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Local and Global Minima, Gradients and Convexity

Recall that for functions of single variable, at local extreme points, the tangent to the
curve is a line with a constant component in the direction of the function and is therefore
parallel to the x-axis.

▶ If the function is differentiable at the extreme point, then the derivative must vanish.
This idea can be extended to functions of multiple variables. The requirement in this case
turns out to be that the tangent plane to the function at any extreme point must be
parallel to the plane z = 0.

▶ This can happen if and only if the gradient ∇F is parallel to the z−axis at the extreme point,
or equivalently, the gradient to the function f must be the zero vector at every extreme point.
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(Sub)Gradients and Optimality: Sufficient Condition

For a convex f,
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As a sufficient condition for minimum at x

0 belonging to subdifferential of f at x 



(Sub)Gradients and Optimality: Sufficient Condition

For a convex f,
f(x∗) = min

x∈Rn
f(x) ⇐ 0 ∈ ∂f(x∗)

The reason: h = 0 being a subgradient means that for all y
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f(y) >= f(x) + ....zero term...



(Sub)Gradients and Optimality: Sufficient Condition

For a convex f,
f(x∗) = min

x∈Rn
f(x) ⇐ 0 ∈ ∂f(x∗)

The reason: h = 0 being a subgradient means that for all y

f(y) ≥ f(x∗) + 0T(y − x∗) = f(x∗)

The analogy to the differentiable case is: ∂f(x) = {∇f(x)}.
Thus, for a convex function f(x), if ∇f(x) = 0, then x must be a point of glolbal
minimum.
Is there a necessary condition for a differentiable (possibly non-convex) function having a
(local or global) minimum at x? (A little later)
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Subgradients in Lasso: Sufficient Condition Test
We illustrate the sufficient condition again using Lasso as an example. Consider the simplified
Lasso problem:

f(x) = 1

2
||y − x||2 + λ||x||1

Recall the subgradients of f(x):
h = x − y + λs,

where si = sign(xi) if xi ̸= 0 and si ∈ [−1, 1] if xi = 0.
A solution to this problem is
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y and \lambda are specified and fixed as inputs to the problem

if yi > \lambda,  xi = yi - \lambda
if yi < -\lambda, xi = yi + \lambda
otherwise           xi = 0

To talk of convexity, we would
like \lambda > 0



Subgradients in Lasso: Sufficient Condition Test
We illustrate the sufficient condition again using Lasso as an example. Consider the simplified
Lasso problem:

f(x) = 1

2
||y − x||2 + λ||x||1

Recall the subgradients of f(x):
h = x − y + λs,

where si = sign(xi) if xi ̸= 0 and si ∈ [−1, 1] if xi = 0.
A solution to this problem is x∗ = Sλ(y), where Sλ(y) is the soft-thresholding operator:

Sλ(y) =





yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ

yi + λ if yi < −λ

Now let x∗ = Sλ(y) and we can get g = 0. Why? If yi > λ, we have x∗i − yi = −λ+ λ · 1 = 0.
The case of yi < λ is similar. If −λ ≤ yi ≤ λ, we have x∗i − yi = −yi +λ( yi

λ ) = 0. Here, si = yi
λ .
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Proximal Operator and Sufficient Condition Test

Recap: d(x, C) returns the distance of a point x to a convex set C. That is
d(x, C) = inf

y∈C
||x − y||2. Then d(x, C) is a convex function.

Recap: argmin
y∈C

||x − y|| is a special case of the proximal operator:

proxf(x) = argmin
y

PROXf(x,y) of a convex function f(x). Here,

PROXf(x,y) = f(y) + 1
2 ||x − y||2 The special case is when f(y) is the indicator function

IC(y) introduced earlier to eliminate the contraints of an optimization problem.
▶ Recall that ∂IC(y) = NC(y) = {h ∈ ℜn : hTy ≥ hTz for any z ∈ C}
▶ For the special case f(y) = IC(y), the subdifferential

∂PROXf(x.y) = ∂f(y) + y − x = {h − x ∈ ℜn : hTy ≥ hTz for any z ∈ C}
▶ As per sufficient condition for minimum for this special case, proxf(x) = argmin

y∈C
||x − y||

We will invoke this when we discuss the proximal gradient descent algorithm
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Local Extrema: Necessary Condition

Definition
[Recap: Local maximum]: A function f of n variables has a local maximum at x0 if ∃ϵ > 0

such that ∀ ||x − x0|| < ϵ. f(x) ≤ f(x0). In other words, f(x) ≤ f(x0) whenever
x lies in some circular disk around x0.

