
Convexity, Local and Global Optimality, etc.
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More of Basic Subgradient Calculus

Scaling: ∂(af) = a · ∂f provided a > 0. The condition a > 0 makes function f remain
convex.
Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)
Affine composition: if g(x) = f(Ax + b), then ∂g(x) = AT∂f(Ax + b)
Norms: important special case, f(x) = ||x||p
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=max over inner product <z,x>
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More of Basic Subgradient Calculus

Scaling: ∂(af) = a · ∂f provided a > 0. The condition a > 0 makes function f remain
convex.
Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)
Affine composition: if g(x) = f(Ax + b), then ∂g(x) = AT∂f(Ax + b)
Norms: important special case, f(x) = ||x||p = max

||z||q≤1
zTx where q is such that

1/p+ 1/q = 1. Then
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Subdifferential of f(x) = z with ||z||_q <= 1 and for which
the max is attained... 



More of Basic Subgradient Calculus

Scaling: ∂(af) = a · ∂f provided a > 0. The condition a > 0 makes function f remain
convex.
Addition: ∂(f1 + f2) = ∂(f1) + ∂(f2)
Affine composition: if g(x) = f(Ax + b), then ∂g(x) = AT∂f(Ax + b)
Norms: important special case, f(x) = ||x||p = max

||z||q≤1
zTx where q is such that

1/p+ 1/q = 1. Then
∂f(x) =

{
y : ||y||q ≤ 1 and yTx = max

||z||q≤1
zTx

}
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Homework (Optional)



Subgradients for the ‘Lasso’ Problem in Machine Learning

We use Lasso (min
x

f(x)) as an example to illustrate subgradients of affine composition:

f(x) = 1

2
||y − x||2 + λ||x||1

The subgradients of f(x) are
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Generalizing from midsem where y=0

x-y + \lambda s(x)

s_i(x) = sign(x_i) if x_i not equal to 0
s_i(x) anyvalue in [-1,+1]



Subgradients for the ‘Lasso’ Problem in Machine Learning

We use Lasso (min
x

f(x)) as an example to illustrate subgradients of affine composition:

f(x) = 1

2
||y − x||2 + λ||x||1

The subgradients of f(x) are
h = x − y + λs,

where si = sign(xi) if xi ̸= 0 and si ∈ [−1, 1] if xi = 0.

March 5, 2018 67 / 123



More Subgradient Calculus: Composition
Following functions, though convex, may not be differentiable everywhere. How does one
compute their subgradients? (what holds for subgradient also holds for gradient)

Composition with functions: Let p : ℜk → ℜ with q(x) = ∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument
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More Subgradient Calculus: Composition
Following functions, though convex, may not be differentiable everywhere. How does one
compute their subgradients? (what holds for subgradient also holds for gradient)

Composition with functions: Let p : ℜk → ℜ with q(x) = ∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument

Some examples illustrating this property are:
▶ exp q(x) is convex if q is convex

▶
m∑

i=1

log qi(x) is concave if qi are concave and positive

▶ log
m∑

i=1

exp qi(x) is convex if qi are convex

▶ 1/q(x) is convex if q is concave and positive
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(concave, p is concave)
(q_i convex, p nonincreasing)

(q_i concave, p nondecreasing)

p = summation of logs 
is concave and nondecreasing

p = -log of summation of exps... (convex and nonincreasing

p = 1/...is convex and non-increasing



More Subgradient Calculus: Composition (contd)
Composition with functions: Let p : ℜk → ℜ with q(x) = ∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument

Subgradients for the first case (second one is homework):
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f(y) = p(q(y)) >= p(q_i(y) + h_{q_i}^T (y-x))



More Subgradient Calculus: Composition (contd)
Composition with functions: Let p : ℜk → ℜ with q(x) = ∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument

Subgradients for the first case (second one is homework):
▶ f(y) = p

(
q1(y), . . . , qk(y)

)
≥ p

(
q1(x) + hT

q1
(y − x), . . . , qk(x)hT

qk(y − x)
)

Where hqi ∈ ∂qi(x) for i = 1..k and since p(.) is non-decreasing in each argument.
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q_k(x) + 

Lower bound the RHS above with the linear underestimator of p obtained
using p's subgradient at x. 



