Convexity, Local and Global Optimality, etc.

(Sub)Gradients and Convexity (contd)

In this figure we see the function f at \mathbf{x} has many possible linear tangents that may fit appropriately. Recall that a subgradient is any $\mathbf{h} \in \Re^{n}$ (same dimension as x) such that:

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{h}^{T}(\mathbf{y}-\mathbf{x}), \forall \mathbf{y}
$$

Thus, intuitively, if a function is differentiable at a point \mathbf{x} then it has a unique subgradient at that point $(\nabla f(\mathbf{x}))$. Formal Proof?

(Sub)Gradients and Convexity (contd)

- A subdifferential is the closed convex set of all subgradients of the convex function f :

$$
\partial f(\mathbf{x})=\left\{\mathbf{h} \in \Re^{n}: \mathbf{h} \text { is a subgradient of } f \text { at } \mathbf{x}\right\}
$$

Note that this set is guaranteed to be nonempty unless f is not convex.

- Often an indicator function, $I_{C}: \Re^{n} \mapsto \Re$, is employed to remove the contraints of an optimization problem (note that convex set $C \subseteq \Re^{n}$):

$$
\min _{\mathbf{x} \in C} f(\mathbf{x}) \Longleftrightarrow \min _{\mathbf{x}} f(\mathbf{x})+I_{C}(\mathbf{x}), \quad \text { where } I_{C}(\mathbf{x})=I\{\mathbf{x} \in C\}= \begin{cases}0 & \text { if } \mathbf{x} \in C \\ \infty & \text { if } \mathbf{x} \notin C\end{cases}
$$

The subdifferential of the indicator function at x is cone spanned by vectors

(for x on boundary of C)
 orthogonal to the tangential hyperplanes at x

(Sub)Gradients and Convexity (contd)

- A subdifferential is the closed convex set of all subgradients of the convex function f :

$$
\partial f(\mathbf{x})=\left\{\mathbf{h} \in \Re^{n}: \mathbf{h} \text { is a subgradient of } f \text { at } \mathbf{x}\right\}
$$

Note that this set is guaranteed to be nonempty unless f is not convex.

- Often an indicator function, $I_{C}: \Re^{n} \mapsto \Re$, is employed to remove the contraints of an optimization problem (note that convex set $C \subseteq \Re^{n}$):

$$
\min _{\mathbf{x} \in C} f(\mathbf{x}) \Longleftrightarrow \min _{\mathbf{x}} f(\mathbf{x})+I_{C}(\mathbf{x}), \quad \text { where } \quad I_{C}(\mathbf{x})=I\{\mathbf{x} \in C\}= \begin{cases}0 & \text { if } \mathbf{x} \in C \\ \infty & \text { if } \mathbf{x} \notin C\end{cases}
$$

The subdifferential of the indicator function at x is known as the normal cone, $N_{C}(\mathbf{x})$, of C :

$$
N_{C}(\mathbf{x})=\partial I_{C}(\mathbf{x})=\left\{\mathbf{h} \in \Re^{n}: \mathbf{h}^{T} x \geq \mathbf{h}^{T} \mathbf{y} \text { for any } \mathbf{y} \in C\right\}
$$

Normal Cones (Tangent Cone and Polar) for some Convex Sets

If C is a convex set and if..

- $\mathbf{x} \in \operatorname{int}(C)$ then $N_{C}(\mathbf{x})=\{\mathbf{0}\}$. In general, if $\mathbf{x} \in \operatorname{int}(\operatorname{domain}(f))$ then $\partial f(\mathbf{x})$ is nonempty and bounded. By definition, it is an intersection of half spaces
- $\mathbf{x} \in C$ then $N_{C}(\mathbf{x})$ is a closed convex cone. In general, $\partial f(\mathbf{x})$ is (possibly empty) closed convex set since it is the intersection of half spaces
- There is a relation between the intuitive tangent cone and normal cone at a point $\mathbf{x} \in \partial C \ldots$...This relation is the polar relation.