Definition
[Recap: Local minimum]: A function f of n variables has a local minimum at x0 if ∃ϵ > 0

such that ∀ ||x − x0|| < ϵ. f(x) ≥ f(x0). In other words, f(x) ≥ f(x0) whenever
x lies in some circular disk around x0.
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Recap: Local Extrema
Figure below shows the plot of f(x1, x2) = 3x21 − x31 − 2x22 + x42. As can be seen in the plot, the
function has several local maxima and minima.
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Local Extrema: Necessary Condition through Fermat’s Theorem

A theorem fundamental to determining the locally extreme values of functions of multiple
variables.
Claim
If f(x) defined on a domain D ⊆ ℜn has a local maximum or minimum at x∗ and if the
first-order partial derivatives exist at x∗, then fxi(x∗) = 0 for all 1 ≤ i ≤ n.

Proof:
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We already saw the intuition that the rate of increase or
decrease of the function at x^* should be 0 in all directions



Local Extrema: Necessary Condition through Fermat’s Theorem

A theorem fundamental to determining the locally extreme values of functions of multiple
variables.
Claim
If f(x) defined on a domain D ⊆ ℜn has a local maximum or minimum at x∗ and if the
first-order partial derivatives exist at x∗, then fxi(x∗) = 0 for all 1 ≤ i ≤ n.

Proof: The idea behind this result can be stated as follows. The tangent hyperplane to the
function at any extreme point must be parallel to the plane z = 0. This can happen if and
only if the gradient ∇F = [∇Tf, −1]T is parallel to the z−axis at the extreme point. Or
equivalently, the gradient to the function f must be the zero vector at every extreme point,
i.e., fxi(x∗) = 0 for 1 ≤ i ≤ n.
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Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then
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gi is f at point of optimum x^*
along all components except
along the i^th component

Basically observing behaviour
of f at point of optimum along
individual dimensions

H/w



Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then there exists an open ball
Bϵ = {x|∥x − x∗∥ < ϵ} around x∗ such that for all x ∈ Bϵ, f(x∗) ≤ f(x) (f(x∗) ≥ f(x))

3 Consider the norm to be the Eucledian norm ∥.∥2. By Cauchy Shwarz inequality, for a
unit norm vector ei = [0..1..0] with a 1 only in the ith index in the vector,
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||e_i|| = 1
|e_i^T (x - x^*)| <= ||e_i|| ||x-x^*||



Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then there exists an open ball
Bϵ = {x|∥x − x∗∥ < ϵ} around x∗ such that for all x ∈ Bϵ, f(x∗) ≤ f(x) (f(x∗) ≥ f(x))

3 Consider the norm to be the Eucledian norm ∥.∥2. By Cauchy Shwarz inequality, for a
unit norm vector ei = [0..1..0] with a 1 only in the ith index in the vector,
|eT

i (x − x∗)| = |xi − x∗i | ≤ ∥x − x∗∥∥ei∥ = ∥x − x∗∥.
4 Thus, the existence of an open ball {x|∥x − x∗∥ < ϵ} around x∗ characterizing the
minimum in ℜn also guarantees
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the existence of an open ball around xi^* in R which 
corresponds to the minimum of g_i(xi^*) = f(x^*)



Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then there exists an open ball
Bϵ = {x|∥x − x∗∥ < ϵ} around x∗ such that for all x ∈ Bϵ, f(x∗) ≤ f(x) (f(x∗) ≥ f(x))

3 Consider the norm to be the Eucledian norm ∥.∥2. By Cauchy Shwarz inequality, for a
unit norm vector ei = [0..1..0] with a 1 only in the ith index in the vector,
|eT

i (x − x∗)| = |xi − x∗i | ≤ ∥x − x∗∥∥ei∥ = ∥x − x∗∥.
4 Thus, the existence of an open ball {x|∥x − x∗∥ < ϵ} around x∗ characterizing the
minimum in ℜn also guarantees the existence of an open ball (projected ball
corresponding to a projected norm) {xi|∥xi − x∗i ∥ < ϵ} around x∗i in ℜ.

