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Epigraph and Convexity

Given a convex function f(x) and a convex domain D, the convex optimization problem

min
x∈D

f(x)

can be equivalently expressed as

min
x∈D,t∈ℜ,f(x)≤t

t = min
x∈D,(x,t)∈epi(f)

t

Recall the first order condition for convexity of a differentiable function f : ℜ → ℜ. Is
there an equivalent for f : D → ℜ? Let f : D → ℜ be a differentiable convex function on
an open convex set D. Then f is convex if and only if, for any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y − x)
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Epigraph, Convexity and Gradients
..(contd).... f is convex if and only if, for any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y − x) (7)
If D ⊆ ℜn, this means that for each and every point x ∈ D for a convex real function f(x),
there exists a hyperplane H ∈ ℜn+1 having normal [∇f(x) − 1]T supporting the function
epigraph at [x f(x)]T. See Figure below sourced from https://ccrma.stanford.edu/~dattorro/gcf.pdf
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a cross section would 
give view of sublevel sets

this vector (projection)
is the gradient in R^n



Epigraph, Convexity, Gradients and Level-sets

Revisiting level sets: We can embed the graph of a function of n variables as the 0-level
set of a function of n+ 1 variables

1(that is, the tangent hyperplane to f(x) at the point x)
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F(x,z) = f(x) - z

0-level set of F(x,z) is 
{(x,z) | F(x,z) = 0 } = {(x,z) | z = f(x)} = {(x,f(x))}



Epigraph, Convexity, Gradients and Level-sets

Revisiting level sets: We can embed the graph of a function of n variables as the 0-level
set of a function of n+ 1 variables
More concretely, if f : D → ℜ, D ⊆ ℜn then we define F : D′ → ℜ, D′ = D × ℜ as
F(x, z) = f(x)− z with x ∈ D′.
The gradient of F at any point (x, z) is simply, ∇F(x, z) =

[
fx1 , fx2 , . . . , fxn ,−1

]
with the

first n components of ∇F(x, z) given by the n components of ∇f(x).
The graph of f can be recovered as the 0−level set of F given by F(x, z) = 0.
The equation of the tangent hyperplane (y, z) to the 0−level set of F at the point
(x, f(x)) is1 ∇TF(x, f(x)).[y − x, z− f(x)]T = [∇f(x),−1]T.[y − x, z− f(x)]T = 0.

1(that is, the tangent hyperplane to f(x) at the point x)
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Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for ∇F(x), the equation of the tangent plane (y, z) can be
written as




n∑

i=1

fxi(x)(yi − xi)


−

(
z− f(x)

)
= 0

or equivalently as, (
∇Tf(x)(y − x)

)
+ f(x) = z
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f(y) >= z on the supporting hyperplane



Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for ∇F(x), the equation of the tangent plane (y, z) can be
written as




n∑

i=1

fxi(x)(yi − xi)


−

(
z− f(x)

)
= 0

or equivalently as, (
∇Tf(x)(y − x)

)
+ f(x) = z

Revisiting the gradient-based condition for convexity in (7), we have that for a convex
function, f(y) is greater than each such z on the hyperplane: f(y) ≥ z = f(x) +∇Tf(x)(y− x)
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Gradient and Epigraph (contd)
As an example, consider the paraboloid, f(x1, x2) = x21 + x22 − 9 that attains its minimum at
(0, 0). We see below its epigraph.
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Find equations of tangent hyperplane at 
any point y
f(x1,x2) = x1^2 + x2^2 - 9 



Illustrations to understand Gradient
For the paraboloid, f(x1, x2) = x21 + x22 − 9, the corresponding
F(x1, x2, z) = x21 + x22 − 9− z and the point x0 = (x0, z) = (1, 1,−7) which lies on the
0-level surface of F. The gradient ∇F(x1, x2, z) is [2x1, 2x2, −1], which when evaluated
at x0 = (1, 1,−7) is [−2, −2, −1]. The equation of the tangent plane to f at x0 is
therefore given by 2(x1 − 1) + 2(x2 − 1)− 7 = z.
The paraboloid attains its minimum at (0, 0). Plot the tanget plane to the surface at
(0, 0, f(0, 0)) as also the gradient vector ∇F at (0, 0, f(0, 0)). What do you expect?
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We can expect the hyperplane to be parallel to the x1, x2 plane
(or rather, a constant value of z)
At point of min: 
1) Expect Gradient of F to be vertical (down or up)
That is, gradient of f = 0
2) Tangent hyperplane is parallel to x1, x2 plane



