
Convexity, Local and Global Optimality, etc.
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Directional Derivative: Simplified Expression

Define g(h) = f(x + vh). Now:
g′(0) = lim

h→0

g(0+h)−g(0)
h = lim

h→0

f(x+hv)−f(x)
h , which is the expression for the directional

derivative defined in equation 1. Thus, g′(0) = Dvf(x).
By definition of the chain rule for partial differentiation, we get another expression for
g′(0) as

g′(0) =
n∑

k=1

∂f(x)
∂xk

vk

Therefore, g′(0) = Dvf(x) =
n∑

k=1

∂f(x)
∂xk

vk

Homeworks:
1 Consider the polynomial f(x, y, z) = x2y + z sin xy and the unit vector vT = 1√

3
[1, 1, 1]T. Consider the point p0 = (0, 1, 3). Compute the

directional derivative of f at p0 in the direction of v.
2 find the rate of change of f(x, y, z) = exyz at p0 = (1, 2, 3) in the direction from p1 = (1, 2, 3) to p2 = (−4, 6,−1).
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The Gradient Vector and Directional Derivative
We can see that the right hand side of (2) can be realized as the dot product of two
vectors, viz.,

[
∂f(x)
∂x1 , ∂f(x)

∂x2 , . . . , ∂f(x)
∂xn

]T
and v.

Let us denote ∂f(x)
∂xi

by fxi(x). Then we assign a name to this special vector:

Definition
[Gradient Vector]: If f is differentiable function of x ∈ ℜn, then the gradient of f(x) is the

vector function ∇f(x), defined as:

∇f(x) =
[
fx1(x), fx2(x), . . . , fxn(x)

]

The directional derivative of a function f at a point x in the direction of a unit vector v can be
now written as
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The Gradient Vector and Directional Derivative
We can see that the right hand side of (2) can be realized as the dot product of two
vectors, viz.,

[
∂f(x)
∂x1 , ∂f(x)

∂x2 , . . . , ∂f(x)
∂xn

]T
and v.

Let us denote ∂f(x)
∂xi

by fxi(x). Then we assign a name to this special vector:

Definition
[Gradient Vector]: If f is differentiable function of x ∈ ℜn, then the gradient of f(x) is the

vector function ∇f(x), defined as:

∇f(x) =
[
fx1(x), fx2(x), . . . , fxn(x)

]

The directional derivative of a function f at a point x in the direction of a unit vector v can be
now written as

Dvf(x) = ∇Tf(x).v (3)
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Illustrating Computation of Directional Derivative

Consider the polynomial f(x, y, z) = x2y+ z sin xy and the unit vector vT = 1√
3
[1, 1, 1]T.

Consider the point p0 = (0, 1, 3). We will compute the directional derivative of f at p0 in
the direction of v.
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Illustrating Computation of Directional Derivative

Consider the polynomial f(x, y, z) = x2y+ z sin xy and the unit vector vT = 1√
3
[1, 1, 1]T.

Consider the point p0 = (0, 1, 3). We will compute the directional derivative of f at p0 in
the direction of v.
To do this, we first compute the gradient of f in general:
∇f =

[
2xy+ yz cos xy, x2 + xz cos xy, sin xy

]T.
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Illustrating Computation of Directional Derivative

Consider the polynomial f(x, y, z) = x2y+ z sin xy and the unit vector vT = 1√
3
[1, 1, 1]T.

Consider the point p0 = (0, 1, 3). We will compute the directional derivative of f at p0 in
the direction of v.
To do this, we first compute the gradient of f in general:
∇f =

[
2xy+ yz cos xy, x2 + xz cos xy, sin xy

]T.
Evaluating the gradient at a specific point p0, ∇f(0, 1, 3) = [3, 0, 0]T. The directional
derivative at p0 in the direction v is Dvf(0, 1, 3) = [3, 0, 0]. 1√

3
[1, 1, 1]T =

√
3.

This directional derivative is the rate of change of f at p0 in the direction v; it is positive
indicating that the function f increases at p0 in the direction v.
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Illustrating Computation of Directional Derivative

As another example, let us find the rate of change of f(x, y, z) = exyz at p0 = (1, 2, 3) in
the direction from p1 = (1, 2, 3) to p2 = (−4, 6,−1).
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Illustrating Computation of Directional Derivative

As another example, let us find the rate of change of f(x, y, z) = exyz at p0 = (1, 2, 3) in
the direction from p1 = (1, 2, 3) to p2 = (−4, 6,−1).
We first construct a unit vector from p1 to p2; v = 1√

57
[−5, 4,−4].

