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(Sub)Gradients and Convexity (contd)

In this figure we see the function f at x has many possible linear tangents that may fit
appropriately. Recall that a subgradient is any h ∈ ℜn (same dimension as x) such that:

f(y) ≥ f(x) + hT(y − x), ∀y

Thus, intuitively, if a function is differentiable at a point x then it has a unique subgradient at
that point (▽f(x)). Formal Proof?
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a subgradient is a function of this point



(Sub)Gradients and Convexity (contd)

A subdifferential is the closed convex set of all subgradients of the convex function f:

∂f(x) = {h ∈ ℜn : h is a subgradient of f at x}

Note that this set is guaranteed to be nonempty unless f is not convex.
Often an indicator function, IC : ℜn 7→ ℜ, is employed to remove the contraints of an
optimization problem (note that convex set C ⊆ ℜn):

min
x∈C

f(x) ⇐⇒ min
x

f(x) + IC(x), where IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

The subdifferential of the indicator function at x is
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cone spanned by vectors 
orthogonal to the tangential
hyperplanes at x

(for x on boundary of C)



(Sub)Gradients and Convexity (contd)

A subdifferential is the closed convex set of all subgradients of the convex function f:

∂f(x) = {h ∈ ℜn : h is a subgradient of f at x}

Note that this set is guaranteed to be nonempty unless f is not convex.
Often an indicator function, IC : ℜn 7→ ℜ, is employed to remove the contraints of an
optimization problem (note that convex set C ⊆ ℜn):

min
x∈C

f(x) ⇐⇒ min
x

f(x) + IC(x), where IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

The subdifferential of the indicator function at x is known as the normal cone, NC(x), of
C:

NC(x) = ∂IC(x) = {h ∈ ℜn : hTx ≥ hTy for any y ∈ C}
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Cone formed by all normals to tangent hyperplanes



Normal Cones (Tangent Cone and Polar) for some Convex Sets

If C is a convex set and if..
x ∈ int(C) then NC(x) = {0}. In general, if x ∈ int(domain(f)) then ∂f(x) is nonempty
and bounded.
x ∈ C then NC(x) is a closed convex cone. In general, ∂f(x) is (possibly empty) closed
convex set since it is the intersection of half spaces
There is a relation between the intuitive tangent cone and normal cone at a point
x ∈ ∂C....This relation is the polar relation.

Let us construct the normal cone, NC(x) for some points in a convex set C:
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By definition, it is an intersection of half spaces

Tangent cone

Normal cone

Normal cone = Polar of tangent
cone

Intuition only:Polar corresponds to finding 
orthogonal vector to tangent plane



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is
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max of LHs <= max of RHS <= 
sum of max of 
individual components
of RHS



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is also convex. [Recall Quiz 1, Question 2]. For

example:
▶ Sum of r largest components of x ∈ ℜn f(x) = x[1] + x[2] + . . .+ x[r], where x[1] is the ith

largest component of x, is
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f(x) = max of dot product of a permutation vector of r 1's
                        with x



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is also convex. [Recall Quiz 1, Question 2]. For

example:
▶ Sum of r largest components of x ∈ ℜn f(x) = x[1] + x[2] + . . .+ x[r], where x[1] is the ith

largest component of x, is a convex function.

Pointwise supremum: If f(x,y) is convex in x for every y ∈ S, then g(x) = sup
y∈S

f(x,y)

is
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Uncountably/countably infinite extension of the previous
result
In general, induced matrix norms invoke supremum over vector 
norms and are therefore convex



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is also convex. [Recall Quiz 1, Question 2]. For

example:
▶ Sum of r largest components of x ∈ ℜn f(x) = x[1] + x[2] + . . .+ x[r], where x[1] is the ith

largest component of x, is a convex function.

Pointwise supremum: If f(x,y) is convex in x for every y ∈ S, then g(x) = sup
y∈S

f(x,y)

is convex. For example:
▶ The function that returns the maximum eigenvalue of a symmetric matrix X, viz.,

λmax(X) = sup
y∈S

∥Xy∥2

∥y∥2
is
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therefore convex



First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one
compute their subgradients at points of non-differentiability?

