Convexity, Local and Global Optimality, etc.

Epigraph and Convexity

- Given a convex function $f(x)$ and a convex domain \mathcal{D}, the convex optimization problem

$$
\min _{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})
$$

can be equivalently expressed as

$$
\min _{\mathbf{x} \in \mathcal{D}, t \in \Re, f(\mathbf{x}) \leq t} t=\min _{\mathbf{x} \in \mathcal{D},(\mathbf{x}, t) \in e p i(f)} t
$$

- Recall the first order condition for convexity of a differentiable function $f: \Re \rightarrow \Re$. Is there an equivalent for $f: \mathcal{D} \rightarrow \Re$? Let $f: \mathcal{D} \rightarrow \Re$ be a differentiable convex function on an open convex set \mathcal{D}. Then f is convex if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
f(\mathrm{y}) \geq f(\mathrm{x})+\nabla^{\top} f(\mathrm{x})(\mathrm{y}-\mathrm{x})
$$

Epigraph, Convexity and Gradients

 ..(contd).... f is convex if and only if, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{7}
\end{equation*}
$$

If $\mathcal{D} \subseteq \Re^{n}$, this means that for each and every point $\mathbf{x} \in \mathcal{D}$ for a convex real function $f(\mathbf{x})$, there exists a hyperplane $H \in \Re^{n+1}$ having normal $[\nabla f(\mathbf{x})-1]^{T}$ supporting the function epigraph at $[\mathbf{x} f(\mathbf{x})]^{T}$. See Figure below sourced from $\mathrm{https}: / /$ ccrma.stanford.edu/dattorro/gcf.pdf
a cross section would give view of sublevel sets this vector (projectior $\underset{-1}{\nabla /(x)}$]is the gradient in $\mathrm{R}^{\wedge} \mathrm{r}$

Epigraph, Convexity, Gradients and Level-sets

- Revisiting level sets: We can embed the graph of a function of n variables as the 0 -level set of a function of $n+1$ variables

$$
\begin{aligned}
& F(x, z)=f(x)-z \\
& \text { 0-level set of } F(x, z) \text { is } \\
& \{(x, z) \mid F(x, z)=0\}=\{(x, z) \mid z=f(x)\}=\{(x, f(x))\}
\end{aligned}
$$

[^0]
Epigraph, Convexity, Gradients and Level-sets

- Revisiting level sets: We can embed the graph of a function of n variables as the 0 -level set of a function of $n+1$ variables
- More concretely, if $f: \mathcal{D} \rightarrow \Re, \mathcal{D} \subseteq \Re^{n}$ then we define $F: \mathcal{D}^{\prime} \rightarrow \Re, \mathcal{D}^{\prime}=\mathcal{D} \times \Re$ as $F(\mathrm{x}, \mathrm{z})=f(\mathrm{x})-z$ with $\mathrm{x} \in \mathcal{D}^{\prime}$.
- The gradient of F at any point (x, z) is simply, $\nabla F(\mathbf{x}, z)=\left[f_{x_{1}}, f_{x_{2}}, \ldots, f_{x_{n}},-1\right]$ with the first n components of $\nabla F(\mathbf{x}, z)$ given by the n components of $\nabla f(\mathbf{x})$.
- The graph of f can be recovered as the 0 -level set of F given by $F(\mathbf{x}, z)=0$.
- The equation of the tangent hyperplane (\mathbf{y}, z) to the 0 -level set of F at the point $(\mathbf{x}, f(\mathbf{x}))$ is ${ }^{1} \nabla^{T} F(\mathbf{x}, f(\mathbf{x})) \cdot[\mathbf{y}-\mathbf{x}, z-f(\mathbf{x})]^{T}=[\nabla f(\mathbf{x}),-1]^{T} \cdot[\mathbf{y}-\mathbf{x}, z-f(\mathbf{x})]^{T}=0$.

[^1]
Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for $\nabla F(\mathbf{x})$, the equation of the tangent plane (\mathbf{y}, z) can be written as

$$
\left(\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x})\left(y_{i}-x_{i}\right)\right)-(z-f(\mathbf{x}))=0
$$

or equivalently as,

$$
\left(\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})\right)+f(\mathbf{x})=z
$$

$$
f(y)>=z \text { on the supporting hyperplane }
$$

Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for $\nabla F(\mathbf{x})$, the equation of the tangent plane (\mathbf{y}, z) can be written as

$$
\left(\sum_{i=1}^{n} f_{x_{i}}(\mathbf{x})\left(y_{i}-x_{i}\right)\right)-(z-f(\mathbf{x}))=0
$$

or equivalently as,

$$
\left(\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})\right)+f(\mathbf{x})=z
$$

Revisiting the gradient-based condition for convexity in (7), we have that for a convex function, $f(\mathbf{y})$ is greater than each such z on the hyperplane: $f(\mathbf{y}) \geq z=f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})$

Gradient and Epigraph (contd)

As an example, consider the paraboloid, $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-9$ that attains its minimum at $(0,0)$. We see below its epigraph.

