Convexity, Local and Global Optimality, etc.

Optimization Principles for Multivariate Functions

In the following, we state some important properties of convex functions, some of which require knowledge of 'derivatives' in \Re^{n}. These also include relationships between convex functions and convex sets, and first and second order conditions for convexity.

Convex Function \Rightarrow Convex Sub-level sets

Theorem

Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$ be a convex function. Then $L_{\alpha}(f)$ is a convex set for any $\alpha \in \Re$.

Proof: Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in L_{\alpha}(f)$. Then by definition of the level set, $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}, f\left(\mathbf{x}_{1}\right) \leq \alpha$ and $f\left(\mathbf{x}_{2}\right) \leq \alpha$. From convexity of \mathcal{D} it follows that for all $\theta \in(0,1), \mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in \mathcal{D}$. Moreover, since f is also convex,

$$
f(\mathbf{x}) \leq \theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \leq \theta \alpha+(1-\theta) \alpha=\alpha
$$

which implies that $\mathbf{x} \in L_{\alpha}(f)$. Thus, $L_{\alpha}(f)$ is a convex set.
The converse of this theorem does not hold. To illustrate this, consider the function $f(\mathbf{x})=\frac{x_{2}}{1+2 x_{1}^{2}}$. The 0 -sublevel set of this function is $\left\{\left(x_{1}, x_{2}\right) \mid x_{2} \leq 0\right\}$, which is convex. However, the function $f(\mathbf{x})$ itself is not convex.
A function is called quasi-convex if all its sub-level sets are convex sets Eg: Negative of the normal distribution $-\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$ is quasi-convex but not convex. [Homework]

Convex Sub-level sets \nRightarrow Convex Function

A function is called quasi-convex if all its sub-level sets are convex sets. Every quasi-convex function is not convex!
Consider the Negative of the normal distribution $-\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right)$. This function is quasi-convex but not convex.
Consider the simpler function $f(x)=-\exp \left(-(x-\mu)^{2}\right)$.

- Then $f^{\prime}(x)=2(x-\mu) \exp \left(-(x-\mu)^{2}\right)$
- And
$f^{\prime}(x)=2 \exp \left(-(x-\mu)^{2}\right)-4(x-\mu)^{2} \exp \left(-(x-\mu)^{2}\right)=\left(2-4(x-\mu)^{2}\right) \exp \left(-(x-\mu)^{2}\right)$ which is <0 if $(x-\mu)^{2}>\frac{1}{2}$,
- Thus, the second derivative is negative if $x>\mu+\frac{1}{\sqrt{2}}$ or $x<-\mu-\frac{1}{\sqrt{2}}$.
- Recall from discussion of convexity of $f: \Re \rightarrow \Re$ if the derivative is not non-decreasing everywhere \Longrightarrow function is not convex everywhere.
To prove that this function is quasi-convex, we can

Proof that the function is Quasi-Convex

(1) Inspect the $L_{\alpha}(f)$ sublevel sets of this function:

$$
L_{\alpha}(f)=\left\{x \mid-\exp \left(-(x-\mu)^{2}\right) \leq \alpha\right\}=\left\{x \mid \exp \left(-(x-\mu)^{2}\right) \geq-\alpha\right\}
$$

(2) Since $\exp \left(-(x-\mu)^{2}\right)$ is monotonically increasing for $x<\mu$ and monotonically decreasing for $x>\mu$, the set $\left\{x \mid \exp \left(-(x-\mu)^{2}\right) \geq-\alpha\right\}$ will be a contiguous closed interval around μ and therefore a convex set.
(3) Thus, $f(x)=-\exp \left(-(x-\mu)^{2}\right)$ is quasi-convex (and so is its generalization - the negative of the normal density function).

- One can similarly prove that the negative of the multivariate normal density function is also quasi-convex, by inspecting its sub-level sets, which are nothing but ellipsoids.

Every convex function is a Quasi-convex function Not every quasi-convex function is a convex function

Proof that the function is Quasi-Convex

(1) Inspect the $L_{\alpha}(f)$ sublevel sets of this function:

$$
L_{\alpha}(f)=\left\{x \mid-\exp \left(-(x-\mu)^{2}\right) \leq \alpha\right\}=\left\{x \mid \exp \left(-(x-\mu)^{2}\right) \geq-\alpha\right\}
$$

(2) Since $\exp \left(-(x-\mu)^{2}\right)$ is monotonically increasing for $x<\mu$ and monotonically decreasing for $x>\mu$, the set $\left\{x \mid \exp \left(-(x-\mu)^{2}\right) \geq-\alpha\right\}$ will be a contiguous closed interval around μ and therefore a convex set.
(3) Thus, $f(x)=-\exp \left(-(x-\mu)^{2}\right)$ is quasi-convex (and so is its generalization - the negative of the normal density function).

- One can similarly prove that the negative of the multivariate normal density function is also quasi-convex, by inspecting its sub-level sets, which are nothing but ellipsoids.

