Convexity, Local and Global Optimality, etc.
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Epigraph and Convexity

e Given a convex function f(x) and a convex domain D, the convex optimization problem

min f(x
x€D ( )
can be equivalently expressed as
min t= min t
x€D,teR, f(x)<t x€D,(x,t)Eepi(f)

@ Recall the first order condition for convexity of a differentiable function f: ® — R. Is
there an equivalent for f: D — R? Let f: D — R be a differentiable convex function on
an open convex set D. Then fis convex if and only if, for any x,y € D,

fly) = fix) + V' fx)(y - x)
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Epigraph, Convexity and Gradients
..(contd).... fis convex if and only if, for any x,y € D,

fly) = fix) + VT Ax)(y — %) (7)
If D C R", this means that for each and every point x € D for a convex real function f(x),

there exists a hyperplane H € %! having normal [Vf(x) — 1] supporting the function
epigraph at [x f(x)]”. See Figure below sourced from netps://ccrma.stantord. edu/-dattorro/get pas

a cross section would
give view of sublevel setz

his vector (projectior
| "1 is the gradient in R™r
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Epigraph, Convexity, Gradients and Level-sets

o Reuvisiting level sets: We can embed the graph of a function of n variables as the 0-level
set of a function of n+ 1 variables

F(x,z) = f(x) -z

O-level set of F(x,z) is

{(x,2) | F(x,2) =0 } = {(x,2) | z=f(x)} = {(x,f(x))}

!(that is, the tangent hyperplane to f(x) at the point x)
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Epigraph, Convexity, Gradients and Level-sets

Revisiting level sets: We can embed the graph of a function of n variables as the 0-level
set of a function of n+ 1 variables

@ More concretely, if f: D — R, D C R" then we define F: D' — R, D' =D x R as
F(x,z) = flx) — zwith x € D'.

The gradient of F at any point (x. 2) is simply, VF(x,2) = [fq, fx,, - - -, fx,, —1] with the
first n components of VF(x, z) given by the n components of Vf(x).

The graph of fcan be recovered as the 0—level set of F given by F(x,z) = 0.

The equation of the tangent hyperplane (y, z) to the 0—level set of F at the point
(x,fx)) is! VTF(x, (x)).ly —x,z— fix)]" = [VAx), -1]".[y — x,z— ix)]T = 0.

!(that is, the tangent hyperplane to f(x) at the point x)
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Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for VF(x), the equation of the tangent plane (y, z) can be
written as

(fo, Yi— Xi) ) —(z—flx)) =0
or equivalently as,

<V TAx)(y — x)> +flx)=1z

f(y) >= z on the supporting hyperplane
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Epigraph, Convexity, Gradients and Level-sets (contd.)

Substituting appropriate expression for VF(x), the equation of the tangent plane (y, z) can be
written as

Z fe(x)(yi—x) | — (z—f(x)) =0

or equivalently as,

<V TAx)(y — x)> +flx)=1z

Revisiting the gradient-based condition for convexity in (7), we have that for a convex
function, f(y) is greater than each such z on the hyperplane: f(y) > z= fx) + V' f(x)(y — x)
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Gradient and Epigraph (contd)

As an example, consider the paraboloid, f(x, x3) = x% =+ x% — 9 that attains its minimum at
(0,0). We see below its epigraph.
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lllustrations to understand Gradient

@ For the paraboloid, f{x1,x2) = x} + x3 — 9, the corresponding
F(x1,x2,2) = X2 +x3 — 9 — z and the point X’ = (x”,2) = (1,1, —7) which lies on the
O-level surface of F. The gradient VF(xi, x2, 2) is [2x1, 2x2, —1], which when evaluated
at X0 = (1,1,-7) is [-2, —2, —1]. The equation of the tangent plane to fat X" is
therefore given by 2(x; — 1) +2(xx — 1) = 7=z

@ The paraboloid attains its minimum at (0,0). Plot the tanget plane to the surface at
(0,0,1(0,0)) as also the gradient vector VF at (0,0, f{0,0)). What do you expect?

