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Optimization Principles for Multivariate Functions
In the following, we state some important properties of convex functions, some of which
require knowledge of ‘derivatives’ in ℜn. These also include relationships between convex

functions and convex sets, and first and second order conditions for convexity.
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Convex Function ⇒ Convex Sub-level sets
Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ be a convex function. Then Lα(f) is a
convex set for any α ∈ ℜ.

Proof: Consider x1,x2 ∈ Lα(f). Then by definition of the level set, x1,x2 ∈ D, f(x1) ≤ α and
f(x2) ≤ α. From convexity of D it follows that for all θ ∈ (0, 1), x = θx1 + (1− θ)x2 ∈ D.
Moreover, since f is also convex,

f(x) ≤ θf(x1) + (1− θ)f(x2) ≤ θα+ (1− θ)α = α

which implies that x ∈ Lα(f). Thus, Lα(f) is a convex set.
The converse of this theorem does not hold. To illustrate this, consider the function
f(x) = x2

1+2x21
. The 0-sublevel set of this function is

{
(x1, x2) | x2 ≤ 0

}
, which is convex.

However, the function f(x) itself is not convex.
A function is called quasi-convex if all its sub-level sets are convex sets Eg: Negative of
the normal distribution − 1

σ
√
2π

exp
(
− (x−µ)2

2σ2

)
is quasi-convex but not convex. [Homework]
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Convex Sub-level sets ≠⇒ Convex Function
A function is called quasi-convex if all its sub-level sets are convex sets. Every
quasi-convex function is not convex!
Consider the Negative of the normal distribution − 1

σ
√
2π

exp
(
− (x−µ)2

2σ2

)
. This function is

quasi-convex but not convex.
Consider the simpler function f(x) = −exp(−(x − µ)2).

Then f′(x) = 2(x − µ)exp(−(x − µ)2)

And
f′′(x) = 2exp(−(x − µ)2)− 4(x − µ)2exp(−(x − µ)2) = (2− 4(x − µ)2)exp(−(x − µ)2)
which is < 0 if (x − µ)2 > 1

2 ,
Thus, the second derivative is negative if x > µ+ 1√

2
or x < −µ− 1√

2
.

Recall from discussion of convexity of f : ℜ → ℜ if the derivative is not non-decreasing
everywhere =⇒ function is not convex everywhere.

To prove that this function is quasi-convex, we can ....
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Proof that the function is Quasi-Convex

1 Inspect the Lα(f) sublevel sets of this function:
Lα(f) = {x|− exp(−(x − µ)2) ≤ α} = {x|exp(−(x − µ)2) ≥ −α}.

2 Since exp(−(x − µ)2) is monotonically increasing for x < µ and monotonically decreasing
for x > µ, the set {x|exp(−(x − µ)2) ≥ −α} will be a contiguous closed interval around µ
and therefore a convex set.

3 Thus, f(x) = −exp(−(x − µ)2) is quasi-convex (and so is its generalization - the negative
of the normal density function).

One can similarly prove that the negative of the multivariate normal density function is
also quasi-convex, by inspecting its sub-level sets, which are nothing but ellipsoids.
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Every convex function is a Quasi-convex function
Not every quasi-convex function is a convex function



Proof that the function is Quasi-Convex

1 Inspect the Lα(f) sublevel sets of this function:
Lα(f) = {x|− exp(−(x − µ)2) ≤ α} = {x|exp(−(x − µ)2) ≥ −α}.

2 Since exp(−(x − µ)2) is monotonically increasing for x < µ and monotonically decreasing
for x > µ, the set {x|exp(−(x − µ)2) ≥ −α} will be a contiguous closed interval around µ
and therefore a convex set.

3 Thus, f(x) = −exp(−(x − µ)2) is quasi-convex (and so is its generalization - the negative
of the normal density function).

One can similarly prove that the negative of the multivariate normal density function is
also quasi-convex, by inspecting its sub-level sets, which are nothing but ellipsoids.

Note that
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Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that
The gradient ∇f(x∗) at x∗ is normal to the tangent hyperplane to the level set
{x|f(x) = f(x∗)} at x∗

The gradient ∇f(x∗) at x∗ points in direction of increasing values of f(.) at x∗

Now, if f(x) is also convex
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gives you a hyperplane that 
supports the sublevel set 
{x | f(x) <= f(x*)}



Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that
The gradient ∇f(x∗) at x∗ is normal to the tangent hyperplane to the level set
{x|f(x) = f(x∗)} at x∗

The gradient ∇f(x∗) at x∗ points in direction of increasing values of f(.) at x∗

Now, if f(x) is also convex
The gradient ∇f(x∗) at x∗ is normal to the tangent hyperplane to the sub-level set
Lf(x∗)(f) = {x|f(x) ≤ f(x∗)} at x∗, pointing away from the set Lf(x∗)(f)
The tangent hyperplane defined by ∇f(x∗) at x∗ is a supporting hyperplane to the
convex set {x|f(x) ≤ f(x∗)} at x∗
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As we have seen, this also holds for quasi convex functions such 
as negative of normal density function (see next page)



Non convex function
Negative of normal density



But it is quasi-convex
owing to convex sublevel
sets

Hence the gradient
continues to give 
us a supporting hyperplane



Aside: Supporting hyperplane and Convex Sets
Supporting hyperplane to set C at boundary point xo:{

x|aTx = aTxo
}

where a ̸= 0 and aTx ≤ aTxo for all x ∈ C

Supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at
every boundary point of C.
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Supporting because
entire convex set lies on
one side of half space

If the set C is not closed, the 
point xo will not lie in C



Convex Functions and Their Epigraphs
Let us further the connection between convex functions and sets by introducing the concept of
the epigraph of a function.

