Convexity, Local and Global Optimality, etc.
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(Sub)Gradients and Convexity (contd)

X an

In this figure we see the function f at x has many possible linear tangents that may fit
appropriately. Recall that a subgradient is any h € R" (same dimension as x) such that:

fly) > fix) +h'(y — x), Vy

Thus, intuitively, if a function is differentiable at a point x then it has a unique subgradient at
that point (\7f(x)). Formal Proof?
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(Sub)Gradients and Convexity (contd)

o A subdifferential is the closed convex set of all subgradients of the convex function f:
0flx) = {h € R" : h is a subgradient of fat x}

Note that this set is guaranteed to be nonempty unless fis not convex.
@ Often an indicator function, /¢ : R — R, is employed to remove the contraints of an
optimization problem (note that convex set C C R"):

0 ifxe C

)r?elrgf(x) <= min fix) + lc(x), where Ic(x)=Kxe€ C} = { s ifxédC

The subdifferential of the indicator function at xis cone spanned by vectors
orthogonal to the tangential

hyperplanes at x
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(Sub)Gradients and Convexity (contd)

o A subdifferential is the closed convex set of all subgradients of the convex function f:
0flx) = {h € R" : h is a subgradient of fat x}

Note that this set is guaranteed to be nonempty unless fis not convex.

@ Often an indicator function, /¢ : R — R, is employed to remove the contraints of an
optimization problem (note that convex set C C R"):

0 ifxeC
00 ifx¢ C

)rpelrgf(x) < min fix) + lc(x), where Ic(x)=Kxe€ C} = {

The subdifferential of the indicator function at x is known as the normal cone; N¢(x), of
(&
Ne(x) = dlc(x) = {h e R":h'x>h'y for any y € C}

Cone formed b¥ all normals to tanﬂent hm)erplanes
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Normal Cones (Tangent Cone and Polar) for some Convex Sets

If Cis a convex set and if..
e x € int(C) then N¢(x) = {0}. In general, if x € int(domain(f)) then Of(x) is nonempty
and bounded. By definition, it is an intersection of half spaces

@ x € Cthen N¢(x) is a closed convex cone. In general, f(x) is (possibly empty) closed
convex set since it is the intersection of half spaces

@ There is a relation between the intuitive tangent cone and normal cone at a point
x € 0C....This relation is the polar relation.

Let us construct the normal cone, N¢(x) for some points in a convex set C:

Fr——, Tangent cone

. - Normal cone = Polar of tangen
- 2\ cone

* . o] Normal cone

’ I/ Intuition only:Polar corresponds to finding

orthogonal vector to tangent'plane
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

o Pointwise maximum: If f{,f, ..., f, are convex, then
f(x) = max{f(x), o(x),..., fm(x)} is max of LHs <= max of RHS <=
sum of max of
individual components
of RHS
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

o Pointwise maximum: If f{,f, ..., f, are convex, then
f(x) = max{fi(x), (x),..., fm(x)} is also convex. [Recall Quiz 1, Question 2]. For
example:

> Sum of r largest components of x € R" f(x) = x] + X2 + - .. + X, Where Xy is the ith
largest component of x, is

f(x) = max of dot product of a permutation vector of r 1's
with x
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

o Pointwise maximum: If f{,f, ..., f, are convex, then
f(x) = max{fi(x), (), ..., fm(x)} is also convex. [Recall Quiz 1, Question 2]. For
example:

> Sum of r largest components of x € R" f(x) = x] + X2 + - .. + X, Where Xy is the ith
largest component of x, is a convex function.
e Pointwise supremum: If f(x,y) is convex in x for every y € S, then g(x) = sup f(x,y)

is Uncountably/countably infinite extension of the previouyses
result

In general, induced matrix norms invoke supremum over vector
norms and are therefore convex

e February 22, 2018 60 /59



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

o Pointwise maximum: If fi, f, ..., f, are convex, then
f(x) = max{fi(x), (), ..., fm(x)} is also convex. [Recall Quiz 1, Question 2]. For
example:

> Sum of r largest components of x € R" f(x) = x] + X2 + - .. + X, Where Xy is the ith
largest component of x, is a convex function.