We can expect the hyperplane to be parallel to the x1, x2 plane
(or rather, a constant value of z)

At point of min:

1) Expect Gradient of F to be vertical (down or up)

That is, gradient of f = 0

2) Tangent hyperplane is parallel to x1, x2 plane
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[llustrations to understand Gradient

@ For the paraboloid, f{x1,x2) = x} + x3 — 9, the corresponding
F(x1,x2,2) = X3 + x3 — 9 — z and the point X = (x°,z) = (1,1, —7) which lies on the
O-level surface of F. The gradient VF(xi, x2, 2) is [2x1, 2x2, —1], which when evaluated
at X! = (1,1,-7) is [-2, —2, —1]. The equation of the tangent plane to fat x is
therefore given by 2(x; — 1) +2(xx — 1) = 7=z

@ The paraboloid attains its minimum at (0,0). Plot the tanget plane to the surface at
(0,0,1(0,0)) as also the gradient vector VF at (0,0, f{0,0)). What do you expect? Ans:
A horizontal tanget plane and a vertical gradient! (of F)
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|[First-Order Convexity Conditions: [he complete statement]|

Theorem

© For differentiable f: D — R and open convex set D, f is convex iff, for any x,y € D,

fly) > fx) + VI fix)(y —x) (8)

@ fis strictly convex iff, for any x,y € D, with x #y,

The tangential hyperplane based lower bound is strict
fly) > fix) + VT f{x)(y - x) (9)

© fis strongly convex iff, for any x,y € D, and for some constant ¢ > 0,
The lower bound has a gap that increases atleast quadratically wrt
L2 distance of x from y |
fly) > fix) + VT fx)(y —x) + §CHy—><H2 (10)
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First-Order Convexity Condition: Proof
Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the

theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

fix1) > fix) + VTHx)(x1 - x)
fixs) > fix) + VTHx) (xz - X)

Multiply the first inequality by theta and second by (1-theta) and
add the two inequalities

(11)
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First-Order Convexity Condition: Proof
Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the

theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

fix1) > fix) + VTHx)(x1 - x)

fixz) > flx) + VT ix)(x2 — x) (11)
Adding (1 — 0) times the second inequality to € times the first, we get,
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First-Order Convexity Condition: Proof
Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the

theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

flx1) > fx) + V' x)(x1 — x)
fixza) > fx) + VT {x)(x2 — x) (11)
Adding (1 — 0) times the second inequality to 6 times the first, we get,
0f(x1) + (1 — 0)f(x2) > f(x)
which proves that f(x) is a convex function. In the case of strict convexity, gl| inequalities

will remain
strict

February 19, 2018 51 /112



First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

flx1) > fx) + V' x)(x1 — x)
flxg) > f(x) + V' (x)(x2 — x) (11)
Adding (1 — 0) times the second inequality to 6 times the first, we get,
0f(x1) + (1 — 0)f(x2) > f(x)

which proves that f(x) is a convex function. In the case of strict convexity, strict inequality
holds in (11) and it follows through. In the case of strong convexity,
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First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

flx1) > fx) + V' x)(x1 — x)
flxg) > f(x) + V' (x)(x2 — x) (11)
Adding (1 — 0) times the second inequality to 6 times the first, we get,
0f(x1) + (1 — 0)f(x2) > f(x)

which proves that f(x) is a convex function. In the case of strict convexity, strict inequality
holds in (11) and it follows through. In the case of strong convexity, we need to additionally
prove that

1 9 1 9
O5cllx —x1[* + (1 = O)5cllx — x|l = theta (1-theta) ¢ ||x1 - x2|| 2



First-Order Convexity Condition: Proof

Proof:

Sufficiency: The proof of sufficiency is very similar for all the three statements of the
theorem. So we will prove only for statement (8). Suppose (8) holds. Consider x;,x2 € D and
any 6 € (0,1). Let x = x; + (1 — 0)x2. Then,

flx1) > fx) + V' x)(x1 — x)
flxg) > f(x) + V' (x)(x2 — x) (11)
Adding (1 — 0) times the second inequality to 6 times the first, we get,
0f(x1) + (1 — 0)f(x2) > f(x)
which proves that f(x) is a convex function. In the case of strict convexity, strict inequality

holds in (11) and it follows through. In the case of strong convexity, we need to additionally
prove that

1 1
9§CIIX—X1H2 +(1- 9)§C||X—X2|!2 = (1 - 0)[[x2 — x1|”
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First-Order Convexity Conditions: Proofs
Necessity: Suppose fis convex. Then for all # € (0,1) and x1,%x2 € D, we must have

f(9X2 + (1 — G)Xl) < OT’(XQ) + (1 — e)f(Xl)

Thus,

VTfx1)(x2 — x;) = Directional derivative at x1 in direction
of x2 - x1
<= f(x2) - f(x1)
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First-Order Convexity Conditions: Proofs
Necessity: Suppose fis convex. Then for all # € (0,1) and x1,%x2 € D, we must have

f(GXQ + (1 — 9)X1) < (9f(X2) + (1 — e)f(Xl)