5 Therefore each function gi(xi) must have a local extremum at x∗i . Which, by an earlier
result (derived for differentiable functions of single argument) implies that
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g_i'(xi^*) = 0



Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then there exists an open ball
Bϵ = {x|∥x − x∗∥ < ϵ} around x∗ such that for all x ∈ Bϵ, f(x∗) ≤ f(x) (f(x∗) ≥ f(x))

3 Consider the norm to be the Eucledian norm ∥.∥2. By Cauchy Shwarz inequality, for a
unit norm vector ei = [0..1..0] with a 1 only in the ith index in the vector,
|eT

i (x − x∗)| = |xi − x∗i | ≤ ∥x − x∗∥∥ei∥ = ∥x − x∗∥.
4 Thus, the existence of an open ball {x|∥x − x∗∥ < ϵ} around x∗ characterizing the
minimum in ℜn also guarantees the existence of an open ball (projected ball
corresponding to a projected norm) {xi|∥xi − x∗i ∥ < ϵ} around x∗i in ℜ.

5 Therefore each function gi(xi) must have a local extremum at x∗i . Which, by an earlier
result (derived for differentiable functions of single argument) implies that g′i(x∗i ) = 0

6 Now g′i(x∗i ) = fxi(x∗) and hence

March 12, 2018 86 / 136

the gradient of f must vanish at x^*



Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then there exists an open ball
Bϵ = {x|∥x − x∗∥ < ϵ} around x∗ such that for all x ∈ Bϵ, f(x∗) ≤ f(x) (f(x∗) ≥ f(x))

3 Consider the norm to be the Eucledian norm ∥.∥2. By Cauchy Shwarz inequality, for a
unit norm vector ei = [0..1..0] with a 1 only in the ith index in the vector,
|eT

i (x − x∗)| = |xi − x∗i | ≤ ∥x − x∗∥∥ei∥ = ∥x − x∗∥.
4 Thus, the existence of an open ball {x|∥x − x∗∥ < ϵ} around x∗ characterizing the
minimum in ℜn also guarantees the existence of an open ball (projected ball
corresponding to a projected norm) {xi|∥xi − x∗i ∥ < ϵ} around x∗i in ℜ.

5 Therefore each function gi(xi) must have a local extremum at x∗i . Which, by an earlier
result (derived for differentiable functions of single argument) implies that g′i(x∗i ) = 0

6 Now g′i(x∗i ) = fxi(x∗) and hence fxi(x∗) = 0 that is
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Local Extrema: Fermat’s Theorem
To formally prove this result,

1 Consider the function gi(xi) = f(x∗1, x∗2, . . . , x∗i−1, xi, x∗i+1, . . . , x∗n).
2 If f has a local minimum (maximum) at x∗, then there exists an open ball
Bϵ = {x|∥x − x∗∥ < ϵ} around x∗ such that for all x ∈ Bϵ, f(x∗) ≤ f(x) (f(x∗) ≥ f(x))

3 Consider the norm to be the Eucledian norm ∥.∥2. By Cauchy Shwarz inequality, for a
unit norm vector ei = [0..1..0] with a 1 only in the ith index in the vector,
|eT

i (x − x∗)| = |xi − x∗i | ≤ ∥x − x∗∥∥ei∥ = ∥x − x∗∥.
4 Thus, the existence of an open ball {x|∥x − x∗∥ < ϵ} around x∗ characterizing the
minimum in ℜn also guarantees the existence of an open ball (projected ball
corresponding to a projected norm) {xi|∥xi − x∗i ∥ < ϵ} around x∗i in ℜ.

5 Therefore each function gi(xi) must have a local extremum at x∗i . Which, by an earlier
result (derived for differentiable functions of single argument) implies that g′i(x∗i ) = 0

6 Now g′i(x∗i ) = fxi(x∗) and hence fxi(x∗) = 0 that is ∇f(x∗) = 0.
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A Related Property: Convexity by Restricting to Line
A useful technique for verifying the convexity of a function is to investigate its convexity, by
restricting the function to a line and checking for the convexity of a function of single variable.

