Convexity, Local and Global Optimality, etc.

February 17, 2018 1 / 95

38

200

A D > A P > A

Optimization Principles for Multivariate Functions

In the following, we state some important properties of convex functions, some of which require knowledge of 'derivatives' in \Re^n . These also include relationships between convex functions and convex sets, and first and second order conditions for convexity.

৩ ৫ ৫ 10 / 95

February 17, 2018

$\mathsf{Convex}\ \mathsf{Function} \Rightarrow \mathsf{Convex}\ \mathsf{Sub-level}\ \mathsf{sets}$

Theorem

Let $\mathcal{D} \subseteq \Re^n$ be a nonempty convex set, and $f : \mathcal{D} \to \Re$ be a convex function. Then $L_{\alpha}(f)$ is a convex set for any $\alpha \in \Re$.

Proof: Consider $\mathbf{x}_1, \mathbf{x}_2 \in L_{\alpha}(f)$. Then by definition of the level set, $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{D}$, $f(\mathbf{x}_1) \leq \alpha$ and $f(\mathbf{x}_2) \leq \alpha$. From convexity of \mathcal{D} it follows that for all $\theta \in (0, 1)$, $\mathbf{x} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in \mathcal{D}$. Moreover, since f is also convex,

$$f(\mathbf{x}) \le \theta f(\mathbf{x}_1) + (1-\theta)f(\mathbf{x}_2) \le \theta \alpha + (1-\theta)\alpha = \alpha$$

which implies that $\mathbf{x} \in L_{\alpha}(f)$. Thus, $L_{\alpha}(f)$ is a convex set.

The converse of this theorem does not hold. To illustrate this, consider the function $f(\mathbf{x}) = \frac{x_2}{1+2x_1^2}$. The 0-sublevel set of this function is $\{(x_1, x_2) \mid x_2 \leq 0\}$, which is convex. However, the function $f(\mathbf{x})$ itself is not convex.

A function is called quasi-convex if all its sub-level sets are convex sets Eg: Negative of the normal distribution $-\frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ is quasi-convex but not convex. [Homework]

Convex Sub-level sets \implies Convex Function

A function is called quasi-convex if all its sub-level sets are convex sets. Every quasi-convex function is not convex!

Consider the Negative of the normal distribution $-\frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$. This function is quasi-convex but not convex.

Consider the simpler function $f(x) = -exp(-(x - \mu)^2)$.

• Then
$$f(x) = 2(x - \mu)exp(-(x - \mu)^2)$$

And

$$f'(x) = 2\exp(-(x-\mu)^2) - 4(x-\mu)^2 \exp(-(x-\mu)^2) = (2 - 4(x-\mu)^2)\exp(-(x-\mu)^2)$$
which is < 0 if $(x-\mu)^2 > \frac{1}{2}$,

- Thus, the second derivative is negative if $x > \mu + \frac{1}{\sqrt{2}}$ or $x < -\mu \frac{1}{\sqrt{2}}$.
- Recall from discussion of convexity of f: ℜ → ℜ if the derivative is not non-decreasing everywhere ⇒ function is not convex everywhere.

To prove that this function is quasi-convex, we can

Proof that the function is Quasi-Convex

- Inspect the $L_{\alpha}(f)$ sublevel sets of this function: $L_{\alpha}(f) = \{x| - exp(-(x-\mu)^2) \le \alpha\} = \{x|exp(-(x-\mu)^2) \ge -\alpha\}.$
- Since exp(−(x − µ)²) is monotonically increasing for x < µ and monotonically decreasing for x > µ, the set {x|exp(−(x − µ)²) ≥ −α} will be a contiguous closed interval around µ and therefore a convex set.
- Thus, $f(x) = -exp(-(x \mu)^2)$ is quasi-convex (and so is its generalization the negative of the normal density function).
- One can similarly prove that the negative of the multivariate normal density function is also quasi-convex, by inspecting its sub-level sets, which are nothing but ellipsoids.

Every convex function is a Quasi-convex function Not every quasi-convex function is a convex function

Proof that the function is Quasi-Convex

- Inspect the $L_{\alpha}(f)$ sublevel sets of this function: $L_{\alpha}(f) = \{x| - exp(-(x-\mu)^2) \le \alpha\} = \{x|exp(-(x-\mu)^2) \ge -\alpha\}.$
- Since exp(−(x − µ)²) is monotonically increasing for x < µ and monotonically decreasing for x > µ, the set {x|exp(−(x − µ)²) ≥ −α} will be a contiguous closed interval around µ and therefore a convex set.
- Thus, $f(x) = -exp(-(x \mu)^2)$ is quasi-convex (and so is its generalization the negative of the normal density function).
- One can similarly prove that the negative of the multivariate normal density function is also quasi-convex, by inspecting its sub-level sets, which are nothing but **ellipsoids**.