The gradient of f in general is ∇f = [yzexyz, xzexyz, xyexyz] = exyz[yz, xz, xy].
Evaluating the gradient at a specific point p0, ∇f(1, 2, 3) = e6 [6, 3, 2]T. The directional
derivative at p0 in the direction v is Duf(1, 2, 3) = e6[6, 3, 2]. 1√

57
[−5, 4,−4]T = e6−26√

57
.

This directional derivative is negative, indicating that the function f decreases at p0 in the
direction from p1 to p2.
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More on the Gradient Vector

All our ideas about first and second derivative in the case of a single variable carry over to
the directional derivative.
What does the gradient ∇f(x) tell you about the function f(x)? While there exist
infinitely many direction vectors v at any point x, there is a unique gradient vector ∇f(x).
Since we expressed Dvf(x) as the dot product of ∇f(x) with v, we can study ∇f(x)
independently.
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More on the Gradient Vector

All our ideas about first and second derivative in the case of a single variable carry over to
the directional derivative.
What does the gradient ∇f(x) tell you about the function f(x)? While there exist
infinitely many direction vectors v at any point x, there is a unique gradient vector ∇f(x).
Since we expressed Dvf(x) as the dot product of ∇f(x) with v, we can study ∇f(x)
independently.

Claim
Suppose f is a differentiable function of x ∈ ℜn. The maximum value of the directional
derivative Dvf(x) is ||∇f(x|| and it is so when v has the same direction as the gradient vector
∇f(x).
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Proof: Directional derivative is a dot product of gradient and direction
which can be upper bounded using Cauchy Shwarz inequality



More on the Gradient Vector (contd.)

Proof:
The cauchy schwartz inequality when applied in the eucledian space gives us
|xTy| ≤ ||x||||y|| for any x,y ∈ ℜn, with equality holding iff x and y are linearly
dependent.
The inequality gives upper and lower bounds on the dot product between two vectors;
−||x||||y|| ≤ xTy ≤ ||x||||y||.
Applying these bounds to the right hand side of (3) and using the fact that ||v|| = 1, we
get
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Upper and lower bounds for directional derivative at x. 
Are these upper and lower bounds attainable? 

ANS: Yes. In or against direction of gradient of f at x! 



More on the Gradient Vector (contd.)

Proof:
The cauchy schwartz inequality when applied in the eucledian space gives us
|xTy| ≤ ||x||||y|| for any x,y ∈ ℜn, with equality holding iff x and y are linearly
dependent.
The inequality gives upper and lower bounds on the dot product between two vectors;
−||x||||y|| ≤ xTy ≤ ||x||||y||.
Applying these bounds to the right hand side of (3) and using the fact that ||v|| = 1, we
get

−||∇f(x)|| ≤ Dvf(x) = ∇Tf(x).v ≤ ||∇f(x)||
with equality holding iff v = k∇f(x) for some k ≥ 0.
Since ||v|| = 1, equality can hold iff v = ∇f(x)

||∇f(x)|| .
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More on the Gradient Vector (contd.)

Thus, the maximum rate of change of f at a point x is given by the norm ||∇f(x|| of the
gradient vector at x.
And the direction in which the rate of change of f is maximum is given by the unit vector
∇f(x

||∇f(x|| .
An associated fact is that the minimum value of the directional derivative Dvf(x) is
−||∇f(x)|| and it is attained when v has the opposite direction of the gradient vector,
i.e., − ∇f(x

||∇f(x|| .
The method of steepest descent uses this result to iteratively choose a new value of x by
traversing in the direction of −∇f(x), especially while minimizing the value of some
complex function.
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Visualizing the Gradient Vector
Consider the function f(x1, x2) = x1ex2 . The Figure below shows 10 level curves for this
function, corresponding to f(x1, x2) = c for c = 1, 2, . . . , 10.

The idea behind a level curve is that as you change x along any level curve, the function value
remains unchanged, but as you move x across level curves, the function value changes.
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will be useful and discussed for constrained optimization

will be discussed now (for function being
minimized



Level curves for 
f(x,y) = x * exp(y)



Vanishing of the Directional Derivative
What if Dvf(x) turns out to be 0?
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Level curves for x^2 + y^2

Expect directional derivative
to be 0 in direction tangential
to any level curve



Vanishing of the Directional Derivative
What if Dvf(x) turns out to be 0?
We then expect that ∇f(x) and v are othogonal.

Definition
Level Surface/Set: The level surface/set of f(x) at x∗ is

{x|f(x) = f(x∗)} (4)
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level curve



Vanishing of the Directional Derivative
What if Dvf(x) turns out to be 0?
We then expect that ∇f(x) and v are othogonal.