Find equations of tangent hyperplane at any point y
$f(x 1, x 2)=x 1^{\wedge} 2+x 2^{\wedge} 2-9$

Illustrations to understand Gradient

- For the paraboloid, $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-9$, the corresponding $F\left(x_{1}, x_{2}, z\right)=x_{1}^{2}+x_{2}^{2}-9-z$ and the point $x^{0}=\left(x^{0}, z\right)=(1,1,-7)$ which lies on the 0 -level surface of F. The gradient $\nabla F\left(x_{1}, x_{2}, z\right)$ is $\left[2 x_{1}, 2 x_{2},-1\right]$, which when evaluated at $x^{0}=(1,1,-7)$ is $[-2,-2,-1]$. The equation of the tangent plane to f at x^{0} is therefore given by $2\left(x_{1}-1\right)+2\left(x_{2}-1\right)-7=z$.
- The paraboloid attains its minimum at $(0,0)$. Plot the tanget plane to the surface at $(0,0, f(0,0))$ as also the gradient vector ∇F at $(0,0, f(0,0))$. What do you expect?

We can expect the hyperplane to be parallel to the $\times 1, \times 2$ plane (or rather, a constant value of z)
At point of min:

1) Expect Gradient of F to be vertical (down or up)

That is, gradient of $f=0$
2) Tangent hyperplane is parallel to $x 1, x 2$ plane

Illustrations to understand Gradient

- For the paraboloid, $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}-9$, the corresponding $F\left(x_{1}, x_{2}, z\right)=x_{1}^{2}+x_{2}^{2}-9-z$ and the point $x^{0}=\left(\mathrm{x}^{0}, z\right)=(1,1,-7)$ which lies on the 0 -level surface of F. The gradient $\nabla F\left(x_{1}, x_{2}, z\right)$ is $\left[2 x_{1}, 2 x_{2},-1\right]$, which when evaluated at $x^{0}=(1,1,-7)$ is $[-2,-2,-1]$. The equation of the tangent plane to f at x^{0} is therefore given by $2\left(x_{1}-1\right)+2\left(x_{2}-1\right)-7=z$.
- The paraboloid attains its minimum at $(0,0)$. Plot the tanget plane to the surface at $(0,0, f(0,0))$ as also the gradient vector ∇F at $(0,0, f(0,0))$. What do you expect? Ans: A horizontal tanget plane and a vertical gradient! (of F)

Theorem

(1) For differentiable $f: \mathcal{D} \rightarrow \Re$ and open convex set \mathcal{D}, f is convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{8}
\end{equation*}
$$

(2) f is strictly convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, with $\mathbf{x} \neq \mathbf{y}$,

The tangential hyperplane based lower bound is strict

$$
\begin{equation*}
f(\mathbf{y})>f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{9}
\end{equation*}
$$

(3) f is strongly convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, and for some constant $c>0$,

The lower bound has a gap that increases atleast quadratically wrt
L2 distance of x from y

$$
\begin{equation*}
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2} \tag{10}
\end{equation*}
$$

First-Order Convexity Condition: Proof

Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (8). Suppose (8) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{11}
\end{align*}
$$

Multiply the first inequality by theta and second by (1-theta) and add the two inequalities

First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (8). Suppose (8) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{11}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

First-Order Convexity Condition: Proof

Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (8). Suppose (8) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{11}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

$$
\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})
$$

which proves that $f(\mathbf{x})$ is a convex function. In the case of strict convexity, all inequalities will remain strict

First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (8). Suppose (8) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{11}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

$$
\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})
$$

which proves that $f(\mathbf{x})$ is a convex function. In the case of strict convexity, strict inequality holds in (11) and it follows through. In the case of strong convexity,

First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (8). Suppose (8) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{11}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

$$
\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})
$$

which proves that $f(\mathbf{x})$ is a convex function. In the case of strict convexity, strict inequality holds in (11) and it follows through. In the case of strong convexity, we need to additionally prove that

$$
\theta \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{1}\right\|^{2}+(1-\theta) \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{2}\right\|^{2}=\text { theta (1-theta) c }\left\|x 1-x_{2}\right\| \wedge 2
$$

