, D′ = D × ℜ as
F(x, z) = f(x)− z with x ∈ D′.
The gradient of F at any point (x, z) is simply, ∇F(x, z) =

[
fx1 , fx2 , . . . , fxn ,−1

]
with the

first n components of ∇F(x, z) given by the n components of ∇f(x).
The graph of f can be recovered as the 0−level set of F given by F(x, z) = 0.
The equation of the tangent hyperplane (y, z) to the 0−level set of F at the point
(x, f(x)) is1 ∇TF(x, f(x)).[y− x, z− f(x)]T = [∇f(x),−1]T.[y− x, z− f(x)]T = 0.

1(that is, the tangent hyperplane to f(x) at the point x)
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Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for ∇F(x), the equation of the tangent plane (y, z) can be
written as




n∑

i=1

fxi(x)(yi − xi)


−
(
z− f(x)

)
= 0

or equivalently as, (
∇Tf(x)(y− x)

)
+ f(x) = z
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Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for ∇F(x), the equation of the tangent plane (y, z) can be
written as




n∑

i=1

fxi(x)(yi − xi)


−
(
z− f(x)

)
= 0

or equivalently as, (
∇Tf(x)(y− x)

)
+ f(x) = z

Revisiting the gradient-based condition for convexity in (8), we have that for a convex
function, f(y) is greater than each such z on the hyperplane: f(y) ≥ z = f(x) +∇Tf(x)(y− x)
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Gradient and Epigraph (contd)
As an example, consider the paraboloid, f(x1, x2) = x21 + x22 − 9 that attains its minimum at
(0, 0). We see below its epigraph.
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Supporting hyperplane
(or lower bound)
at (0,0)



Illustrations to understand Gradient
For the paraboloid, f(x1, x2) = x21 + x22 − 9, the corresponding
F(x1, x2, z) = x21 + x22 − 9− z and the point x0 = (x0, z) = (1, 1,−7) which lies on the
0-level surface of F. The gradient ∇F(x1, x2, z) is [2x1, 2x2, −1], which when evaluated
at x0 = (1, 1,−7) is [−2, −2, −1]. The equation of the tangent plane to f at x0 is
therefore given by 2(x1 − 1) + 2(x2 − 1)− 7 = z.
The paraboloid attains its minimum at (0, 0). Plot the tanget plane to the surface at
(0, 0, f(0, 0)) as also the gradient vector ∇F at (0, 0, f(0, 0)). What do you expect?
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Illustrations to understand Gradient
For the paraboloid, f(x1, x2) = x21 + x22 − 9, the corresponding
F(x1, x2, z) = x21 + x22 − 9− z and the point x0 = (x0, z) = (1, 1,−7) which lies on the
0-level surface of F. The gradient ∇F(x1, x2, z) is [2x1, 2x2, −1], which when evaluated
at x0 = (1, 1,−7) is [−2, −2, −1]. The equation of the tangent plane to f at x0 is
therefore given by 2(x1 − 1) + 2(x2 − 1)− 7 = z.
The paraboloid attains its minimum at (0, 0). Plot the tanget plane to the surface at
(0, 0, f(0, 0)) as also the gradient vector ∇F at (0, 0, f(0, 0)). What do you expect? Ans:
A horizontal tanget plane and a vertical gradient!
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First-Order Convexity Conditions: The complete statement
Theorem

1 For differentiable f : D → ℜ and open convex set D, f is convex iff, for any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y− x) (9)

2 f is strictly convex iff, for any x,y ∈ D, with x ̸= y,

f(y) > f(x) +∇Tf(x)(y− x) (10)

3 f is strongly convex iff, for any x,y ∈ D, and for some constant c > 0,

f(y) ≥ f(x) +∇Tf(x)(y− x) + 1

2
c||y− x||2 (11)
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Strict lower bound



First-Order Convexity Condition: Proof
Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (9). Suppose (9) holds. Consider x1,x2 ∈ D and
any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2. Then,

f(x1) ≥ f(x) +∇Tf(x)(x1 − x)
f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (12)
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multiply by 1-theta

And add..