Note that

Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that

- The gradient ∇f(x*) at x* is normal to the tangent hyperplane to the level set {x|f(x) = f(x*)} at x*
- The gradient $\nabla f(\mathbf{x}^*)$ at \mathbf{x}^* points in direction of increasing values of f(.) at \mathbf{x}^*

Now, if $f(\mathbf{x})$ is also convex

At every point x* the gradient at x* gives you a hyperplane that supports the sublevel set $\{x \mid f(x) \le f(x^*)\}$

Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that

- The gradient $\nabla f(\mathbf{x}^*)$ at \mathbf{x}^* is normal to the tangent hyperplane to the level set $\{\mathbf{x}|f(\mathbf{x}) = f(\mathbf{x}^*)\}$ at \mathbf{x}^*
- The gradient $\nabla f(\mathbf{x}^*)$ at \mathbf{x}^* points in direction of increasing values of f(.) at \mathbf{x}^*

Now, if $f(\mathbf{x})$ is also convex

- The gradient $\nabla \underline{f}(\mathbf{x}^*)$ at \mathbf{x}^* is normal to the tangent hyperplane to the sub-level set $\underline{L}_{f(\mathbf{x}^*)}(f) = \{\mathbf{x} | f(\mathbf{x}) \leq f(\mathbf{x}^*)\}$ at \mathbf{x}^* , pointing away from the set $L_{f(\mathbf{x}^*)}(f)$
- The tangent hyperplane defined by ∇f(x*) at x* is a supporting hyperplane to the convex set {x|f(x) ≤ f(x*)} at x*

As we have seen, this also holds for quasi convex functions such as negative of normal density function (see next page)

Aside: Supporting hyperplane and Convex Sets

Supporting hyperplane to set C at boundary point \mathbf{x}_o :

•
$$\left\{ \mathbf{x} | \mathbf{a}^T \mathbf{x} = \mathbf{a}^T \mathbf{x}_o \right\}$$

• where
$$\mathbf{a} \neq 0$$
 and $\mathbf{a}^T \mathbf{x} \leq \mathbf{a}^T \mathbf{x}_o$ for all $\mathbf{x} \in \mathcal{C}$

A 12

Supporting because entire convex set lies on one side of half space

If the set C is not closed, the point xo will not lie in C

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C.

Convex Functions and Their Epigraphs

Let us further the connection between convex functions and sets by introducing the concept of the *epigraph* of a function.

Definition

[Epigraph]: Let $\mathcal{D} \subseteq \Re^n$ be a nonempty set and $f: \mathcal{D} \to \Re$. The set $\{(\mathbf{x}, f(\mathbf{x}) | \mathbf{x} \in \mathcal{D}\}$ is called graph of f and lies in \Re^{n+1} . The epigraph of f is a subset of \Re^{n+1} and is defined as

$$epi(f) = \{ (\mathbf{x}, \alpha) | f(\mathbf{x}) \le \alpha, \ \mathbf{x} \in \mathcal{D}, \ \alpha \in \Re \}$$
(5)

In some sense, the epigraph is the set of points lying above the graph of f.

Eg: Recall affine functions of vectors: $\mathbf{a}^T \mathbf{x} + b$ where $\mathbf{a} \in \Re^n$. Its epigraph is $\{(\mathbf{x}, t) | \mathbf{a}^T \mathbf{x} + b \le t\} \subseteq \Re^{n+1}$ which is a half-space (a convex set). Here a convex function has a convex epigraph. Is that always true?

Convex Functions and Their Epigraphs

Definition

[Hypograph]: Similarly, the *hypograph* of f is a subset of \Re^{n+1} , lying below the graph of f and is defined by

$$hyp(f) = \{ (\mathbf{x}, \alpha) | f(\mathbf{x}) \ge \alpha, \ \mathbf{x} \in \mathcal{D}, \ \alpha \in \Re \}$$
(6)

Hypographs are interesting for concave functions

February 17, 2018 41 / 95

There is a one to one correspondence between the convexity of function f and that of the set epi(f), as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^n$ be a nonempty convex set, and $f: \mathcal{D} \to \Re$. Then f is convex if and only if epi(f) is convex

ን ዓር 42 / 95

February 17, 2018

There is a one to one correspondence between the convexity of function f and that of the set epi(f), as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^n$ be a nonempty convex set, and $f : \mathcal{D} \to \Re$. Then f is convex if and only if epi(f) is a convex set.

ን ዓር 42 / 95

February 17, 2018

Proof: f convex function $\implies epi(f)$ convex set

There is a one to one correspondence between the convexity of function f and that of the set epi(f), as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^n$ be a nonempty convex set, and $f : \mathcal{D} \to \Re$. Then f is convex if and only if epi(f) is a convex set.