Note that

Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that

- The gradient $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} is normal to the tangent hyperplane to the level set $\left\{\mathbf{x} \mid f(\mathbf{x})=f\left(\mathbf{x}^{*}\right)\right\}$ at \mathbf{x}^{*}
- The gradient $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} points in direction of increasing values of $f($.$) at \mathbf{x}^{*}$ Now, if $f(\mathbf{x})$ is also convex

At every point x^{*} the gradient at x^{*} gives you a hyperplane that supports the sublevel set $\left\{x \mid f(x)<=f\left(x^{*}\right)\right\}$

Gradient, Convex Functions and Sub-level sets: A First Peek

We have already seen that

- The gradient $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} is normal to the tangent hyperplane to the level set $\left\{\mathbf{x} \mid f(\mathbf{x})=f\left(\mathbf{x}^{*}\right)\right\}$ at \mathbf{x}^{*}
- The gradient $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} points in direction of increasing values of $f($.$) at \mathbf{x}^{*}$ Now, if $f(\mathbf{x})$ is also convex
- The gradient $\nabla f\left(\mathbf{x}^{*}\right)$ at x^{*} is normal to the tangent hyperplane to the sub-level set $L_{f\left(\mathbf{x}^{*}\right)}(f)=\left\{\mathbf{x} \mid f(\mathbf{x}) \leq f\left(\mathbf{x}^{*}\right)\right\}$ at \mathbf{x}^{*}, pointing away from the set $L_{f\left(\mathbf{x}^{*}\right)}(f)$
- The tangent hyperplane defined by $\nabla f\left(\mathbf{x}^{*}\right)$ at \mathbf{x}^{*} is a supporting hyperplane to the convex set $\left\{\mathrm{x} \mid f(\mathrm{x}) \leq f\left(\mathrm{x}^{*}\right)\right\}$ at x^{*}
As we have seen, this also holds for quasi convex functions such as negative of normal density function (see next page)

Non convex function
Negative of normal density

But it is quasi-convex owing to convex sublev sets

Hence the gradient continues to give us a supporting hyperpla
\qquad \longrightarrow

Aside: Supporting hyperplane and Convex Sets

Supporting hyperplane to set \mathcal{C} at boundary point \mathbf{x}_{o} :

- $\left\{\mathbf{x} \mid \mathbf{a}^{T} \mathbf{x}=\mathbf{a}^{T} \mathbf{x}_{o}\right\}$
- where $\mathbf{a} \neq 0$ and $\mathbf{a}^{T} \mathbf{x} \leq \mathbf{a}^{T} \mathbf{x}_{o}$ for all $\mathbf{x} \in \mathcal{C}$

Supporting because entire convex set lies on one side of half space

If the set C is not closed, the point xo will not lie in C

Supporting hyperplane theorem: if \mathcal{C} is convex, then there exists a supporting hyperplane at every boundary point of C.

Convex Functions and Their Epigraphs

Let us further the connection between convex functions and sets by introducing the concept of the epigraph of a function.

Definition

[Epigraph]: Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty set and $f: \mathcal{D} \rightarrow \Re$. The set $\{(\mathbf{x}, f(\mathbf{x}) \mid \mathbf{x} \in \mathcal{D}\}$ is called graph of f and lies in \Re^{n+1}. The epigraph of f is a subset of \Re^{n+1} and is defined as

$$
\begin{equation*}
e p i(f)=\{(\mathbf{x}, \alpha) \mid f(\mathbf{x}) \leq \alpha, \mathbf{x} \in \mathcal{D}, \alpha \in \Re\} \tag{5}
\end{equation*}
$$

In some sense, the epigraph is the set of points lying above the graph of f.
Eg: Recall affine functions of vectors: $\mathbf{a}^{T} \mathbf{x}+b$ where $\mathbf{a} \in \Re^{n}$. Its epigraph is $\left\{(\mathbf{x}, t) \mid \mathbf{a}^{T} \mathbf{x}+b \leq t\right\} \subseteq \Re^{n+1}$ which is a half-space (a convex set).

Convex Functions and Their Epigraphs

Definition

[Hypograph]: Similarly, the hypograph of f is a subset of \Re^{n+1}, lying below the graph of f and is defined by

$$
\begin{equation*}
\operatorname{hyp}(f)=\{(\mathbf{x}, \alpha) \mid f(\mathbf{x}) \geq \alpha, \mathbf{x} \in \mathcal{D}, \alpha \in \Re\} \tag{6}
\end{equation*}
$$

Hypographs are interesting for concave functions

Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set $e p i(f)$, as stated in the following result.

Theorem
Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$. Then f is convex if and only if epi(f) is convex

Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set epi(f), as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$. Then f is convex if and only if epi(f) is a convex set.

Proof: f convex function $\Longrightarrow e p i(f)$ convex set

Convex Functions and Their Epigraphs (contd)

There is a one to one correspondence between the convexity of function f and that of the set $e p i(f)$, as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^{n}$ be a nonempty convex set, and $f: \mathcal{D} \rightarrow \Re$. Then f is convex if and only if epi(f) is a convex set.