Definition
[Epigraph]: Let D ⊆ ℜn be a nonempty set and f : D → ℜ. The set

{
(x, f(x)|x ∈ D

}
is

called graph of f and lies in ℜn+1. The epigraph of f is a subset of ℜn+1 and is
defined as

epi(f) =
{
(x,α)|f(x) ≤ α, x ∈ D, α ∈ ℜ

}
(5)

In some sense, the epigraph is the set of points lying above the graph of f.

Eg: Recall affine functions of vectors: aTx + b where a ∈ ℜn. Its epigraph is
{(x, t)|aTx + b ≤ t} ⊆ ℜn+1 which is a half-space (a convex set).
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Convex Functions and Their Epigraphs

Definition
[Hypograph]: Similarly, the hypograph of f is a subset of ℜn+1, lying below the graph of f

and is defined by

hyp(f) =
{
(x,α)|f(x) ≥ α, x ∈ D, α ∈ ℜ

}
(6)
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Hypographs are interesting for concave functions 



Convex Functions and Their Epigraphs (contd)
There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ. Then
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 f is convex if and only if
epi(f) is convex



Convex Functions and Their Epigraphs (contd)
There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ. Then f is convex if and only if epi(f) is
a convex set.

Proof: f convex function =⇒ epi(f) convex set
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Convex Functions and Their Epigraphs (contd)
There is a one to one correspondence between the convexity of function f and that of the set
epi(f), as stated in the following result.

Theorem
Let D ⊆ ℜn be a nonempty convex set, and f : D → ℜ. Then f is convex if and only if epi(f) is
a convex set.

Proof: f convex function =⇒ epi(f) convex set

Let f be convex. For any (x1,α1) ∈ epi(f) and (x2,α2) ∈ epi(f) and any θ ∈ (0, 1),

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)) ≤ θα1 + (1− θ)α2

Since D is convex, θx1 + (1− θ)x2 ∈ D. Therefore,(
θx1 + (1− θ)x2, θα1 + (1− θ)α2

)
∈ epi(f). Thus, epi(f) is convex if f is convex. This proves

the necessity part.
February 17, 2018 42 / 95



Convex Functions and Their Epigraphs (contd)

epi(f) convex set =⇒ f convex function
To prove sufficiency, assume that epi(f) is convex. Let x1,x2 ∈ D. So,

(
x1, f(x1)

)
∈ epi(f)

and
(
x2, f(x2)

)
∈ epi(f). Since epi(f) is convex, for θ ∈ (0, 1),

(
θx1 + (1− θ)x2, θα1 + (1− θ)α2

)
∈ epi(f)

which implies that f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2)) for any θ ∈ (0, 1). This proves
the sufficiency.
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Is the epi(f) of a quasi-convex f also always convex.

NO: Not always. It is true only if the f is convex.



Epigraph and Convexity

Given a convex function f(x) and a convex domain D, the convex optimization problem

min
x∈D

f(x)

can be equivalently expressed as

min
x∈D,t∈ℜ,f(x)≤t

t =
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Epigraph and Convexity

Given a convex function f(x) and a convex domain D, the convex optimization problem

min
x∈D

f(x)

can be equivalently expressed as

min
x∈D,t∈ℜ,f(x)≤t

t = min
x∈D,(x,t)∈epi(f)

t

Recall the first order condition for convexity of a differentiable function f : ℜ → ℜ. Is
there an equivalent for f : D → ℜ?
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f(x) + Direc
 deriv 
 along y-x

<= f(y)
f at y obtained using linear approx at x is (strictly) less than
or equal to the actual value f(y) at y 

f'(x) is (strictly) increasing OR 



Epigraph and Convexity

Given a convex function f(x) and a convex domain D, the convex optimization problem

min
x∈D

f(x)

can be equivalently expressed as

min
x∈D,t∈ℜ,f(x)≤t

t = min
x∈D,(x,t)∈epi(f)

t

Recall the first order condition for convexity of a differentiable function f : ℜ → ℜ. Is
there an equivalent for f : D → ℜ? Let f : D → ℜ be a differentiable convex function on
an open convex set D. Then f is convex if and only if, for any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y − x)
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Epigraph, Convexity and Gradients
..(contd).... f is convex if and only if, for any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y − x)
If D ⊆ ℜn, this means that for each and every point x ∈ D for a convex real function f(x),
there exists a hyperplane H ∈ ℜn+1 having normal [∇f(x) − 1]T supporting the function
epigraph at [x f(x)]T. See Figure below sourced from https://ccrma.stanford.edu/~dattorro/gcf.pdf
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First-Order Convexity Conditions: The complete statement
Theorem

1 For differentiable f : D → ℜ and open convex set D, f is convex iff, for any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y − x) (7)

2 f is strictly convex iff, for any x,y ∈ D, with x ̸= y,

f(y) > f(x) +∇Tf(x)(y − x) (8)

3 f is strongly convex iff, for any x,y ∈ D, and for some constant c > 0,

f(y) ≥ f(x) +∇Tf(x)(y − x) + 1

2
c||y − x||2 (9)
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