e Pointwise supremum: If f{x,y) is convex in x for every y € S, then g(x) = sup f(x,y)
yes
is convex. For example:

» The function that returns the maximum eigenvalue of a symmetric matrix X, viz.,

X .
Amax(X) =§zgﬂu—yﬁ{l s therefore convex
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First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

o Pointwise maximum: If fi, f, ..., f, are convex, then
f(x) = max{fi(x), (), ..., fm(x)} is also convex. [Recall Quiz 1, Question 2]. For
example:

> Sum of r largest components of x € R" f(x) = x] + X2 + - .. + X, Where Xy is the ith
largest component of x, is a convex function.

e Pointwise supremum: If f{x,y) is convex in x for every y € S, then g(x) = sup f(x,y)
yES
is convex. For example:
» The function that returns the maximum eigenvalue of a symmetric matrix X, viz.,
Amax(X) = sup Hll is a convex function of the symmetrix matrix X.
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Basic Subgradient Calculus: lllustration for pointwise Maximum

e Finite pointwise maximum: if x) = maxi—1._mfi(x), then

dfix) = Find all i such that fi(x) = f(x)
Compute the subdifferential of fi(x)
Take union of these subdifferentials
Find convex hull of the union



Basic Subgradient Calculus: lllustration for pointwise Maximum

@ Finite pointwise maximum: if f{x) = maxi—1._mfi(x), then

0fix) = conv( U 8f,-(x)), which is the convex hull of union of subdifferentials of
i fi(x)=Mf(x)
all active functions at x.
@ General pointwise maximum: if {x) = maxscsfs(x), then (could also generalize to

?
under some regularity conditions (on S, f;), 0f(x) = supremum?)

Find all s such that fs(x) = f(x)
Compute the subdifferential of fs(x)
Take union of these subdifferentials
Find convex hull of the union

Find the closure of this hull
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Basic Subgradient Calculus: lllustration for pointwise Maximum

@ Finite pointwise maximum: if f{x) = maxi—1._mfi(x), then

0f(x) = conv U Ofi(x) |, which is the convex hull of union of subdifferentials of
ifi(x)=f(x)
all active functions at x.

@ General pointwise maximum: if {x) = maxscsfs(x), then

under some regularity conditions (on S, f;), 0f(x) = cl{conv( U 8@(){))}
s:fs(x)=f(x)
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Subgradient of [|x||;

Assume x € R". Then

o |Ix|1 = [X1] + [x2]....+ [xn] = max over 2™ n permutation vectors s
of x*Ts



Subgradient of ||x||,

Assume x € R". Then

o |x|i = max x s which is a pointwise maximum of 2" functions
se{—1,+1}"

o Let S* C {—1,+1}" be the set of s such that for each s € S*, the value of x's is the
same max value.

@ Thus, J|x||1 = conv( U s).

seS*

S* will contain more than a single s only if vector x has some 0's in it
For |x|, at x=0, the subdifferential is [-1,+1]: the closed interval is a

convex hull
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Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let f: R” — R be a convex function. If fis differentiable at x € R" then 0f(x) = {Vf(x)}

e We know from (8) that for a differentiable f: D — R and open convex set D, fis convex

. f(y) >=f(x) + < \grad f(x) , (y-x) >
Thus: \grad f(x) is an element of the subdifferential of f(x)
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Differentiable convex function has unique subgradient: Proof
Stated inquitively earlier. Now formally:
Let f: R” — R be a convex function. If fis differentiable at x € R" then 0f(x) = {Vf(x)}

e We know from (8) that for a differentiable f: D — R and open convex set D, fis convex
iff, for any x,y € D{ fly) > fix) + Vf(x)(y — x)

o Let h € 0f(x), the Since fis differentiable at x, we have that

We can compute the directional derivative of f along y-x



Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let f: R” — R be a convex function. If fis differentiable at x € R" then 0f(x) = {Vf(x)}

e We know from (8) that for a differentiable f: D — R and open convex set D, fis convex
iff, for any x,y € D, fly) > f(x) + VT x)(y — x)
Thus, Vf(x) € 0f(x).