Proof: f convex function $\Longrightarrow e p i(f)$ convex set
Let f be convex. For any $\left(\mathbf{x}_{1}, \alpha_{1}\right) \in e p i(f)$ and $\left(\mathbf{x}_{2}, \alpha_{2}\right) \in e p i(f)$ and any $\theta \in(0,1)$,

$$
\left.f\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right) \leq \theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right)\right) \leq \theta \alpha_{1}+(1-\theta) \alpha_{2}
$$

Since \mathcal{D} is convex, $\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2} \in \mathcal{D}$. Therefore, $\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}, \theta \alpha_{1}+(1-\theta) \alpha_{2}\right) \in e p i(f)$. Thus, epi(f) is convex if f is convex. This proves the necessity part.

Convex Functions and Their Epigraphs (contd)
$e p i(f)$ convex set $\Longrightarrow f$ convex function
To prove sufficiency, assume that epi(f) is convex. Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$. So, $\left(\mathbf{x}_{1}, f\left(\mathbf{x}_{1}\right)\right) \in$ epi (f) and $\left(\mathbf{x}_{2}, f\left(\mathbf{x}_{2}\right)\right) \in \operatorname{epi}(f)$. Since epi (f) is convex, for $\theta \in(0,1)$,

$$
\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}, \theta \alpha_{1}+(1-\theta) \alpha_{2}\right) \in e p i(f)
$$

which implies that $\left.f\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right) \leq \theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right)\right)$ for any $\theta \in(0,1)$. This proves the sufficiency.

Is the epi(f) of a quasi-convex f also always convex.
NO: Not always. It is true only if the f is convex.

Epigraph and Convexity

- Given a convex function $f(\mathbf{x})$ and a convex domain \mathcal{D}, the convex optimization problem

$$
\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})
$$

can be equivalently expressed as

$$
\min _{\mathbf{x} \in \mathcal{D}, t \in \Re, f(\mathrm{x}) \leq t} t=\min \text { of } \mathrm{t} \text { wrt }(\mathrm{x}, \mathrm{t}) \text { on epi(f) }
$$

Epigraph and Convexity

- Given a convex function $f(\mathbf{x})$ and a convex domain \mathcal{D}, the convex optimization problem

$$
\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})
$$

can be equivalently expressed as

$$
\min _{\mathbf{x} \in \mathcal{D}, t \in \Re, f(\mathbf{x}) \leq t} t=\min _{\mathbf{x} \in \mathcal{D},(\mathbf{x}, t) \in e p i(f)} t
$$

- Recall the first order condition for convexity of a differentiable function $f: \Re \rightarrow \Re$. Is there an equivalent for $f: \mathcal{D} \rightarrow \Re$?
$f^{\prime}(x)$ is (strictly) increasing OR
$f(x)+$ Direc
deriv
f at y obtained using linear approx at x is (strictly) less than

Epigraph and Convexity

- Given a convex function $f(\mathbf{x})$ and a convex domain \mathcal{D}, the convex optimization problem

$$
\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})
$$

can be equivalently expressed as

$$
\min _{\mathbf{x} \in \mathcal{D}, t \in \Re, f(\mathbf{x}) \leq t} t=\min _{\mathbf{x} \in \mathcal{D},(\mathbf{x}, t) \in e p i(f)} t
$$

- Recall the first order condition for convexity of a differentiable function $f: \Re \rightarrow \Re$. Is there an equivalent for $f: \mathcal{D} \rightarrow \Re$? Let $f: \mathcal{D} \rightarrow \Re$ be a differentiable convex function on an open convex set \mathcal{D}. Then f is convex if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})
$$

Epigraph, Convexity and Gradients

..(contd).... f is convex if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})
$$

If $\mathcal{D} \subseteq \Re^{n}$, this means that for each and every point $\mathbf{x} \in \mathcal{D}$ for a convex real function $f(\mathbf{x})$, there exists a hyperplane $H \in \Re^{n+1}$ having normal $[\nabla f(\mathbf{x})-1]^{T}$ supporting the function epigraph at $[\mathbf{x} f(\mathbf{x})]^{T}$. See Figure below sourced from https://ccrma.stanford.edu/dattorro/gcf.pdf

Homework: Equation of Tangent Hyperplane to Epigraph

For the function $f: \mathcal{D} \rightarrow \Re$ such that $\mathcal{D} \subseteq \Re^{n}$, write down the equation of the tangent hyperplane to its epigraph at ($\mathrm{x}^{0}, f\left(\mathrm{x}^{0}\right)$).
As an example, consider the paraboloid, $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-9$ and $\mathrm{x}^{0}=(0,0)$ and write the equation of its tangent hyperplane. Also try and plot.

First-Order Convexity Conditions: The complete statement

Theorem

(1) For differentiable $f: \mathcal{D} \rightarrow \Re$ and open convex set \mathcal{D}, f is convex $\mathbf{i f f}$, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{7}
\end{equation*}
$$

(2) f is strictly convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, with $\mathbf{x} \neq \mathbf{y}$,

$$
\begin{equation*}
f(\mathbf{y})>f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{8}
\end{equation*}
$$

(3) f is strongly convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, and for some constant $c>0$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2} \tag{9}
\end{equation*}
$$