Let us construct the normal cone, $N_{C}(\mathbf{x})$ for some points in a convex set C :

Tangent cone

Normal cone $=$ Polar of tangen cone

First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Pointwise maximum: If $f_{1}, f_{2}, \ldots, f_{m}$ are convex, then

$$
\begin{aligned}
f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\} \text { is max of LHS }<= & \max \text { of RHS }<= \\
& \text { sum of max of } \\
& \text { individual components } \\
& \text { of RHS }
\end{aligned}
$$

First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Pointwise maximum: If $f_{1}, f_{2}, \ldots, f_{m}$ are convex, then $f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}$ is also convex. [Recall Quiz 1, Question 2]. For example:
- Sum of r largest components of $\mathbf{x} \in \Re^{n} f(\mathbf{x})=x_{[1]}+x_{[2]}+\ldots+x_{[r]}$, where $x_{[1]}$ is the $i^{\text {th }}$ largest component of \mathbf{x}, is

$$
\begin{gathered}
f(x)=\text { max of dot product of a permutation vector of } r \text { 1's } \\
\text { with } x
\end{gathered}
$$

First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Pointwise maximum: If $f_{1}, f_{2}, \ldots, f_{m}$ are convex, then $f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}$ is also convex. [Recall Quiz 1, Question 2]. For example:
- Sum of r largest components of $\mathbf{x} \in \Re^{n} f(\mathbf{x})=x_{[1]}+x_{[2]}+\ldots+x_{[r]}$, where $x_{[1]}$ is the $i^{\text {th }}$ largest component of \mathbf{x}, is a convex function.
- Pointwise supremum: If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for every $\mathbf{y} \in \mathcal{S}$, then $g(\mathbf{x})=\sup _{\mathcal{S}} f(\mathbf{x}, \mathbf{y})$ is Uncountably/countably infinite extension of the previoús result
In general, induced matrix norms invoke supremum over vector norms and are therefore convex

First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Pointwise maximum: If $f_{1}, f_{2}, \ldots, f_{m}$ are convex, then $f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}$ is also convex. [Recall Quiz 1, Question 2]. For example:
- Sum of r largest components of $\mathbf{x} \in \Re^{n} f(\mathbf{x})=x_{[1]}+x_{[2]}+\ldots+x_{[r]}$, where $x_{[1]}$ is the $i^{\text {th }}$ largest component of \mathbf{x}, is a convex function.
- Pointwise supremum: If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for every $\mathbf{y} \in \mathcal{S}$, then $g(\mathbf{x})=\sup _{\mathbf{y} \in \mathcal{S}} f(\mathbf{x}, \mathbf{y})$ is convex. For example:
- The function that returns the maximum eigenvalue of a symmetric matrix X, viz.,

$$
\lambda_{\max }(X)=\sup _{\mathbf{y} \in \mathcal{S}} \frac{\left\|x_{\mathbf{y}}\right\|_{2}}{\|\mathbf{y}\|_{2}} \text { is therefore convex }
$$

First peek into subgradient calculus: Function Convexity First

Following functions are convex, but may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Pointwise maximum: If $f_{1}, f_{2}, \ldots, f_{m}$ are convex, then $f(\mathbf{x})=\max \left\{f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right\}$ is also convex. [Recall Quiz 1, Question 2]. For example:
- Sum of r largest components of $\mathbf{x} \in \Re^{n} f(\mathbf{x})=x_{[1]}+x_{[2]}+\ldots+x_{[r]}$, where $x_{[1]}$ is the $i^{\text {th }}$ largest component of \mathbf{x}, is a convex function.
- Pointwise supremum: If $f(\mathbf{x}, \mathbf{y})$ is convex in \mathbf{x} for every $\mathbf{y} \in \mathcal{S}$, then $g(\mathbf{x})=\sup _{\mathbf{y} \in \mathcal{S}} f(\mathbf{x}, \mathbf{y})$ is convex. For example:
- The function that returns the maximum eigenvalue of a symmetric matrix X, viz., $\lambda_{\text {max }}(X)=\sup _{\mathbf{y} \in \mathcal{S}} \frac{\left\|X_{\mathbf{y}}\right\|_{2}}{\|\mathbf{y}\|_{2}}$ is a convex function of the symmetrix matrix X.