First-Order Convexity Condition: Proof
Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (9). Suppose (9) holds. Consider x1,x2 ∈ D and
any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2. Then,

f(x1) ≥ f(x) +∇Tf(x)(x1 − x)
f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (12)

Adding (1− θ) times the second inequality to θ times the first, we get,
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Sufficiency: The proof of sufficiency is very similar for all the three statements of the
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f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (12)

Adding (1− θ) times the second inequality to θ times the first, we get,
θf(x1) + (1− θ)f(x2) ≥ f(x)
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First-Order Convexity Condition: Proof
Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (9). Suppose (9) holds. Consider x1,x2 ∈ D and
any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2. Then,

f(x1) ≥ f(x) +∇Tf(x)(x1 − x)
f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (12)

Adding (1− θ) times the second inequality to θ times the first, we get,
θf(x1) + (1− θ)f(x2) ≥ f(x)

which proves that f(x) is a convex function. In the case of strict convexity, strict inequality
holds in (12) and it follows through. In the case of strong convexity, we need to additionally
prove that

θ
1

2
c||x− x1||2 + (1− θ)

1

2
c||x− x2||2 =
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First-Order Convexity Condition: Proof
Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (9). Suppose (9) holds. Consider x1,x2 ∈ D and
any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2. Then,

f(x1) ≥ f(x) +∇Tf(x)(x1 − x)
f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (12)

Adding (1− θ) times the second inequality to θ times the first, we get,
θf(x1) + (1− θ)f(x2) ≥ f(x)

which proves that f(x) is a convex function. In the case of strict convexity, strict inequality
holds in (12) and it follows through. In the case of strong convexity, we need to additionally
prove that

θ
1

2
c||x− x1||2 + (1− θ)

1

2
c||x− x2||2 =

1

2
cθ(1− θ)||x2 − x1||2
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First-Order Convexity Conditions: Proofs
Necessity: Suppose f is convex. Then for all θ ∈ (0, 1) and x1,x2 ∈ D, we must have

f(θx2 + (1− θ)x1) ≤ θf(x2) + (1− θ)f(x1)

Thus,
∇Tf(x1)(x2 − x1) =
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Directional derivative of f at x1 along 
x2 - x1



First-Order Convexity Conditions: Proofs
Necessity: Suppose f is convex. Then for all θ ∈ (0, 1) and x1,x2 ∈ D, we must have

f(θx2 + (1− θ)x1) ≤ θf(x2) + (1− θ)f(x1)

Thus,
∇Tf(x1)(x2 − x1) = lim

θ→0

f
(
x1 + θ(x2 − x1)

)
− f (x1)

θ
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First-Order Convexity Conditions: Proofs
Necessity: Suppose f is convex. Then for all θ ∈ (0, 1) and x1,x2 ∈ D, we must have

f(θx2 + (1− θ)x1) ≤ θf(x2) + (1− θ)f(x1)

Thus,
∇Tf(x1)(x2 − x1) = lim

θ→0

f
(
x1 + θ(x2 − x1)

)
− f (x1)

θ
≤ f(x2)− f(x1)

This proves necessity for (9). The necessity proofs for (10) and (11) are very similar, except
for a small difference for the case of strict convexity; the strict inequality is not preserved when
we take limits. Suppose equality does hold in the case of strict convexity, that is for a strictly
convex function f, let

f(x2) = f(x1) +∇Tf(x1)(x2 − x1) (13)

for some x2 ̸= x1.
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First-Order Convexity Conditions: Proofs

Necessity (contd for strict case):
Because f is stricly convex, for any θ ∈ (0, 1) we can write

f
(
(1− θ)x1 + θx2

)
= f
(
x1 + θ(x2 − x1)

)
< (1− θ)f(x1) + θf(x2) (14)

Since (9) is already proved for convex functions, we use it in conjunction with (13), and (14),
to get