Pointwise maximum: If f1, f2, . . . , fm are convex, then
f(x) = max

{
f1(x), f2(x), . . . , fm(x)

}
is also convex. [Recall Quiz 1, Question 2]. For

example:
▶ Sum of r largest components of x ∈ ℜn f(x) = x[1] + x[2] + . . .+ x[r], where x[1] is the ith

largest component of x, is a convex function.

Pointwise supremum: If f(x,y) is convex in x for every y ∈ S, then g(x) = sup
y∈S

f(x,y)

is convex. For example:
▶ The function that returns the maximum eigenvalue of a symmetric matrix X, viz.,

λmax(X) = sup
y∈S

∥Xy∥2

∥y∥2
is a convex function of the symmetrix matrix X.
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Basic Subgradient Calculus: Illustration for pointwise Maximum

Finite pointwise maximum: if f(x) = maxi=1...mfi(x), then
∂f(x) =
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Find all i such that fi(x) = f(x)
Compute the subdifferential of fi(x) 
Take union of these subdifferentials
Find convex hull of the union



Basic Subgradient Calculus: Illustration for pointwise Maximum

Finite pointwise maximum: if f(x) = maxi=1...mfi(x), then
∂f(x) = conv

( ∪

i:fi(x)=f(x)
∂fi(x)

)
, which is the convex hull of union of subdifferentials of

all active functions at x.
General pointwise maximum: if f(x) = maxs∈Sfs(x), then
under some regularity conditions (on S, fs), ∂f(x) =
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(could also generalize to
supremum?)

Find all s such that fs(x) = f(x)
Compute the subdifferential of fs(x) 
Take union of these subdifferentials
Find convex hull of the union
Find the closure of this hull



Basic Subgradient Calculus: Illustration for pointwise Maximum

Finite pointwise maximum: if f(x) = maxi=1...mfi(x), then
∂f(x) = conv

( ∪

i:fi(x)=f(x)
∂fi(x)

)
, which is the convex hull of union of subdifferentials of

all active functions at x.
General pointwise maximum: if f(x) = maxs∈Sfs(x), then
under some regularity conditions (on S, fs), ∂f(x) = cl

{
conv

( ∪

s:fs(x)=f(x)
∂fs(x)

)}
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Subgradient of ∥x∥1

Assume x ∈ ℜn. Then
∥x∥1 =
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|x1| + |x2|....+ |xn| = max over 2^n permutation vectors s
of x^T s



Subgradient of ∥x∥1

Assume x ∈ ℜn. Then
∥x∥1 = max

s∈{−1,+1}n
xTs which is a pointwise maximum of 2n functions

Let S∗ ⊆ {−1,+1}n be the set of s such that for each s ∈ S∗, the value of xTs is the
same max value.
Thus, ∂∥x∥1 = conv

( ∪

s∈S∗
s
)
.
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S* will contain more than a single s only if vector x has some 0's in it
For |x|, at x=0, the subdifferential is [-1,+1]: the closed interval is a 

convex hull



Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let f : ℜn → ℜ be a convex function. If f is differentiable at x ∈ ℜn then ∂f(x) = {∇f(x)}

We know from (8) that for a differentiable f : D → ℜ and open convex set D, f is convex
iff,

February 22, 2018 63 / 59

f(y) >= f(x) + < \grad f(x) , (y-x) > 
Thus: \grad f(x) is an element of the subdifferential of f(x)



Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let f : ℜn → ℜ be a convex function. If f is differentiable at x ∈ ℜn then ∂f(x) = {∇f(x)}

We know from (8) that for a differentiable f : D → ℜ and open convex set D, f is convex
iff, for any x,y ∈ D, f(y) ≥ f(x) +∇Tf(x)(y − x)
Thus, ∇f(x) ∈ ∂f(x).
Let h ∈ ∂f(x), then hT(y − x) ≤ f(y)− f(x). Since f is differentiable at x, we have that

February 22, 2018 63 / 59

We can compute the directional derivative of f along y-x



Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let f : ℜn → ℜ be a convex function. If f is differentiable at x ∈ ℜn then ∂f(x) = {∇f(x)}