First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the theorem. So we will prove only for statement (8). Suppose (8) holds. Consider $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$ and any $\theta \in(0,1)$. Let $\mathbf{x}=\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}$. Then,

$$
\begin{align*}
& f\left(\mathbf{x}_{1}\right) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})\left(\mathbf{x}_{1}-\mathbf{x}\right) \\
& f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})\left(\mathbf{x}_{2}-\mathbf{x}\right) \tag{11}
\end{align*}
$$

Adding $(1-\theta)$ times the second inequality to θ times the first, we get,

$$
\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \geq f(\mathbf{x})
$$

which proves that $f(\mathbf{x})$ is a convex function. In the case of strict convexity, strict inequality holds in (11) and it follows through. In the case of strong convexity, we need to additionally prove that

$$
\theta \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{1}\right\|^{2}+(1-\theta) \frac{1}{2} c\left\|\mathbf{x}-\mathbf{x}_{2}\right\|^{2}=c \theta(1-\theta)\left\|\mathbf{x}_{2}-\mathbf{x}_{1}\right\|^{2}
$$

First-Order Convexity Conditions: Proofs

Necessity: Suppose f is convex. Then for all $\theta \in(0,1)$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$, we must have

$$
f\left(\theta \mathbf{x}_{2}+(1-\theta) \mathbf{x}_{1}\right) \leq \theta f\left(\mathbf{x}_{2}\right)+(1-\theta) f\left(\mathbf{x}_{1}\right)
$$

Thus,

$$
\begin{aligned}
\nabla^{T} f\left(\mathrm{x}_{1}\right)\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)= & \text { Directional derivative at } \times 1 \text { in direction } \\
& \text { of } x 2-x 1 \\
& <=f(x 2)-f(x 1)
\end{aligned}
$$

First-Order Convexity Conditions: Proofs

Necessity: Suppose f is convex. Then for all $\theta \in(0,1)$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$, we must have

$$
f\left(\theta \mathbf{x}_{2}+(1-\theta) \mathbf{x}_{1}\right) \leq \theta f\left(\mathbf{x}_{2}\right)+(1-\theta) f\left(\mathbf{x}_{1}\right)
$$

Thus,

$$
\nabla^{T} f\left(\mathbf{x}_{1}\right)\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)=\lim _{\theta \rightarrow 0} \frac{f\left(\mathbf{x}_{1}+\theta\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)-f\left(\mathbf{x}_{1}\right)}{\theta}
$$

First-Order Convexity Conditions: Proofs

Necessity: Suppose f is convex. Then for all $\theta \in(0,1)$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}$, we must have

$$
f\left(\theta \mathbf{x}_{2}+(1-\theta) \mathbf{x}_{1}\right) \leq \theta f\left(\mathbf{x}_{2}\right)+(1-\theta) f\left(\mathbf{x}_{1}\right)
$$

Thus,

$$
\nabla^{T} f\left(\mathbf{x}_{1}\right)\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)=\lim _{\theta \rightarrow 0} \frac{f\left(\mathbf{x}_{1}+\theta\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right)\right)-f\left(\mathbf{x}_{1}\right)}{\theta} \leq f\left(\mathbf{x}_{2}\right)-f\left(\mathbf{x}_{1}\right)
$$

This proves necessity for (8). The necessity proofs for (9) and (10) are very similar, except for a small difference for the case of strict convexity; the strict inequality is not preserved when we take limits. Suppose equality does hold in the case of strict convexity, that is for a strictly convex function f, let

$$
\begin{equation*}
f\left(\mathbf{x}_{2}\right)=f\left(\mathbf{x}_{1}\right)+\nabla^{\top} f\left(\mathbf{x}_{1}\right)\left(\mathbf{x}_{2}-\mathbf{x}_{1}\right) \tag{12}
\end{equation*}
$$

for some $\mathbf{x}_{2} \neq \mathbf{x}_{1}$.

First-Order Convexity Conditions: Proofs

Necessity (contd for strict case):

Because f is stricly convex, for any $\theta \in(0,1)$ we can write

$$
\begin{equation*}
f\left(\theta \mathbf{x}_{1}+(1-\theta) \mathbf{x}_{2}\right)=f\left(\mathbf{x}_{2}+\theta\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)<\theta f\left(\mathbf{x}_{1}\right)+(1-\theta) f\left(\mathbf{x}_{2}\right) \tag{13}
\end{equation*}
$$

Since (8) is already proved for convex functions, we use it in conjunction with (12), and (13), to get

$$
f\left(\mathbf{x}_{2}\right)+\theta \nabla^{\top} f\left(\mathbf{x}_{2}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right) \leq f\left(\mathbf{x}_{2}+\theta\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)\right)<f\left(\mathbf{x}_{2}\right)+\theta \nabla^{\top} f\left(\mathbf{x}_{2}\right)\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)
$$

which is a contradiction. Thus, equality can never hold in (8) for any $\mathbf{x}_{1} \neq \mathbf{x}_{2}$. This proves the necessity of (9).
H / w : Understand the argument