Theorem
A function f : D → ℜ is (strictly) convex if and only if the function ϕ : Dϕ → ℜ defined below,
is (strictly) convex in t for every x ∈ ℜn and for every h ∈ ℜn

ϕ(t) = f(x + th)

with the domain of ϕ given by Dϕ =
{
t|x + th ∈ D

}
.

Thus, we have see that
If a function has a local optimum at x∗, it as a local optimum along each component x∗i
of x∗

If a function is convex in x, it will be convex in each component xi of x
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(that is each canonical direction
and in general, local optimum along each line)

(that is each canonical direction and in general along each line)



A Related Property: Convexity by Restricting to Line (contd.)

Proof: We will prove the necessity and sufficiency of the convexity of ϕ for a convex function
f. The proof for necessity and sufficiency of the strict convexity of ϕ for a strictly convex f is
very similar and is left as an exercise.
Proof of Necessity: Assume that f is convex. And we need to prove that ϕ(t) = f(x + th) is
also convex. Let t1, t2 ∈ Dϕ and θ ∈ [0, 1]. Then,

ϕ(θt1 + (1− θ)t2) = f
(
θ(x + t1h) + (1− θ)(x + t2h)

)

≤ θf
(
(x + t1h)

)
+ (1− θ)f

(
(x + t2h)

)
= θϕ(t1) + (1− θ)ϕ(t2) (23)

Thus, ϕ is convex.
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A Related Property: Convexity by Restricting to Line (contd.)

Proof of Sufficiency: Assume that for every h ∈ ℜn and every x ∈ ℜn, ϕ(t) = f(x + th) is
convex. We will prove that f is convex. Let x1,x2 ∈ D. Take, x = x1 and h = x2 − x1. We
know that ϕ(t) = f

(
x1 + t(x2 − x1)

)
is convex, with ϕ(1) = f(x2) and ϕ(0) = f(x1).

Therefore, for any θ ∈ [0, 1]

f
(
θx2 + (1− θ)x1

)
= ϕ(θ)

≤ θϕ(1) + (1− θ)ϕ(0) ≤ θf(x2) + (1− θ)f(x1) (24)

This implies that f is convex.
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Local Extrema: Illustration
Applying the previous result to the function f(x1, x2) = 9− x21 − x22, we require that at any
extreme point fx1 = −2x1 = 0 ⇒ x1 = 0 and fx2 = −2x2 = 0 ⇒ x2 = 0. Thus, f indeed attains
its maximum at the point (0, 0) as shown in Figure 2.

Figure 2:
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Critical Point

Definition
[Critical point]: A point x∗ is called a critical point of a function f(x) defined on D ⊆ ℜn if

1 If fxi(x∗) = 0, for 1 ≤ i ≤ n.
2 OR fxi(x∗) fails to exist for any 1 ≤ i ≤ n.
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Critical Point

A procedure for computing all critical points of a function f is:
1 Compute fxi for 1 ≤ i ≤ n.
2 Determine if there are any points where any one of fxi fails to exist. Add such points (if
any) to the list of critical points.

3 Solve the system of equations fxi = 0 simultaneously. Add the solution points to the list
of saddle points.
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Verify that the point of min we found for Lasso as per sufficient 
condition is also a critical point...[If any x_i = 0 or if gradient = 0]
[H/W]



Critical Point
As an example, for the function f(x1, x2) = |x1|, fx1 does not exist for (0, s) for any s ∈ ℜ and
all of them are critical points. Figure 3 shows the corresponding 3−D plot.

Figure 3:
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Saddle Point

Is the converse of the foregoing result true? That is, if you find an x∗ that satisifes fxi(x∗) =
for all 1 ≤ i ≤ n, is it necessary that x∗ is an extreme point? The answer is no. In fact, points
that violate the converse of this result are called saddle points.

Definition
[Saddle point]: A point x∗ is called a saddle point of a function f(x) defined on D ⊆ ℜn if

x∗ is a critical point of f but x∗ does not correspond to a local maximum or
minimum of the function.