Definition
Level Surface/Set: The level surface/set of f(x) at x∗ is

{x|f(x) = f(x∗)} (4)

There is a useful result in this regard.

Claim
Let f : D → ℜ with D ∈ ℜn be a differentiable function. The gradient ∇f evaluated at x∗ is
orthogonal to the tangent hyperplane (tangent line in case n = 2) to the level surface of f
passing through x∗.
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Intuition... We consider any parametric curve passing through x*
and lying on the level set.. has gradient orthogonal to tangent line



Vanishing of the Directional Derivative & Level Surfaces: Proof
Proof: Let K be the range of f and let k ∈ K such that f(x∗) = k.

Consider the level surface f(x) = k. Let r(t) = [x1(t), x2(t), . . . , xn(t)] be a curve on the
level surface, parametrized by t ∈ ℜ, with r(0) = x∗.
Then, f(x(t), y(t), z(t)) = k. Applying the chain rule
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For this example in 3d, df/dt = dot product of gradient of f with the vector 
of derivatives of xi wrt t



Vanishing of the Directional Derivative & Level Surfaces: Proof
Proof: Let K be the range of f and let k ∈ K such that f(x∗) = k.

Consider the level surface f(x) = k. Let r(t) = [x1(t), x2(t), . . . , xn(t)] be a curve on the
level surface, parametrized by t ∈ ℜ, with r(0) = x∗.
Then, f(x(t), y(t), z(t)) = k. Applying the chain rule

df(r(t))
dt =

n∑

i=1

∂f
∂xi

dxi(t)
dt = ∇Tf(x(t))dr(t)

dt = 0

For t = 0, the equations become
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Vanishing of the Directional Derivative & Level Surfaces: Proof
Proof: Let K be the range of f and let k ∈ K such that f(x∗) = k.

Consider the level surface f(x) = k. Let r(t) = [x1(t), x2(t), . . . , xn(t)] be a curve on the
level surface, parametrized by t ∈ ℜ, with r(0) = x∗.
Then, f(x(t), y(t), z(t)) = k. Applying the chain rule

df(r(t))
dt =

n∑

i=1

∂f
∂xi

dxi(t)
dt = ∇Tf(x(t))dr(t)

dt = 0

For t = 0, the equations become

∇Tf(x∗)
dr(0)
dt = 0

Now, dr(t)
dt represents any tangent vector to the curve through r(t) which lies completely

on the level surface.
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The tangent plane is the plane containing all such tangent vectors across all such r(t)

((Not rigorous)



Vanishing of the Directional Derivative & Level Surfaces: Proof

∇Tf(x∗)
dr(0)
dt = 0

That is, the tangent line to any curve at x∗ on the level surface containing x∗, is
orthogonal to ∇f(x∗).
Since the tangent hyperplane to a surface at any point is the hyperplane containing all
tangent vectors to curves on the surface passing through the point, the gradient ∇f(x∗) is
perpendicular to the tangent hyperplane to the level surface passing through that point
x∗.
The equation of the tangent hyperplane is given by
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Hyperplane(x*,gradient of f at x*)



Vanishing of the Directional Derivative & Level Surfaces: Proof

∇Tf(x∗)
dr(0)
dt = 0

That is, the tangent line to any curve at x∗ on the level surface containing x∗, is
orthogonal to ∇f(x∗).
Since the tangent hyperplane to a surface at any point is the hyperplane containing all
tangent vectors to curves on the surface passing through the point, the gradient ∇f(x∗) is
perpendicular to the tangent hyperplane to the level surface passing through that point
x∗.
The equation of the tangent hyperplane is given by (x − x∗)T∇f(x∗) = 0
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Vanishing of the Directional Derivative & Level Surfaces: Proof

..
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Level Surface based Interpretation of Gradient