Basic Subgradient Calculus: Illustration for pointwise Maximum

- Finite pointwise maximum: if $f(\mathbf{x})=\max _{i=1 \ldots m} f_{i}(\mathbf{x})$, then
$\partial f(\mathbf{x})=$ Find all i such that $f(x)=f(x)$ Compute the subdifferential of $f i(x)$ Take union of these subdifferentials Find convex hull of the union

Basic Subgradient Calculus: Illustration for pointwise Maximum

- Finite pointwise maximum: if $f(\mathbf{x})=\max _{i=1 \ldots m} f_{i}(\mathbf{x})$, then
$\partial f(\mathbf{x})=\operatorname{conv}\left(\bigcup_{i: f_{i}(\mathbf{x})=f(\mathbf{x})} \partial f_{i}(\mathbf{x})\right)$, which is the convex hull of union of subdifferentials of all active functions at x.
- General pointwise maximum: if $f(\mathbf{x})=\max _{s \in S} f_{s}(\mathbf{x})$, then (could also generalize to under some regularity conditions (on S, f_{s}), $\partial f(\mathbf{x})=$ supremum?)

Find all s such that $f s(x)=f(x)$
Compute the subdifferential of $\mathrm{fs}(\mathrm{x})$ Take union of these subdifferentials Find convex hull of the union Find the closure of this hull

Basic Subgradient Calculus: Illustration for pointwise Maximum

- Finite pointwise maximum: if $f(\mathbf{x})=\max _{i=1 \ldots m} f_{i}(\mathbf{x})$, then
$\partial f(\mathbf{x})=\operatorname{conv}\left(\bigcup_{i: f_{i}(\mathbf{x})=f(\mathbf{x})} \partial f_{i}(\mathbf{x})\right)$, which is the convex hull of union of subdifferentials of all active functions at x.
- General pointwise maximum: if $f(\mathbf{x})=\max _{s \in S} f_{s}(\mathbf{x})$, then under some regularity conditions (on $\left.S, f_{s}\right), \partial f(\mathbf{x})=c l\left\{\operatorname{conv}\left(\bigcup_{s: f_{s}(\mathbf{x})=f(\mathbf{x})} \partial f_{s}(\mathbf{x})\right)\right\}$

Subgradient of $\|\mathbf{x}\|_{1}$

Assume $\mathbf{x} \in \Re^{n}$. Then

- $\|\mathbf{x}\|_{1}=|x 1|+|x 2| \ldots+|x n|=\max$ over $2^{\wedge} n$ permutation vectors s of $x^{\wedge} \mathrm{T}$ s

Subgradient of $\|\mathbf{x}\|_{1}$

Assume $\mathrm{x} \in \Re^{n}$. Then

- $\|\mathbf{x}\|_{1}=\max _{\mathbf{s} \in\{-1,+1\}^{n}} \mathbf{x}^{T} \mathbf{s}$ which is a pointwise maximum of 2^{n} functions
- Let $\mathcal{S}^{*} \subseteq\{-1,+1\}^{n}$ be the set of \mathbf{s} such that for each $\mathbf{s} \in \mathcal{S}^{*}$, the value of $\mathbf{x}^{T} \mathbf{s}$ is the same max value.
- Thus, $\partial\|\mathbf{x}\|_{1}=\operatorname{conv}\left(\bigcup_{\mathbf{s} \in \mathcal{S}^{*}} \mathbf{s}\right)$.

S* will contain more than a single s only if vector x has some 0 's in it For $|x|$, at $x=0$, the subdifferential is $[-1,+1]$: the closed interval is a convex hull

Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let $f: \Re^{n} \rightarrow \Re$ be a convex function. If f is differentiable at $\mathbf{x} \in \Re^{n}$ then $\partial f(\mathbf{x})=\{\nabla f(\mathbf{x})\}$

- We know from (8) that for a differentiable $f: \mathcal{D} \rightarrow \Re$ and open convex set \mathcal{D}, f is convex
iff,
$f(y)>=f(x)+<\operatorname{lgrad} f(x),(y-x)>$
Thus: \grad $f(x)$ is an element of the subdifferential of $f(x)$

Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let $f: \Re^{n} \rightarrow \Re$ be a convex function. If f is differentiable at $\mathbf{x} \in \Re^{n}$ then $\partial f(\mathbf{x})=\{\nabla f(\mathbf{x})\}$