August 24, 2018 53 / 403



First-Order Convexity Conditions: Proofs

Necessity (contd for strict case):
Because f is stricly convex, for any θ ∈ (0, 1) we can write

f
(
(1− θ)x1 + θx2

)
= f
(
x1 + θ(x2 − x1)

)
< (1− θ)f(x1) + θf(x2) (14)

Since (9) is already proved for convex functions, we use it in conjunction with (13), and (14),
to get

f(x1) + θ∇Tf(x1)(x2 − x1) ≤ f
(
x1 + θ(x2 − x1)

)
< f(x1) + θ∇Tf(x1)(x2 − x1)

which is a contradiction. Thus, equality can never hold in (9) for any x1 ̸= x2. This proves
the necessity of (10).
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First-Order Convexity Conditions: The complete statement

The geometrical interpretation of this theorem is that at any point, the linear approximation
based on a local derivative gives a lower estimate of the function, i.e. the convex function
always lies above the supporting hyperplane at that point. This is pictorially depicted below:
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(Tight) Lower-bound for any (non-differentiable) Convex Function?
For any convex function f (even if non-differentiable)

The epi-graph epi(f) will be
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An intuitive argument
though not rigourousconvex



(Tight) Lower-bound for any (non-differentiable) Convex Function?
For any convex function f (even if non-differentiable)

The epi-graph epi(f) will be convex
The convex epi-graph epi(f) will have
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a supporting hyperplane at any
boundary point (x,f(x)) 



(Tight) Lower-bound for any (non-differentiable) Convex Function?
For any convex function f (even if non-differentiable)

The epi-graph epi(f) will be convex
The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point x
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epi(f)

There exist multiple supporting hyperplanes
Let a supporting hyperplane be characterized by a normal vector [h(x), -1] 
When f was differentiable, this vector was [gradient(x), -1]

x
[h,-1]



(Tight) Lower-bound for any (non-differentiable) Convex Function?
For any convex function f (even if non-differentiable)

The epi-graph epi(f) will be convex
The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point x

▶
{
[v, z] |⟨

[
h(x),−1

]
, [v, z]⟩ = ⟨

[
h(x),−1

]
,
[
x, f(x)

]
⟩
}
for all [v, z] on the hyperplane and

⟨
[
h(x),−1

]
, [y, z]⟩ ≤ ⟨

[
h(x),−1

]
,
[
x, f(x)

]
⟩ for all [y, z] ∈ epi(f) which also includes
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(Tight) Lower-bound for any (non-differentiable) Convex Function?
For any convex function f (even if non-differentiable)

The epi-graph epi(f) will be convex
The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point x

▶
{
[v, z] |⟨

[
h(x),−1

]
, [v, z]⟩ = ⟨

[
h(x),−1

]
,
[
x, f(x)

]
⟩
}
for all [v, z] on the hyperplane and

⟨
[
h(x),−1

]
, [y, z]⟩ ≤ ⟨

[
h(x),−1

]
,
[
x, f(x)

]
⟩ for all [y, z] ∈ epi(f) which also includes[

y, f(y)
]

Thus: ⟨
[
h(x),−1

]
,
[
y, f(y)

]
⟩ ≤ ⟨

[
h(x),−1

]
,
[
x, f(x)

]
⟩ for all y ∈ domain of f

The normal to such a supporting hyperplane serves the same purpose as
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(Tight) Lower-bound for any (non-differentiable) Convex Function?
For any convex function f (even if non-differentiable)

The epi-graph epi(f) will be convex
The convex epi-graph epi(f) will have a supporting hyperplane at every boundary point x

▶
{
[v, z] |⟨

[
h(x),−1

]
, [v, z]⟩ = ⟨

[
h(x),−1

]
,
[
x, f(x)

]
⟩
}
for all [v, z] on the hyperplane and

⟨
[
h(x),−1

]
, [y, z]⟩ ≤ ⟨

[
h(x),−1

]
,
[
x, f(x)

]
⟩ for all [y, z] ∈ epi(f) which also includes[

y, f(y)
]

Thus: ⟨
[
h(x),−1

]
,
[
y, f(y)