Recall that the normal to a plane can be found by taking the cross product of any two
vectors lying within the plane. Thus, the gradient vector ∇f(x∗) at any point x∗ on the
level surface of a function f(.) is normal to the tangent hyperplane (or tangent line
in the case of two variables) to the surface at the same point.
The same gradient vector ∇f(x∗) at a point x∗ can also be conveniently computed as the
vector of partial derivatives of the function at that point.
We will illustrate this geometric understanding through some examples.
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Level Surface based Interpretation of Gradient: Examples
Consider the same plot as earlier with a gradient vector at (2, 0) as shown below. The
gradient vector [1, 2]T is perpendicular to the tangent hyperplane to the level curve
x1ex2 = 2 at (2, 0). The equation of the tangent hyperplane is (x1 − 2) + 2(x2 − 0) = 0
and it turns out to be a tangent line.
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Level Surface based Interpretation of Gradient: Examples
The level surfaces for f(x1, x2, x3) = x21 + x22 + x23 are shown in the Figure below. The gradient
at (1, 1, 1) is orthogonal to the tangent hyperplane to the level surface
f(x1, x2, x3) = x21 + x22 + x23 = 3 at (1, 1, 1). The gradient vector at (1, 1, 1) is [2, 2, 2]T and
the tanget hyperplane has the equation 2(x1 − 1) + 2(x2 − 1) + 2(x3 − 1) = 0, which is a plane
in 3D.
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Level Surface based Interpretation of Gradient: Examples
On the other hand, the dotted line in the Figure below is not orthogonal to the level surface,
since it does not coincide with the gradient.
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Level Surface based Interpretation of Gradient: Examples

Let f(x1, x,x3) = x21x32x43 and consider the point x0 = (1, 2, 1). We will find the equation of
the tangent plane to the level surface through x0.
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Compute gradient at x0



Level Surface based Interpretation of Gradient: Examples

Let f(x1, x,x3) = x21x32x43 and consider the point x0 = (1, 2, 1). We will find the equation of
the tangent plane to the level surface through x0.
The level surface through x0 is determined by setting f equal to its value evaluated at x0;
that is, the level surface will have the equation x21x32x43 = 122314 = 8.
The gradient vector (normal to tangent plane) at (1, 2, 1) is
∇f(x1, x2, x3)

��
(1,2,1)

= [2x1x32x43, 3x21x22x43, 4x21x32x33]T
���
(1,2,1)

= [16, 12, 32]T.

The equation of the tangent plane at x0, given the normal vector ∇f(x0) can be easily
written down: ∇f(x0)T.[x − x0] = 0 which turns out to be
16(x1 − 1) + 12(x2 − 2) + 32(x3 − 1) = 0, a plane in 3D.
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Level Surface based Interpretation of Gradient: Examples

Consider the function f(x, y, z) = x
y+z . The directional derivative of f in the direction of

the vector v = 1√
14
[1, 2, 3] at the point x0 = (4, 1, 1) is
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Level Surface based Interpretation of Gradient: Examples

Consider the function f(x, y, z) = x
y+z . The directional derivative of f in the direction of

the vector v = 1√
14
[1, 2, 3] at the point x0 = (4, 1, 1) is

∇Tf
���
(4,1,1)

. 1√
14
[1, 2, 3]T =

[
1

y+z , − x
(y+z)2 , − x

(y+z)2
]����

(4,1,1)

. 1√
14
[1, 2, 3]T =

[
1
2 , −1, −1

]
. 1√

14
[1, 2, 3]T = − 9

2
√
14
.

The directional derivative is negative, indicating that the function decreases along the
direction of v. Based on an earlier result, we know that the maximum rate of change of a
function at a point x is given by ||∇f(x)|| and it is in the direction ∇f(x)

||∇f(x)|| .
In the example under consideration, this maximum rate of change at x0 is 3

2 and it is in
the direction of the vector 2

3

[
1
2 , −1, −1

]
.
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Level Surface based Interpretation of Gradient: Examples

Let us find the maximum rate of change of the function f(x, y, z) = x2y3z4 at the point
x0 = (1, 1, 1) and the direction in which it occurs. The gradient at x0 is
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Level Surface based Interpretation of Gradient: Examples

Let us find the maximum rate of change of the function f(x, y, z) = x2y3z4 at the point
x0 = (1, 1, 1) and the direction in which it occurs. The gradient at x0 is
∇Tf

���
(1,1,1)

= [2, 3, 4]. The maximum rate of change at x0 is therefore
√
29 and the direction

of the corresponding rate of change is 1√
29

[2, 3, 4]. The minimum rate of change is −
√
29

and the corresponding direction is − 1√
29

[2, 3, 4].
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Level Surface based Interpretation of Gradient: Examples

Let us determine the equations of
(a) the tangent plane to the paraboloid P : x1 = x22 + x23 + 2 at (−1, 1, 0) and
(b) the normal line to the tangent plane.
To realize this as the level surface of a function of three variables, we define the function
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f (such that P corresponds to one of its level sets)



Level Surface based Interpretation of Gradient: Examples

Let us determine the equations of
(a) the tangent plane to the paraboloid P : x1 = x22 + x23 + 2 at (−1, 1, 0) and
(b) the normal line to the tangent plane.
To realize this as the level surface of a function of three variables, we define the function
f(x1, x2, x3) = x1 − x22 − x23 and find that the paraboloid P is the same as the level surface
f(x1, x2, x3) = −2. The normal to the tangent plane to P at x0 is in the direction of the
gradient vector ∇f(x0) = [1,−2, 0]T and its parametric equation is
[x1, x2, x3] = [−1 + t, 1− 2t, 0].
The equation of the tangent plane is therefore (x1 + 1)− 2(x2 − 1) = 0.
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Gradient and Convex Functions?