More Subgradient Calculus: Composition (contd)
Composition with functions: Let p : ℜk → ℜ with q(x) = ∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument

Subgradients for the first case (second one is homework):
▶ f(y) = p

(
q1(y), . . . , qk(y)

)
≥ p

(
q1(x) + hT

q1
(y − x), . . . , qk(x)hT

qk(y − x)
)

Where hqi ∈ ∂qi(x) for i = 1..k and since p(.) is non-decreasing in each argument.
▶ p

(
q1(x) + hT

q1
(y − x), . . . , qk(x) + hT

qk(y − x)
)
≥

p
(
q1(x), . . . , qk(x)

)
+ hT

p

(
hT

q1
(y − x), . . . ,hT

qk(y − x)
)

Where hp ∈ ∂p
(
q1(x), . . . , qk(x)

)
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Wrt what we have on board:

q' = [q_1(x)....q_k(x)] h_q_1(y-x)..... h_q_k(y-x) = q - q'



More Subgradient Calculus: Composition (contd)
Composition with functions: Let p : ℜk → ℜ with q(x) = ∞, ∀ x /∈ dom h and
q : ℜn → ℜk. Define f(x) = p(q(x)). f is convex if

▶ qi is convex, p is convex and nondecreasing in each argument
▶ or qi is concave, p is convex and nonincreasing in each argument

Subgradients for the first case (second one is homework):
▶ f(y) = p

(
q1(y), . . . , qk(y)

)
≥ p

(
q1(x) + hT

q1
(y − x), . . . , qk(x)hT

qk(y − x)
)

Where hqi ∈ ∂qi(x) for i = 1..k and since p(.) is non-decreasing in each argument.
▶ p

(
q1(x) + hT

q1
(y − x), . . . , qk(x) + hT

qk(y − x)
)
≥

p
(
q1(x), . . . , qk(x)

)
+ hT

p

(
hT

q1
(y − x), . . . ,hT

qk(y − x)
)

Where hp ∈ ∂p
(
q1(x), . . . , qk(x)

)

▶ p
(
q1(x), . . . , qk(x)

)
+ hT

p

(
hT

q1
(y − x), . . . , hT

qk(y − x)
)
= f(x) +

k∑

i=1

(hp)iqi(x)

That is,
k∑

i=1

(hp)iqi(x) is a subgradient of the composite function at x.
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More Subgradient Calculus: Proximal Operator
Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Infimum: If c(x, y) is convex in (x, y) and C is a convex set, then d(x) = inf
y∈C

c(x, y) is
convex. For example:

▶ Let d(x, C) that returns the distance of a point x to a convex set C. That is
d(x, C) = inf

y∈C
||x − y||2. Then d(x, C) is a convex function.

▶ argmin
y∈C

d(x, C) is a special case of the proximity operator: proxf(x) = argmin
y

PROXf(x) of a

convex function f(x). Here, PROXf(x) = f(y) + 1
2 ||x − y||2 The special case is when
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H/w
(from first
principles)

f(y) is the indicator function on the set S



More Subgradient Calculus: Proximal Operator
Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Infimum: If c(x, y) is convex in (x, y) and C is a convex set, then d(x) = inf
y∈C

c(x, y) is
convex. For example:

▶ Let d(x, C) that returns the distance of a point x to a convex set C. That is
d(x, C) = inf

y∈C
||x − y||2. Then d(x, C) is a convex function.

▶ argmin
y∈C

d(x, C) is a special case of the proximity operator: proxf(x) = argmin
y

PROXf(x) of a

convex function f(x). Here, PROXf(x) = f(y) + 1
2 ||x − y||2 The special case is when f(y) is

the indicator function IC(y) introduced earlier to remove the contraints of an optimization
problem.