Proof: f convex function $\implies epi(f)$ convex set

Let f be convex. For any $(\mathbf{x}_1, \alpha_1) \in epi(f)$ and $(\mathbf{x}_2, \alpha_2) \in epi(f)$ and any $\theta \in (0, 1)$,

 $f(\theta \mathbf{x}_1 + (1-\theta)\mathbf{x}_2) \le \theta f(\mathbf{x}_1) + (1-\theta)f(\mathbf{x}_2)) \le \theta \alpha_1 + (1-\theta)\alpha_2$

Since \mathcal{D} is convex, $\theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2 \in \mathcal{D}$. Therefore, $(\theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2, \theta \alpha_1 + (1 - \theta) \alpha_2) \in epi(f)$. Thus, epi(f) is convex if f is convex. This proves the necessity part.

epi(f) convex set \implies f convex function

To prove sufficiency, assume that epi(f) is convex. Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{D}$. So, $(\mathbf{x}_1, f(\mathbf{x}_1)) \in epi(f)$ and $(\mathbf{x}_2, f(\mathbf{x}_2)) \in epi(f)$. Since epi(f) is convex, for $\theta \in (0, 1)$,

$$(\theta \mathbf{x}_1 + (1-\theta)\mathbf{x}_2, \theta \alpha_1 + (1-\theta)\alpha_2) \in epi(f)$$

which implies that $f(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2) \leq \theta f(\mathbf{x}_1) + (1 - \theta)f(\mathbf{x}_2))$ for any $\theta \in (0, 1)$. This proves the sufficiency.

Is the epi(f) of a quasi-convex f also always convex.

NO: Not always. It is true only if the f is convex.

Epigraph and Convexity

• Given a convex function $f(\mathbf{x})$ and a convex domain \mathcal{D} , the convex optimization problem

 $\min_{\mathbf{x}\in\mathcal{D}} f(\mathbf{x})$

can be equivalently expressed as

 $\min_{\mathbf{x}\in\mathcal{D},t\in\Re,f(\mathbf{x})\leq t} t = \min \text{ of t wrt } (\mathbf{x},t) \text{ on epi(f)}$

February 17, 2018 44 / 95

Epigraph and Convexity

• Given a convex function $f(\mathbf{x})$ and a convex domain \mathcal{D} , the convex optimization problem

 $\min_{\mathbf{x}\in\mathcal{D}} f(\mathbf{x})$

can be equivalently expressed as

$$\min_{\mathbf{x}\in\mathcal{D},t\in\Re,f(\mathbf{x})\leq t} t = \min_{\mathbf{x}\in\mathcal{D},(\mathbf{x},t)\in\textit{epi}(f)} t$$

- Recall the first order condition for convexity of a differentiable function f: ℜ → ℜ. Is there an equivalent for f: D → ℜ?
- f'(x) is (strictly) increasing OR f at y obtained using linear approx at x is (strictly) less than along y-xor equal to the actual value f(y) at y

Epigraph and Convexity

• Given a convex function $f(\mathbf{x})$ and a convex domain \mathcal{D} , the convex optimization problem

 $\min_{\mathbf{x}\in\mathcal{D}} f(\mathbf{x})$

can be equivalently expressed as

$$\min_{\mathbf{x}\in\mathcal{D},t\in\Re,f(\mathbf{x})\leq t} t = \min_{\mathbf{x}\in\mathcal{D},(\mathbf{x},t)\in epi(f)} t$$

Recall the first order condition for convexity of a differentiable function f: ℜ → ℜ. Is there an equivalent for f: D → ℜ? Let f: D → ℜ be a differentiable convex function on an open convex set D. Then f is convex if and only if, for any x, y ∈ D,

 $f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla^{\mathsf{T}} f(\mathbf{x})(\mathbf{y} - \mathbf{x})$

directional derivative at x along y-x

Epigraph, Convexity and Gradients

..(contd).... f is convex if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla^{T} f(\mathbf{x})(\mathbf{y} - \mathbf{x})$$

If $\mathcal{D} \subseteq \Re^n$, this means that for each and every point $\mathbf{x} \in \mathcal{D}$ for a convex real function $f(\mathbf{x})$, there exists a hyperplane $H \in \Re^{n+1}$ having normal $[\nabla f(\mathbf{x}) - 1]^T$ supporting the function epigraph at $[\mathbf{x} \ f(\mathbf{x})]^T$. See Figure below sourced from https://ccrma.stanford.edu/-dattorro/gcf.pdf

Homework: Equation of Tangent Hyperplane to Epigraph

For the function $f: \mathcal{D} \to \Re$ such that $\mathcal{D} \subseteq \Re^n$, write down the equation of the tangent hyperplane to its epigraph at $(\mathbf{x}^0, f(\mathbf{x}^0))$. As an example, consider the paraboloid, $f(x_1, x_2) = x_1^2 + x_2^2 - 9$ and $\mathbf{x}^0 = (0, 0)$ and write the equation of its tangent hyperplane. Also try and plot. First-Order Convexity Conditions: The complete statement

Theorem

9 For differentiable $f: \mathcal{D} \to \Re$ and open convex set \mathcal{D} , f is convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla^T f(\mathbf{x})(\mathbf{y} - \mathbf{x})$$

2 f is strictly convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, with $\mathbf{x} \neq \mathbf{y}$,

$$f(\mathbf{y}) > f(\mathbf{x}) + \nabla^{T} f(\mathbf{x}) (\mathbf{y} - \mathbf{x})$$
(8)

• f is strongly convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, and for some constant c > 0,

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla^{T} f(\mathbf{x}) (\mathbf{y} - \mathbf{x}) + \frac{1}{2} c ||\mathbf{y} - \mathbf{x}||^{2}$$
(9)

(7)