First-Order Convexity Conditions: The complete statement

The geometrical interpretation of this theorem is that at any point, the linear approximation based on a local derivative gives a lower estimate of the function, i.e. the convex function always lies above the supporting hyperplane at that point. This is pictorially depicted below:
$f(y)$

$$
f(x)+\nabla f(x)^{T}(y-x)
$$

First-Order Convexity Conditions: Subgradients

The Theorem motivates the definition of the subgradient for non-differentiable convex functions, which has properties very similar to the gradient vector.

Definition

[Subgradient]: Let $f: \mathcal{D} \rightarrow \Re$ be a convex function defined on a convex set \mathcal{D}. A vector $\mathbf{h} \in \Re^{n}$ is said to be a subgradient of f at the point $\mathbf{x} \in \mathcal{D}$ if

$$
f(\mathbf{y}) \geq f(x)+h^{T}(y-x) \quad h(x) \text { is a function of } x
$$

for all $\mathbf{y} \in \mathcal{D}$. The set of all such vectors is called the subdifferential of f at \mathbf{x}.
For a differentiable convex function, the gradient at point \mathbf{x} is the only subgradient at that point. Most properties of differentiable convex functions that hold in terms of the gradient also hold in terms of the subgradient for non-differentiable convex functions. Eg: Subgradient for $f(\mathrm{x})=\|\mathrm{x}\|_{1}$ is ?

How do we compute such subgradients?

(Sub)Gradients and Convexity (contd)

if the function is differentiable at x, the subgradient is unique and is called a gradient

To say that a function $f: \Re^{n} \mapsto \Re$ is differentiable at \mathbf{x} is to say that there is a single unique linear tangent that under estimates the function:

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}), \quad \forall \mathrm{x}, \mathrm{y}
$$

(Sub)Gradients and Convexity (contd)

L1, and L2 are underestimators and so are all its convex (in fact conic) combinations (even if f is not convex)

In this figure we see the function f at \mathbf{x} has many possible linear tangents that may fit appropriately. Recall that a subgradient is any $\mathbf{h} \in \Re^{n}$ (same dimension as x) such that:

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{h}^{T}(\mathbf{y}-\mathbf{x}), \quad \forall \mathbf{y}
$$

Thus, intuitively, if a function is differentiable at a point \mathbf{x} then
the supporting hyperplane is uniquely specified by gradient

(Sub)Gradients and Convexity (contd)

Are we guaranteed to have a subgradient at each point for a convex function? Formal proof?

In this figure we see the function f at \mathbf{x} has many possible linear tangents that may fit appropriately. Recall that a subgradient is any $\mathbf{h} \in \Re^{n}$ (same dimension as x) such that:

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{h}^{T}(\mathbf{y}-\mathbf{x}), \forall \mathbf{y}
$$

Thus, intuitively, if a function is differentiable at a point \mathbf{x} then it has a unique subgradient at that point $(\nabla f(\mathbf{x}))$. Formal Proof?

(Sub)Gradients and Convexity (contd)

- A subdifferential is the closed convex set of all subgradients of the convex function f :

$$
\partial f(\mathbf{x})=\left\{\mathbf{h} \in \Re^{n}: \mathbf{h} \text { is a subgradient of } f \text { at } \mathbf{x}\right\}
$$

Note that this set is guaranteed to be nonempty unless f is not convex.

- Often an indicator function, $I_{C}: \Re^{n} \mapsto \Re$, is employed to remove the contraints of an optimization problem (note that convex set $C \subseteq \Re^{n}$):

$$
\min _{\mathbf{x} \in C} f(\mathbf{x}) \Longleftrightarrow \min _{\mathbf{x}} f(\mathbf{x})+I_{C}(\mathbf{x}), \quad \text { where } I_{C}(\mathbf{x})=I\{\mathbf{x} \in C\}= \begin{cases}0 & \text { if } \mathrm{x} \in C \\ \infty & \text { if } \mathrm{x} \notin C\end{cases}
$$

The subdifferential of the indicator function at x is
Home work: Write expression for subdifferential for I_c

[^0]: ${ }^{1}$ (that is, the tangent hyperplane to $f(\mathbf{x})$ at the point \mathbf{x})

[^1]: ${ }^{1}$ (that is, the tangent hyperplane to $f(\mathbf{x})$ at the point \mathbf{x})