Illustrations to understand Gradient
For the paraboloid, f(x1, x2) = x21 + x22 − 9, the corresponding
F(x1, x2, z) = x21 + x22 − 9− z and the point x0 = (x0, z) = (1, 1,−7) which lies on the
0-level surface of F. The gradient ∇F(x1, x2, z) is [2x1, 2x2, −1], which when evaluated
at x0 = (1, 1,−7) is [−2, −2, −1]. The equation of the tangent plane to f at x0 is
therefore given by 2(x1 − 1) + 2(x2 − 1)− 7 = z.
The paraboloid attains its minimum at (0, 0). Plot the tanget plane to the surface at
(0, 0, f(0, 0)) as also the gradient vector ∇F at (0, 0, f(0, 0)). What do you expect? Ans:
A horizontal tanget plane and a vertical gradient!
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(of F)



First-Order Convexity Conditions: The complete statement
Theorem

1 For differentiable f : D → ℜ and open convex set D, f is convex iff, for any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y − x) (8)

2 f is strictly convex iff, for any x,y ∈ D, with x ̸= y,

f(y) > f(x) +∇Tf(x)(y − x) (9)

3 f is strongly convex iff, for any x,y ∈ D, and for some constant c > 0,

f(y) ≥ f(x) +∇Tf(x)(y − x) + 1

2
c||y − x||2 (10)
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The tangential hyperplane based lower bound is strict

The lower bound has a gap that increases atleast quadratically wrt 
L2 distance of x from y



First-Order Convexity Condition: Proof
Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x1,x2 ∈ D and
any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2. Then,

f(x1) ≥ f(x) +∇Tf(x)(x1 − x)
f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (11)
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Multiply the first inequality by theta and second by (1-theta) and
add the two inequalities



First-Order Convexity Condition: Proof
Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x1,x2 ∈ D and
any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2. Then,

f(x1) ≥ f(x) +∇Tf(x)(x1 − x)
f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (11)

Adding (1− θ) times the second inequality to θ times the first, we get,

February 19, 2018 51 / 112



First-Order Convexity Condition: Proof
Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x1,x2 ∈ D and
any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2. Then,

f(x1) ≥ f(x) +∇Tf(x)(x1 − x)
f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (11)

Adding (1− θ) times the second inequality to θ times the first, we get,
θf(x1) + (1− θ)f(x2) ≥ f(x)

which proves that f(x) is a convex function. In the case of strict convexity,

February 19, 2018 51 / 112

all inequalities
will remain
strict



First-Order Convexity Condition: Proof
Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x1,x2 ∈ D and
any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2. Then,

f(x1) ≥ f(x) +∇Tf(x)(x1 − x)
f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (11)

Adding (1− θ) times the second inequality to θ times the first, we get,
θf(x1) + (1− θ)f(x2) ≥ f(x)

which proves that f(x) is a convex function. In the case of strict convexity, strict inequality
holds in (11) and it follows through. In the case of strong convexity,
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First-Order Convexity Condition: Proof
Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x1,x2 ∈ D and
any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2. Then,

f(x1) ≥ f(x) +∇Tf(x)(x1 − x)
f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (11)

Adding (1− θ) times the second inequality to θ times the first, we get,
θf(x1) + (1− θ)f(x2) ≥ f(x)

which proves that f(x) is a convex function. In the case of strict convexity, strict inequality
holds in (11) and it follows through. In the case of strong convexity, we need to additionally
prove that

θ
1

2
c||x − x1||2 + (1− θ)

1

2
c||x − x2||2 =
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theta (1-theta) c ||x1 - x2||^2



First-Order Convexity Condition: Proof
Proof:
Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x1,x2 ∈ D and
any θ ∈ (0, 1). Let x = θx1 + (1− θ)x2. Then,

f(x1) ≥ f(x) +∇Tf(x)(x1 − x)
f(x2) ≥ f(x) +∇Tf(x)(x2 − x) (11)

Adding (1− θ) times the second inequality to θ times the first, we get,
θf(x1) + (1− θ)f(x2) ≥ f(x)

which proves that f(x) is a convex function. In the case of strict convexity, strict inequality
holds in (11) and it follows through. In the case of strong convexity, we need to additionally
prove that

θ
1

2
c||x − x1||2 + (1− θ)

1

2
c||x − x2||2 = cθ(1− θ)||x2 − x1||2
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First-Order Convexity Conditions: Proofs
Necessity: Suppose f is convex. Then for all θ ∈ (0, 1) and x1,x2 ∈ D, we must have

f(θx2 + (1− θ)x1) ≤ θf(x2) + (1− θ)f(x1)

Thus,
∇Tf(x1)(x2 − x1) =
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Directional derivative at x1 in direction
of x2 - x1
<= f(x2) - f(x1)



First-Order Convexity Conditions: Proofs
Necessity: Suppose f is convex. Then for all θ ∈ (0, 1) and x1,x2 ∈ D, we must have

f(θx2 + (1− θ)x1) ≤ θf(x2) + (1− θ)f(x1)