o Let h € 9f(x), then h'(y — x) < f{y) — f{x). Since fis differentiable at x, we have that

o )X -VTAX)(y—x) _ . .
Jim == =0 Letting ||y-x|| shrink

@ Thus for any € > 0 there exists a § > 0 such that ‘f(y)_f(xi&ilﬂ(x)(y_x) < € whenever
ly —x[| <é.

e Multiplying both sides by ||y — x|| and adding V7f(x)(y — x) to both sides, we get
fx) — fix) < VTA(x)(y — x) + €|ly — x|| whenever ||y —x|| <&
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Differentiable convex function has unique subgradient: Proof

@ But then, given that h € 9f(x),



Differentiable convex function has unique subgradient: Proof

iven that h € 0f(x),we obtain

e Rearranging we get (h — Vf(x))'(y — x) < €|ly — x|| whenever |y — x| <0

o Consider y —x = gome value such that we can eliminate delta
eventually (after substituting in the inequality)



Differentiable convex function has unique subgradient: Proof

e But then, given that h € 0f(x),we obtain
h'(y —x) < fly) - fix) < Vf(x)(y — x) + e|ly — x|| whenever [ly —x|| <4
o Rearranging we get (h — VAx))(y — x) < ¢|ly — x|| whenever ||y — x| < §

e Consider y — x = %l%)lﬁ that has norm ||.|| = % less than §. Then, substituting in

the previous step: (h — Vf(x))" (%Eﬁgﬁ%ﬁ) <es

@ Canceling out common terms and evaluating dot product as eucledian norm we get:
|lh — Vf(x))|| < €, which should be true for any € > 0, it should be that
|lh — Vf(x))|| = 0. Thus, it must be that h = Vf(x))
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More Subgradient Calculus: Function Convexity first

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?
n
o Nonnegative weighted sum: = Za,-f,- is convex if each f; for 1 < i< nis convex and
i=1
a;>0,1<i<n.

e Composition with affine function: {Ax+ b) is convex if fis convex. For example:

» The log barrier for linear inequalities, f(x) = Z log(b; — a/ x), is convex since — log(x) is

i=1
convex. . since 1/(x"2)
» Any norm of an affine function, f{x) = ||Ax+ b, is convex. is>0
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More of Basic Subgradient Calculus

Scaling: 0(af) = a- Of provided a > 0. The condition a > 0 makes function f remain
convex.

e Addition: J(f; + f2) = 0(f1) + O(f2)
o Affine composition: if g(x) = f{Ax + b), then 0g(x) = ATOf Ax + b)
e Norms: important special case, f{x) = ||x]|,
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More of Basic Subgradient Calculus

@ Scaling: d(af) = a- Of provided a > 0. The condition a > 0 makes function f remain
convex.

e Addition: J(f; + f2) = 0(f1) + O(f2)
o Affine composition: if g(x) = f{Ax + b), then 0g(x) = ATOf Ax + b)
o Norms: important special case, f(x) = ||x||, max z'x where q is such that

|lz[[q<1
1/p+1/g=1. Then
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More of Basic Subgradient Calculus

@ Scaling: d(af) = a- Of provided a > 0. The condition a > 0 makes function f remain
convex.

e Addition: J(f; + f2) = 0(f1) + O(f2)
o Affine composition: if g(x) = f{Ax + b), then 0g(x) = ATOf Ax + b)
o Norms: important special case, f(x) = ||x||, max z'x where q is such that

|lz[[q<1
1/p+1/g=1. Then

0f(x) = {y |lyllg <1 and y'x= max ZTX}
llzl[g<1
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Subgradients for Lasso

We use Lasso as an example to illustrate subgradients of affine composition:
1 2
flx) = min Iy —x||" + Allx]]x

The subgradients of f(x) are

e February 22, 2018 67 /59



Subgradients for Lasso

We use Lasso as an example to illustrate subgradients of affine composition:

!
flx) = min 5lly — x|” + Allxlh
The subgradients of f(x) are
h=x—-y+}s,
where s; = sign(x;) if x; 20 and s; € [-1, 1] if x; = 0.
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