We know from (8) that for a differentiable f : D → ℜ and open convex set D, f is convex
iff, for any x,y ∈ D, f(y) ≥ f(x) +∇Tf(x)(y − x)
Thus, ∇f(x) ∈ ∂f(x).
Let h ∈ ∂f(x), then hT(y − x) ≤ f(y)− f(x). Since f is differentiable at x, we have that
lim

y→x
f(y)−f(x)−∇Tf(x)(y−x)

∥y−x∥ = 0

Thus for any ϵ > 0 there exists a δ > 0 such that
��� f(y)−f(x)−∇Tf(x)(y−x)

∥y−x∥

��� < ϵ whenever
∥y − x∥ < δ.
Multiplying both sides by ∥y − x∥ and adding ∇Tf(x)(y − x) to both sides, we get
f(x)− f(x̄) < ∇Tf(x)(y − x) + ϵ∥y − x∥ whenever ∥y − x∥ < δ
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Letting ||y-x|| shrink



Differentiable convex function has unique subgradient: Proof

But then, given that h ∈ ∂f(x),
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Differentiable convex function has unique subgradient: Proof

But then, given that h ∈ ∂f(x),we obtain
hT(y − x) ≤ f(y)− f(x) < ∇Tf(x)(y − x) + ϵ∥y − x∥ whenever ∥y − x∥ < δ

Rearranging we get (h −∇f(x))T(y − x) < ϵ∥y − x∥ whenever ∥y − x∥ < δ

Consider y − x =
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some value such that we can eliminate delta 
eventually (after substituting in the inequality)



Differentiable convex function has unique subgradient: Proof

But then, given that h ∈ ∂f(x),we obtain
hT(y − x) ≤ f(y)− f(x) < ∇Tf(x)(y − x) + ϵ∥y − x∥ whenever ∥y − x∥ < δ

Rearranging we get (h −∇f(x))T(y − x) < ϵ∥y − x∥ whenever ∥y − x∥ < δ

Consider y − x = δ(h−∇f(x))
2∥h−∇f(x)∥ that has norm ∥.∥ = δ

2 less than δ. Then, substituting in
the previous step: (h −∇f(x))T

(
δ(h−∇f(x))
2∥h−∇f(x)∥

)
< ϵ δ2

Canceling out common terms and evaluating dot product as eucledian norm we get:
∥h −∇f(x))∥ < ϵ, which should be true for any ϵ > 0, it should be that
∥h −∇f(x))∥ = 0. Thus, it must be that h = ∇f(x))
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More Subgradient Calculus: Function Convexity first

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Nonnegative weighted sum: f =
n∑

i=1

αifi is convex if each fi for 1 ≤ i ≤ n is convex and

αi ≥ 0, 1 ≤ i ≤ n.
Composition with affine function: f(Ax + b) is convex if f is convex. For example:

▶ The log barrier for linear inequalities, f(x) = −
m∑

i=1

log(bi − aT
i x), is convex since − log(x) is

convex.
▶ Any norm of an affine function, f(x) = ||Ax + b||, is convex.
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since 1/(x^2)
is > 0



More of Basic Subgradient Calculus

Scaling: ∂(af) = a · ∂f provided a > 0. The condition a > 0 makes function f remain
convex.
Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)
Affine composition: if g(x) = f(Ax + b), then ∂g(x) = AT∂f(Ax + b)
Norms: important special case, f(x) = ||x||p
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More of Basic Subgradient Calculus

Scaling: ∂(af) = a · ∂f provided a > 0. The condition a > 0 makes function f remain
convex.
Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)
Affine composition: if g(x) = f(Ax + b), then ∂g(x) = AT∂f(Ax + b)
Norms: important special case, f(x) = ||x||p max

||z||q≤1
zTx where q is such that

1/p + 1/q = 1. Then
∂f(x) =

{
y : ||y||q ≤ 1 and yTx = max

||z||q≤1
zTx

}
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Subgradients for Lasso

We use Lasso as an example to illustrate subgradients of affine composition:

f(x) = min
x

1

2
||y − x||2 + λ||x||1

The subgradients of f(x) are
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Subgradients for Lasso

We use Lasso as an example to illustrate subgradients of affine composition:

f(x) = min
x

1

2
||y − x||2 + λ||x||1

The subgradients of f(x) are
h = x − y + λs,

where si = sign(xi) if xi ̸= 0 and si ∈ [−1, 1] if xi = 0.
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