Thus,
- f(x1 +0(x2 — x1)) — f(x1)

o) s =) = ;
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First-Order Convexity Conditions: Proofs

Necessity: Suppose fis convex. Then for all # € (0,1) and x1,%x2 € D, we must have

f(0X2 + (1 — 9)X1) < af-(Xg) + (1 — (9)f(X1)

Thus,

i L2 20 T ¢ )

-

VT fx1)(x2 — x1)

This proves necessity for (8). The necessity proofs for (9) and (10) are very similar, except for
a small difference for the case of strict convexity; the strict inequality is not preserved when we

take limits. Suppose equality does hold in the case of strict convexity, that is for a strictly
convex function f, let

f(Xg) = f(Xl) == VTf(Xl)(XQ = Xl) (12)

for some x5 # xj.
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First-Order Convexity Conditions: Proofs

Necessity (contd for strict case):
Because fis stricly convex, for any 6 € (0,1) we can write

F(0x1 + (1= 0)x2) = f(x2 + 0(x1 — x2)) < 0f(x1) + (1 — 0)f(x2) (13)

Since (8) is already proved for convex functions, we use it in conjunction with (12), and (13),
to get

f(x2) + HVTf(Xg)(Xl —x9) < f(XQ +0(x1 — XQ)) < flxg) + eva(Xg)(Xl — Xg)
which is a contradiction. Thus, equality can never hold in (8) for any x; # x2. This proves

the necessity of (9).
Y of (9) H/w: Understand the argument
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First-Order Convexity Conditions: The complete statement

The geometrical interpretation of this theorem is that at any point, the linear approximation
based on a local derivative gives a lower estimate of the function, i.e. the convex function
always lies above the supporting hyperplane at that point. This is pictorially depicted below:

f(y)

flz)+ Vf(x ')T(_q —x)

(z, f(x))
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First-Order Convexity Conditions: Subgradients

The Theorem motivates the definition of the subgradient for non-differentiable convex

functions, which has properties very similar to the gradient vector.

Definition

[Subgradient]: Let f: D — R be a convex function defined on a convex set D. A vector
h € R" is said to be a subgradient of f at the point x € D if

fly) > fix) + h'(y — x) h(x) is a function of x

for all y € D. The set of all such vectors is called the subdifferential of f at x.

v

For a differentiable convex function, the gradient at point x is the only subgradient at that
point. Most properties of differentiable convex functions that hold in terms of the gradient

also hold in terms of the subgradient for non-differentiable convex functions.
Eg: Subgradient for f(x) = ||x/||; is ? \/
How do we compute such

subﬂradients?
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(Sub)Gradients and Convexity (contd)

f

if the function is differentiable
at x, the subgradient is unique
and is called a gradient

X 9{:17

To say that a function f: R" — R is differentiable at x is to say that there is a single unique
linear tangent that under estimates the function:

fly) > fix) + vix)(y —x), Vx,y
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(Sub)Gradients and Convexity (contd)

mlk
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f L1, and L2 are underestimators
and so are all its convex

(in fact conic) combinations
/L, (even if f is not convex)

In this figure we see the function f at x has many possible linear tangents that may fit

appropriately. Recall that a subgradient is any h € R" (same dimension as x) such that:

fly) > fix) +h'(y — x), Vy

Thus, intuitively, if a function is differentiable at a point x then

the supporting hyperplane is uniquely specified by gradient
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(Sub)Gradients and Convexity (contd)

m A

f Are we guaranteed to have a
subgradient at each point for
a convex function? Formal proof?

In this figure we see the function f at x has many possible linear tangents that may fit
appropriately. Recall that a subgradient is any h € R" (same dimension as x) such that:

fly) > fix) +h'(y — x), Vy

Thus, intuitively, if a function is differentiable at a point x then it has a unique subgradient at
that point (\7f(x)). Formal Proof?
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(Sub)Gradients and Convexity (contd)

o A subdifferential is the closed convex set of all subgradients of the convex function f:
0flx) = {h € R" : h is a subgradient of fat x}

Note that this set is guaranteed to be nonempty unless fis not convex.
@ Often an indicator function, /¢ : R — R, is employed to remove the contraints of an
optimization problem (note that convex set C C R"):

. . B ] o ifxeC
)r?elrgf(x) <= min fix) + lc(x), where Ic(x)=l{xe C} = { o ifxédC

The subdifferential of the indicator function at x is

Home work: Write expression for subdifferential for | c
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