- We know from (8) that for a differentiable $f: \mathcal{D} \rightarrow \Re$ and open convex set \mathcal{D}, f is convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}, f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})$
Thus, $\nabla f(\mathbf{x}) \in \partial f(\mathbf{x})$.
- Let $\mathbf{h} \in \partial f(\mathbf{x})$, then $\mathbf{h}^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y})-f(\mathbf{x})$. Since f is differentiable at \mathbf{x}, we have that We can compute the directional derivative of f along $y-x$

Differentiable convex function has unique subgradient: Proof

Stated inquitively earlier. Now formally:
Let $f: \Re^{n} \rightarrow \Re$ be a convex function. If f is differentiable at $\mathbf{x} \in \Re^{n}$ then $\partial f(\mathbf{x})=\{\nabla f(\mathbf{x})\}$

- We know from (8) that for a differentiable $f: \mathcal{D} \rightarrow \Re$ and open convex set \mathcal{D}, f is convex iff, for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}, f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})$
Thus, $\nabla f(\mathbf{x}) \in \partial f(\mathbf{x})$.
- Let $\mathbf{h} \in \partial f(\mathbf{x})$, then $\mathbf{h}^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y})-f(\mathbf{x})$. Since f is differentiable at \mathbf{x}, we have that $\lim _{y \rightarrow x} \frac{f(y)-f(x)-\nabla^{\top} f(x)(y-x)}{\|y-x\|}=0 \quad$ Letting $\|y-x\|$ shrink
- Thus for any $\epsilon>0$ there exists a $\delta>0$ such that $\left|\frac{f(\mathbf{y})-f(\mathbf{x})-\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})}{\|\mathbf{y}-\mathbf{x}\|}\right|<\epsilon$ whenever $\|\mathbf{y}-\mathbf{x}\|<\delta$.
- Multiplying both sides by $\|\mathbf{y}-\mathbf{x}\|$ and adding $\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})$ to both sides, we get $f(x)-f(\bar{x})<\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\epsilon\|\mathbf{y}-\mathbf{x}\|$ whenever $\|\mathbf{y}-\mathbf{x}\|<\delta$

Differentiable convex function has unique subgradient: Proof

- But then, given that $\mathbf{h} \in \partial f(\mathbf{x})$,

Differentiable convex function has unique subgradient: Proof

- But then, given that $\mathbf{h} \in \partial f(\mathbf{x})$, we obtain
$\mathbf{h}^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y})-f(\mathbf{x})<\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\epsilon\|\mathbf{y}-\mathbf{x}\|$ whenever $\|\mathbf{y}-\mathbf{x}\|<\delta$
- Rearranging we get $(\mathbf{h}-\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x})<\epsilon\|\mathbf{y}-\mathbf{x}\|$ whenever $\|\mathbf{y}-\mathbf{x}\|<\delta$
- Consider $\mathbf{y}-\mathbf{x}=$ some value such that we can eliminate delta eventually (after substituting in the inequality)

Differentiable convex function has unique subgradient: Proof

- But then, given that $\mathbf{h} \in \partial f(\mathbf{x})$, we obtain
$\mathbf{h}^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y})-f(\mathbf{x})<\nabla^{\top} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\epsilon\|\mathbf{y}-\mathbf{x}\|$ whenever $\|\mathbf{y}-\mathbf{x}\|<\delta$
- Rearranging we get $(\mathbf{h}-\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x})<\epsilon\|\mathbf{y}-\mathbf{x}\|$ whenever $\|\mathbf{y}-\mathbf{x}\|<\delta$
- Consider $\mathbf{y}-\mathbf{x}=\frac{\delta(\mathbf{h}-\nabla f(\mathbf{x}))}{2\|\mathbf{h}-\nabla f(\mathbf{x})\|}$ that has norm $\|\cdot\|=\frac{\delta}{2}$ less than δ. Then, substituting in the previous step: $(\mathbf{h}-\nabla f(\mathbf{x}))^{T}\left(\frac{\delta(\mathbf{h}-\nabla f(\mathbf{x}))}{2\|\mathbf{h}-\nabla f(\mathbf{x})\|}\right)<\epsilon \frac{\delta}{2}$
- Canceling out common terms and evaluating dot product as eucledian norm we get: $\| \mathbf{h}-\nabla f(\mathbf{x})) \|<\epsilon$, which should be true for any $\epsilon>0$, it should be that $\| \mathbf{h}-\nabla f(\mathbf{x})) \|=0$. Thus, it must be that $\mathbf{h}=\nabla f(\mathbf{x}))$

More Subgradient Calculus: Function Convexity first

Following functions are again convex, but again, may not be differentiable everywhere. How does one compute their subgradients at points of non-differentiability?