⋆ Recall that ∂IC(y) = NC(y) = {h ∈ ℜn : hTy ≥ hTz for any z ∈ C}
⋆ The subdifferential partialPROXf(x) = ∂f(y) + x − y which can now be obtained for the

special case f(y) = IC(y).
⋆ We will invoke this when we discuss the proximal gradient descent algorithm

March 5, 2018 70 / 123



More Subgradient Calculus: Perspective (Advanced)

Following functions are again convex, but again, may not be differentiable everywhere. How
does one compute their subgradients at points of non-differentiability?

Perspective Function: The perspective of a function f : ℜn → ℜ is the function
g : Rn × ℜ → ℜ, g(x, t) = tf(x/t). Function g is convex if f is convex on
domg =

{
(x, t)|x/t ∈ domf, t > 0

}
. For example,

▶ The perspective of f(x) = xTx is (quadratic-over-linear) function g(x, t) = xTx
t and is convex.

▶ The perspective of negative logarithm f(x) = − log x is the relative entropy function
g(x, t) = t log t− t log x and is convex.
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More on SubGradient kind of functions: Monotonicity

A differentiable function f : ℜ → ℜ is (strictly) convex, iff and only if f′(x) is (strictly)
increasing. Is there a closer analog for f : ℜn → ℜ?
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What is the notion of (monotonically) increasing vector (sub)gradient
Subgradient h of f will lie in R^n 



More on SubGradient kind of functions: Monotonicity

A differentiable function f : ℜ → ℜ is (strictly) convex, iff and only if f′(x) is (strictly)
increasing. Is there a closer analog for f : ℜn → ℜ? View subgradient as an instance of a
general function h : D → ℜn and D ⊆ ℜn. Then
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If h is monotone then function is convex and vice versa



More on SubGradient kind of functions: Monotonicity

A differentiable function f : ℜ → ℜ is (strictly) convex, iff and only if f′(x) is (strictly)
increasing. Is there a closer analog for f : ℜn → ℜ? View subgradient as an instance of a
general function h : D → ℜn and D ⊆ ℜn. Then

Definition
1 h is monotone on D if for any x1,x2 ∈ D,

(
h(x1)− h(x2)

)T
(x1 − x2) ≥ 0 (14)
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More on SubGradient kind of functions: Monotonicity (contd)

Definition
2 h is strictly monotone on D if for any x1,x2 ∈ D with x1 ̸= x2,

(
h(x1)− h(x2)

)T
(x1 − x2) > 0 (15)

3 h is uniformly or strongly monotone on D if for any x1,x2 ∈ D, there is a constant c > 0
such that

(
h(x1)− h(x2)

)T
(x1 − x2) ≥ c||x1 − x2||2 (16)
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(Sub)Gradients and Convexity

Based on the definition of monotonic functions, we next show the relationship between
convexity of a function and monotonicity of its (sub)gradient:

Theorem
Let f : D → ℜ with D ⊆ ℜn be differentiable on the convex set D. Then,

1 f is convex on D iff its gradient ∇f is monotone. That is, for all x,y ∈ ℜ:(
∇f(x)−∇f(y)

)T
(x − y) ≥ 0

2 f is strictly convex on D iff its gradient ∇f is strictly monotone. That is, for all x,y ∈ ℜ
with x ̸= y:

(
∇f(x)−∇f(y)

)T
(x − y) > 0

3 f is uniformly or strongly convex on D iff its gradient ∇f is uniformly monotone. That is,
for all x,y ∈ ℜ,

(
∇f(x)−∇f(y)

)T
(x − y) ≥ c||x − y||2 for some constant c > 0.