]
⟩ ≤ ⟨

[
h(x),−1

]
,
[
x, f(x)

]
⟩ for all y ∈ domain of f

The normal to such a supporting hyperplane serves the same purpose as the gradient
vector. It is called a Sub-gradient vector
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The What, Why and How of (sub)gradients

1 What of (sub)gradient:
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Normal to supporting hyperplane at point (x,f(x) of epi(f)
Need not be unique
Gradient is a subgradient when the function is differentiable



The What, Why and How of (sub)gradients

1 What of (sub)gradient: Normal to the tightly lower bounding linear approximation to a
convex function

2 Why of (sub)gradient:
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(sub)Gradient necessary and sufficient conditions of optimality
for convex functions
Important for algorithms for optimization
Subgradients are important for non-differentiable functions

and constraint optimization



The What, Why and How of (sub)gradients

1 What of (sub)gradient: Normal to the tightly lower bounding linear approximation to a
convex function

2 Why of (sub)gradient: Ability to deal with Constraints, Optimality Conditions,
Optimization Algorithms

3 How of (sub)gradient:
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How to compute subgradient of complex non-differentiable
convex functions

Calculus of convex functions and of subgradients



The What, Why and How of (sub)gradients

1 What of (sub)gradient: Normal to the tightly lower bounding linear approximation to a
convex function

2 Why of (sub)gradient: Ability to deal with Constraints, Optimality Conditions,
Optimization Algorithms

3 How of (sub)gradient: Calculus of Convex functions and of (sub)gradients
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The What of (Sub)Gradient
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First-Order Convexity Conditions: Subgradients
The foregoing result motivates the definition of the subgradient for non-differentiable convex
functions, which has properties very similar to the gradient vector.

Definition
[Subgradient]: Let f : D → ℜ be a convex function defined on a convex set D. A vector

h ∈ ℜn is said to be a subgradient of f at the point x ∈ D if

f(y) ≥ f(x) + hT(y− x)

for all y ∈ D. The set of all such vectors is called the subdifferential of f at x.

For a differentiable convex function, the gradient at point x is the only subgradient at that
point. Most properties of differentiable convex functions that hold in terms of the gradient
also hold in terms of the subgradient for non-differentiable convex functions.
Eg: Subgradient for f(x) = ∥x∥1 is ?
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Once we develop tools (the HOW part) we will
see that the subdifferential contains infinite such h
at some points x



(Sub)Gradients and Convexity (contd)

To say that a function f : ℜn 7→ ℜ is differentiable at x is to say that there is a (single unique)
linear tangent that under estimates the function:

f(y) ≥ f(x) +▽f(x)T(y− x), ∀x,y
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Can you think of a non-convex function
f which has a non-empty subdifferential
(atleast at some points x)? 
Could this be for the negative of the 
Gaussian?



(Sub)Gradients and Convexity (contd)

In this figure we see the function f at x has many possible linear tangents that may fit
appropriately. Recall that a subgradient is any h ∈ ℜn (same dimension as x) such that:

f(y) ≥ f(x) + hT(y− x), ∀y

Thus, intuitively, if a function is differentiable at a point x then
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(Sub)Gradients and Convexity (contd)

In this figure we see the function f at x has many possible linear tangents that may fit
appropriately. Recall that a subgradient is any h ∈ ℜn (same dimension as x) such that:

f(y) ≥ f(x) + hT(y− x), ∀y

Thus, intuitively, if a function is differentiable at a point x then it has a unique subgradient at
that point (▽f(x)). Formal Proof?
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(Sub)Gradients and Convexity (contd)

A subdifferential is the closed convex set of all subgradients of the convex function f:

∂f(x) = {h ∈ ℜn : h is a subgradient of f at x}

Note that this set is guaranteed to be nonempty unless f is not convex.
Often an indicator function, IC : ℜn 7→ ℜ, is employed to remove the contraints of an
optimization problem (note that convex set C ⊆ ℜn):

min
x∈C

f(x) ⇐⇒ min
x

f(x) + IC(x), where IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

The subdifferential of the indicator function at x is
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