- Nonnegative weighted sum: $f=\sum_{i=1}^{n} \alpha_{i} f_{i}$ is convex if each f_{i} for $1 \leq i \leq n$ is convex and $\alpha_{i} \geq 0,1 \leq i \leq n$.
- Composition with affine function: $f(A x+b)$ is convex if f is convex. For example:
- The log barrier for linear inequalities, $f(x)=-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)$, is convex since $-\log (x)$ is convex.
- Any norm of an affine function, $f(x)=\|A x+b\|$, is convex.

$$
\begin{aligned}
& \text { since } 1 /\left(x^{\wedge} 2\right) \\
& \text { is }>0
\end{aligned}
$$

More of Basic Subgradient Calculus

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$. The condition $a>0$ makes function f remain convex.
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial\left(f_{1}\right)+\partial\left(f_{2}\right)$
- Affine composition: if $g(\mathbf{x})=f(A \mathbf{x}+\mathbf{b})$, then $\partial g(\mathbf{x})=A^{T} \partial f(A \mathbf{x}+b)$
- Norms: important special case, $f(\mathbf{x})=\|\mathbf{x}\|_{p}$

More of Basic Subgradient Calculus

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$. The condition $a>0$ makes function f remain convex.
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial\left(f_{1}\right)+\partial\left(f_{2}\right)$
- Affine composition: if $g(\mathbf{x})=f(A \mathbf{x}+\mathbf{b})$, then $\partial g(\mathbf{x})=A^{T} \partial f(A \mathbf{x}+b)$
- Norms: important special case, $f(\mathbf{x})=\|\mathbf{x}\|_{p} \max _{\|\mathbf{z}\|_{q} \leq 1} \mathbf{z}^{T} \mathbf{x}$ where q is such that $1 / p+1 / q=1$. Then

More of Basic Subgradient Calculus

- Scaling: $\partial(a f)=a \cdot \partial f$ provided $a>0$. The condition $a>0$ makes function f remain convex.
- Addition: $\partial\left(f_{1}+f_{2}\right)=\partial\left(f_{1}\right)+\partial\left(f_{2}\right)$
- Affine composition: if $g(\mathbf{x})=f(A \mathbf{x}+\mathbf{b})$, then $\partial g(\mathbf{x})=A^{T} \partial f(A \mathbf{x}+b)$
- Norms: important special case, $f(\mathbf{x})=\|\mathbf{x}\|_{p} \max _{\|\mathbf{z}\|_{q} \leq 1} \mathbf{z}^{T} \mathbf{x}$ where q is such that $1 / p+1 / q=1$. Then
$\partial f(\mathbf{x})=\left\{\mathbf{y}:\|\mathbf{y}\|_{q} \leq 1\right.$ and $\left.\mathbf{y}^{T}=\max _{\|\mathbf{z}\|_{q} \leq 1} \mathbf{z}^{T^{\mathbf{x}}}\right\}$

Subgradients for Lasso

We use Lasso as an example to illustrate subgradients of affine composition:

$$
f(\mathbf{x})=\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}+\lambda\|\mathbf{x}\|_{1}
$$

The subgradients of $f(\mathbf{x})$ are

Subgradients for Lasso

We use Lasso as an example to illustrate subgradients of affine composition:

$$
f(\mathbf{x})=\min _{\mathbf{x}} \frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}+\lambda\|\mathbf{x}\|_{1}
$$

The subgradients of $f(\mathbf{x})$ are

$$
\mathbf{h}=\mathbf{x}-\mathbf{y}+\lambda \mathbf{s},
$$

where $s_{i}=\operatorname{sign}\left(x_{i}\right)$ if $x_{i} \neq 0$ and $s_{i} \in[-1,1]$ if $x_{i}=0$.