While these results also hold for subgradients h, we will show them only for gradients ∇f
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(Sub)Gradients and Convexity (contd)

Proof:
Necessity: Suppose f is strongly convex on D. Then we know from an earlier result that for
any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y − x)− 1

2
c||y + x||2

f(x) ≥ f(y) +∇Tf(y)(x − y)− 1

2
c||x + y||2

Adding the two inequalities,
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(Sub)Gradients and Convexity (contd)

Proof:
Necessity: Suppose f is strongly convex on D. Then we know from an earlier result that for
any x,y ∈ D,

f(y) ≥ f(x) +∇Tf(x)(y − x)− 1

2
c||y + x||2

f(x) ≥ f(y) +∇Tf(y)(x − y)− 1

2
c||x + y||2

Adding the two inequalities, we get uniform/strong monotonicity in definition (3). If f is
convex, the inequalities hold with c = 0, yielding monotonicity in definition (1). If f is strictly
convex, the inequalities will be strict, yielding strict monotonicity in definition (2).
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(Sub)Gradients and Convexity (contd)
Sufficiency: Suppose ∇f is monotone. For any fixed x,y ∈ D, consider the function
ϕ(t) = f

(
x + t(y − x)

)
. By the mean value theorem applied to ϕ(t), we should have for some

t ∈ (0, 1),
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(Sub)Gradients and Convexity (contd)
Sufficiency: Suppose ∇f is monotone. For any fixed x,y ∈ D, consider the function
ϕ(t) = f

(
x + t(y − x)

)
. By the mean value theorem applied to ϕ(t), we should have for some

t ∈ (0, 1),

ϕ(1)− ϕ(0) = ϕ′(t) (17)

Letting z = x + t(y − x), (17) translates to

f(y)− f(x) = ∇Tf(z)(y − x) (18)

Also, by definition of monotonicity of ∇f,

(
∇f(z)−∇f(x)

)T
(y − x) = 1

t
(
∇f(z)−∇f(x)

)T
(z − x) ≥ 0 (19)
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(Sub)Gradients and Convexity (contd)

Combining (18) with (19), we get,

f(y)− f(x) =
(
∇f(z)− f(x)

)T
(y − x) +∇Tf(x)(y − x)

≥ ∇Tf(x)(y − x) (20)

By a previous foundational result, this inequality proves that f is convex. Strict convexity can
be similarly proved by using the strict inequality in (19) inherited from strict monotonicity, and
letting the strict inequality follow through to (20).
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(Sub)Gradients and Convexity (contd)
For the case of strong convexity, we have

ϕ′(t)− ϕ′(0) =
(
∇f(z)− f(x)

)T
(y − x)

=
1

t
(
∇f(z)− f(x)

)T
(z − x) ≥ 1

t c||z − x||2 = ct||y − x||2 (21)

Therefore,
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....Applying fundamental theorem of calculus



(Sub)Gradients and Convexity (contd)
For the case of strong convexity, we have

ϕ′(t)− ϕ′(0) =
(
∇f(z)− f(x)

)T
(y − x)

=
1

t
(
∇f(z)− f(x)

)T
(z − x) ≥ 1

t c||z − x||2 = ct||y − x||2 (21)

Therefore,

ϕ(1)− ϕ(0)− ϕ′(0) =
∫ 1

0
[ϕ′(t)− ϕ′(0)]dt ≥ 1

2
c||y − x||2 (22)

which translates to
f(y) ≥ f(x) +∇Tf(x)(y − x) + 1

2
c||y − x||2

Thus, f must be strongly convex.
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....Applying fundamental theorem of calculus



Local and Global Minima, Gradients and Convexity

Recall that for functions of single variable, at local extreme points, the tangent to the curve is
a line with a constant component in the direction of the function and is therefore parallel to
the x-axis. If the function is differentiable at the extreme point, then the derivative must
vanish. This idea can be extended to functions of multiple variables. The requirement in this
case turns out to be that the tangent plane to the function at any extreme point must be
parallel to the plane z = 0. This can happen if and only if the gradient ∇F is parallel to the
z−axis at the extreme point, or equivalently, the gradient to the function f must be the zero
vector at every extreme point.
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