How do we understand the behaviour of gradients for convex functions?
While we have a lot to see in the coming sessions, here is a small peek through sub-level
sets of a convex function

Definition
[Sublevel Sets]: Let D ⊆ ℜn be a nonempty set and f : D → ℜ. The set

Lα(f) =
{

x|x ∈ D, f(x) ≤ α
}

is called the α−sub-level set of f.

Now if a function f is convex,
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each of its sublevel set will be convex



Level sets for x1*exp(x2)
Sublevel sets are not convex
==> function cannot be 

convex



x1^2 + x2^2
is a convex function
and so are its sublevel sets



Gradient and Convex Functions?

How do we understand the behaviour of gradients for convex functions?
While we have a lot to see in the coming sessions, here is a small peek through sub-level
sets of a convex function

Definition
[Sublevel Sets]: Let D ⊆ ℜn be a nonempty set and f : D → ℜ. The set

Lα(f) =
{

x|x ∈ D, f(x) ≤ α
}

is called the α−sub-level set of f.

Now if a function f is convex, its α−sub-level set is a convex set.

February 13, 2018 34 / 86



Convex Function ⇒ Convex Sub-level sets
Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ be a convex function. Then Lα(f) is a
convex set for any α ∈ ℜ.

Proof: Consider x1,x2 ∈ Lα(f). Then by definition of the level set, x1,x2 ∈ D, f(x1) ≤ α and
f(x2) ≤ α. From convexity of D it follows that for all θ ∈ (0, 1), x = θx1 + (1− θ)x2 ∈ D.
Moreover, since f is also convex,

f(x) ≤ θf(x1) + (1− θ)f(x2) ≤ θα+ (1− θ)α = α

which implies that x ∈ Lα(f). Thus, Lα(f) is a convex set.
The converse of this theorem does not hold. To illustrate this, consider the function
f(x) = x2

1+2x21
. The 0-sublevel set of this function is

{
(x1, x2) | x2 ≤ 0

}
, which is convex.

However, the function f(x) itself is not convex.
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Convex Function ⇒ Convex Sub-level sets
Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ be a convex function. Then Lα(f) is a
convex set for any α ∈ ℜ.

Proof: Consider x1,x2 ∈ Lα(f). Then by definition of the level set, x1,x2 ∈ D, f(x1) ≤ α and
f(x2) ≤ α. From convexity of D it follows that for all θ ∈ (0, 1), x = θx1 + (1− θ)x2 ∈ D.
Moreover, since f is also convex,

f(x) ≤ θf(x1) + (1− θ)f(x2) ≤ θα+ (1− θ)α = α

which implies that x ∈ Lα(f). Thus, Lα(f) is a convex set.
The converse of this theorem does not hold. To illustrate this, consider the function
f(x) = x2

1+2x21
. The 0-sublevel set of this function is

{
(x1, x2) | x2 ≤ 0

}
, which is convex.

However, the function f(x) itself is not convex.
A function is called quasi-convex if all its sub-level sets are convex sets Eg: Negative of
the normal distribution − 1

σ
√
2π
exp

(
− (x−µ)2

2σ2

)
is quasi-convex but not convex. [Homework]
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Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that
The gradient ∇f(x∗) at x∗ is normal to the tangent hyperplane to the level set
{x|f(x) = f(x∗)} at x∗

The gradient ∇f(x∗) at x∗ points in direction of increasing values of f(.) at x∗

Now, if f(x) is also convex
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Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that
The gradient ∇f(x∗) at x∗ is normal to the tangent hyperplane to the level set
{x|f(x) = f(x∗)} at x∗

The gradient ∇f(x∗) at x∗ points in direction of increasing values of f(.) at x∗

Now, if f(x) is also convex
The gradient ∇f(x∗) at x∗ is normal to the tangent hyperplane to the sub-level set
{x|f(x) ≤ f(x∗)} at x∗

The tangent hyperplane defined by ∇f(x∗) at x∗ is a supporting hyperplane to the
convex set {x|f(x) ≤ f(x∗)} at x∗
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