We saw the example of a saddle point in Figure ??, for the case n = 1. The inflection point
for a function of single variable, that was discussed earlier, is the analogue of the saddle point
for a function of multiple variables.
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Saddle Point
An example for n = 2 is the hyperbolic paraboloid2 f(x1, x2) = x21 − x22, the graph of which is
shown in Figure 4. The hyperbolic paraboloid has a saddle point at (0, 0).

Figure 4:

2The hyperbolic paraboloid is shaped like a saddle and can have a critical point called the saddle point.
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Saddle Point
The hyperbolic paraboloid opens up on x1-axis (Figure 5):

Figure 5:
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Saddle Point
The hyperbolic paraboloid opens down on x2-axis (Figure 6):

Figure 6:
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Breadthwise view of a horse saddle



Extreme Points

To get working on figuring out how to find the maximum and minimum of a function, we
will take some examples. Let us find the critical points of
f(x1, x2) = x21 + x22 − 2x1 − 6x2 + 14 and classify the critical point.
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Extreme Points

To get working on figuring out how to find the maximum and minimum of a function, we
will take some examples. Let us find the critical points of
f(x1, x2) = x21 + x22 − 2x1 − 6x2 + 14 and classify the critical point.
This function is a polyonomial function and is differentiable everywhere. It is a paraboloid
that is shifted away from origin. To find its critical points, we will solve fx1 = 2x1 − 2 = 0
and fx2 = 2x2 − 6 = 0, which when solved simultaneously, yield a single critical point
(1, 3).
For a simple example like this, the function f can be rewritten as
f(x1, x2) = (x1 − 1)2 + (x2 − 3)2 + 4, which implies that f(x1, x2) ≥ 4 = f(1, 3). Therefore,
(1, 3) is indeed a local minimum (in fact a global minimum) of f(x1, x2).
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Descent Algorithms for Optimizing Unconstrained Problems
Techniques relevant for most (convex) optimization problems that do not yield themselves to
closed form solutions. We will start with unconstrained minimization.

min
x∈D

f(x)

For analysis:
Assume that f is convex and differentiable and that it attains a finite optimal value p∗.
Minimization techniques produce a sequence of points x(k) ∈ D, k = 0, 1, . . . such that
f
(

x(k)
)
→ p∗ as k→ ∞ or, ∇f

(
x(k)

)
→ 0 as k→ ∞.

Iterative techniques for optimization, further require a starting point x(0) ∈ D and
sometimes that epi(f) is closed. The epi(f) can be inferred to be closed either if D = ℜn

or f(x) → ∞ as x → ∂D. The function f(x) = 1
x for x > 0 is an example of a function

whose epi(f) is not closed.
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Goal: (especially of first order descent algos) To achieve a 0 (sub) gradient

(often Lipschitz continuity is also required in analysis)

(Often a function with closed epigraph is itself called
closed)



Descent Algorithms
Descent methods for minimization have been in use since the last 70 years or more.
General idea: Next iterate x(k+1) is the current iterate x(k) added with a descent or
search direction ∆x(k) (a unit vector), which is multiplied by a scale factor t(k), called the
step length.

x(k+1) = x(k) + t(k)∆x(k)

The incremental step is determined while aiming that f(x(k+1)) < f(x(k))
We assume that we are dealing with the extended value extension ef of the convex
function f : D → ℜ, with D ⊆ ℜn which returns ∞ for any point outside its domain.
However, if we do so, we need to make sure that the initial point indeed lies in the
domain D.

Definition

ef(x) =

{
f(x) if x ∈ D
∞ if x /∈ D (25)
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[Analysis later, intuitions first]



Descent Algorithms

A single iteration of the general descent algorithm consists of two main steps, viz.,
1 determining a good descent direction ∆x(k), which is typically forced to have unit norm and
2 determining the step size using some line search technique.

If the function f is convex, from the necessary and sufficient condition for convexity
restated here for reference:

f(x(k+1)) ≥ f(x(k)) +∇Tf(x(k))(x(k+1) − x(k))

We require that f(x(k+1)) < f(x(k)) and since t(k) > 0, we must have
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Homework