Thus,
∇Tf(x1)(x2 − x1) = lim

θ→0

f
(
x1 + θ(x2 − x1)

)
− f (x1)

θ
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First-Order Convexity Conditions: Proofs
Necessity: Suppose f is convex. Then for all θ ∈ (0, 1) and x1,x2 ∈ D, we must have

f(θx2 + (1− θ)x1) ≤ θf(x2) + (1− θ)f(x1)

Thus,
∇Tf(x1)(x2 − x1) = lim

θ→0

f
(
x1 + θ(x2 − x1)

)
− f (x1)

θ
≤ f(x2)− f(x1)

This proves necessity for (8). The necessity proofs for (9) and (10) are very similar, except for
a small difference for the case of strict convexity; the strict inequality is not preserved when we
take limits. Suppose equality does hold in the case of strict convexity, that is for a strictly
convex function f, let

f(x2) = f(x1) +∇Tf(x1)(x2 − x1) (12)

for some x2 ̸= x1.
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First-Order Convexity Conditions: Proofs

Necessity (contd for strict case):
Because f is stricly convex, for any θ ∈ (0, 1) we can write

f
(
θx1 + (1− θ)x2

)
= f

(
x2 + θ(x1 − x2)

)
< θf(x1) + (1− θ)f(x2) (13)

Since (8) is already proved for convex functions, we use it in conjunction with (12), and (13),
to get

f(x2) + θ∇Tf(x2)(x1 − x2) ≤ f
(
x2 + θ(x1 − x2)

)
< f(x2) + θ∇Tf(x2)(x1 − x2)

which is a contradiction. Thus, equality can never hold in (8) for any x1 ̸= x2. This proves
the necessity of (9).
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H/w: Understand the argument



First-Order Convexity Conditions: The complete statement

The geometrical interpretation of this theorem is that at any point, the linear approximation
based on a local derivative gives a lower estimate of the function, i.e. the convex function
always lies above the supporting hyperplane at that point. This is pictorially depicted below:
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First-Order Convexity Conditions: Subgradients
The Theorem motivates the definition of the subgradient for non-differentiable convex
functions, which has properties very similar to the gradient vector.

Definition
[Subgradient]: Let f : D → ℜ be a convex function defined on a convex set D. A vector

h ∈ ℜn is said to be a subgradient of f at the point x ∈ D if

f(y) ≥ f(x) + hT(y − x)

for all y ∈ D. The set of all such vectors is called the subdifferential of f at x.

For a differentiable convex function, the gradient at point x is the only subgradient at that
point. Most properties of differentiable convex functions that hold in terms of the gradient
also hold in terms of the subgradient for non-differentiable convex functions.
Eg: Subgradient for f(x) = ∥x∥1 is ?
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How do we compute such
subgradients?

h(x) is a function of x



(Sub)Gradients and Convexity (contd)

To say that a function f : ℜn 7→ ℜ is differentiable at x is to say that there is a single unique
linear tangent that under estimates the function:

f(y) ≥ f(x) +▽f(x)T(y − x), ∀x,y
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if the function is differentiable
at x, the subgradient is unique
and is called a gradient



(Sub)Gradients and Convexity (contd)

In this figure we see the function f at x has many possible linear tangents that may fit
appropriately. Recall that a subgradient is any h ∈ ℜn (same dimension as x) such that:

f(y) ≥ f(x) + hT(y − x), ∀y

Thus, intuitively, if a function is differentiable at a point x then
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L1, and L2 are underestimators
and so are all its convex
(in fact conic) combinations
(even if f is not convex)

the supporting hyperplane is uniquely specified by gradient



(Sub)Gradients and Convexity (contd)

In this figure we see the function f at x has many possible linear tangents that may fit
appropriately. Recall that a subgradient is any h ∈ ℜn (same dimension as x) such that:

f(y) ≥ f(x) + hT(y − x), ∀y

Thus, intuitively, if a function is differentiable at a point x then it has a unique subgradient at
that point (▽f(x)). Formal Proof?
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Are we guaranteed to have a
subgradient at each point for 
a convex function? Formal proof?



(Sub)Gradients and Convexity (contd)

A subdifferential is the closed convex set of all subgradients of the convex function f:

∂f(x) = {h ∈ ℜn : h is a subgradient of f at x}

Note that this set is guaranteed to be nonempty unless f is not convex.
Often an indicator function, IC : ℜn 7→ ℜ, is employed to remove the contraints of an
optimization problem (note that convex set C ⊆ ℜn):

min
x∈C

f(x) ⇐⇒ min
x
f(x) + IC(x), where IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

The subdifferential of the indicator function at x is
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Home work: Write expression for subdifferential for I_c


