
Interpretation of backtracking line search

∆x = direction of descent = −∇f(xk) for gradient descent
A different way of understanding the varying step size with β: Multiplying t by β causes
the interpolation to tilt as indicated in the figure

Homeworks: Let f(x) = x2 for x ∈ ℜ. Let x0 = 2, ∆xk = −1 for all k (since it is a valid
descent direction of x > 0) and xk = 1 + 2−k. What is the step size tk implicitly being used.
Show that while tk satisifies the Armijo condition (determine a c1), it does not satisfy the
second Strong Wolfe condition in the following slides. Why is the choice of step size bad?
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Strong Wolfe conditions: Sufficient decrease BUT NOT at the cost
of oscillations



Ray Search for First Order Descent: Strong Wolfe Conditions
Often, another condition is used for inexact line search in conjunction with the Armijo
condition.

���∆xT∇f(x + t∆x)
��� ≤ c2

���∆xT∇f(x)
��� (28)

where 1 > c2 > c1 > 0. This condition ensures that the slope of the function f(x + t∆x) at t
is less than c2 times that at t = 0.

1 The conditions in (27) and (28) are together called the strong Wolfe conditions. These
conditions are particularly very important for non-convex problems.

2 While (??refeq:armijoCondition) ensures guaranteed decrease in f(x + δx), (28) provides
guaranteed decrease in magnitude of slope and avoid too small steps.

3 Claim: If 1 > c2 > c1 > 0 and the function f(x) is convex and differentiable, there exists t
such that (27) and (28) are both satisfied for any f. Hint: Use the Mean Value Theorem
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Convexity ⇒ Strong Wolfe Conditions
Let ϕ(t) = f(xk + t∆xk) ≥ f(xk) + t∇Tf(xk)∆xk (where the second inequality is by
virtue of convexity). Remember that ∇Tf(xk)∆xk < 0

Since 0 < c1 < 1, the linear approximation l(t) = f(xk) + tc1∇Tf(xk)∆xk is unbounded
below and it can be shown to

March 19, 2018 109 / 188

[RECAP]



Convexity ⇒ Strong Wolfe Conditions
Let ϕ(t) = f(xk + t∆xk) ≥ f(xk) + t∇Tf(xk)∆xk (where the second inequality is by
virtue of convexity). Remember that ∇Tf(xk)∆xk < 0

Since 0 < c1 < 1, the linear approximation l(t) = f(xk) + tc1∇Tf(xk)∆xk is unbounded
below and it can be shown to intersect the graph of ϕ atleast once.
Let t′ > 0 be the smallest intersecting value of t, that is:

f(x + t′∆xk) = f(xk) + t′c1∇Tf(xk)∆xk (29)

For all t ∈ [0, t′],
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Convexity ⇒ Strong Wolfe Conditions
Let ϕ(t) = f(xk + t∆xk) ≥ f(xk) + t∇Tf(xk)∆xk (where the second inequality is by
virtue of convexity). Remember that ∇Tf(xk)∆xk < 0

Since 0 < c1 < 1, the linear approximation l(t) = f(xk) + tc1∇Tf(xk)∆xk is unbounded
below and it can be shown to intersect the graph of ϕ atleast once.
Let t′ > 0 be the smallest intersecting value of t, that is:

f(x + t′∆xk) = f(xk) + t′c1∇Tf(xk)∆xk (29)

For all t ∈ [0, t′],
f(xk + t∆xk) ≤ f(xk) + tc1∇Tf(xk)∆xk (30)

That is, there exists a non-empty set of t such that the first Wolfe condition is met.
By the mean value theorem, ∃ t′′ ∈ (0, t′) such that

f(xk + t′∆xk)− f(xk) = t′∇Tf(xk + t′′∆xk)∆xk (31)
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Convexity ⇒ Strong Wolfe Conditions (contd.)

Combining (29) and (31), and using c1 < c2,and ∇Tf(xk)∆xk < 0

∇Tf(xk + t′′∆xk)∆xk = c1∇Tf(xk)∆xk > c2∇Tf(xk)∆xk (32)

Again, since ∇Tf(xk)∆xk < 0, we get the tk = t′′ satisfying (28)

|∇Tf(xk + t′′∆xk)∆xk| < c2|∇Tf(xk)∆xk| (33)

In fact, by continuity of f(.), there exists an interval around t′′ for which Strong Wolfe
conditions hold.
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This is desirable: Neither too slow, nor too wayward..

Starts fast and then
adaptively slows down



Empirical Observations on Ray Search

A finding that is borne out of plenty of empirical evidence is that exact ray search does
better than empirical ray search in a few cases only.
Further, the exact choice of the value of c1 and c2 seems to have little effect on the
convergence of the overall descent method.
The trend of specific descent methods has been like a parabola - starting with simple
steepest descent techniques, then accomodating the curvature hessian matrix through a
more sophisticated Newton’s method and finally, trying to simplify the Newton’s method
through approximations to the hessian inverse, culminating in conjugate gradient
techniques, that do away with any curvature matrix whatsoever, and form the internal
combustion engine of many sophisticated optimization techniques today.
We start the thread by describing the steepest descent methods.
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Algorithms: Steepest Descent

The idea of steepest descent is to determine a descent direction such that for a unit step
in that direction, the prediction of decrease in the objective is maximized
However, consider ∆x = argminv

[
−5 10 15

]
v

=⇒ ∆x =




∞
−∞
−∞




which is unacceptable
Thus, there is a necessity to restrict the norm of v
The choice of the descent direction can be stated as:

∆x = argmin
v

∇⊤f(x)v

s.t. ∥v∥ = 1
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Algorithms: Steepest Descent
Let v ∈ ℜn be a unit vector under some norm. By first order convexity condition for
convex and differentiable f,

f(x(k))− f(x(k) + v) ≤ −∇Tf(x(k))v

For small v, the inequality turns into approximate equality. The term −∇Tf(x(k))v can
be thought of as (an upper-bound on) the first order prediction of decrease.
The idea in the steepest descent method is to choose a norm and then determine a
descent direction such that for a unit step in that norm, the first order prediction of
decrease is maximized. This choice of the descent direction can be stated as

∆x = argmin
{
∇Tf(x)v | ||v|| = 1

}

Empirical observation: If the norm chosen is aligned with the gross geometry of the
sub-level sets3, the steepest descent method converges faster to the optimal solution.
Else, it often amplifies the effect of oscillations.

3The alignment can be determined by fitting, for instance, a quadratic to a sample of the points.
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Various choices of the norm result in different solutions for ∆x
For 2-norm, ∆x = − ∇f(x(k))

∥∇f(x(k))∥
2

(gradient descent)

For 1-norm, ∆x = − sign
(

∂f(x(k))

∂x(k)
i

)
ei, where ei is the ith standard basis vector

(coordinate descent)
For ∞-norm, ∆x = − sign(∇f(x(k)))
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General Algorithm: Steepest Descent (contd)

Find a starting point x(0) ∈ D.
repeat

1. Set ∆x(k) = argmin
{
∇Tf(x(k))v | ||v|| = 1

}
.

2. Choose a step size t(k) > 0 using exact or backtracking ray search.
3. Obtain x(k+1) = x(k) + t(k)∆x(k).
4. Set k = k+ 1.

until stopping criterion (such as ||∇f(x(k+1))|| ≤ ϵ) is satisfied

Figure 8: The steepest descent algorithm.

Two examples of the steepest descent method are the gradient descent method (for the
eucledian or L2 norm) and the coordinate-descent method (for the L1 norm). One fact
however is that no two norms should give exactly opposite steepest descent directions, though
they may point in different directions.
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Convergence of Descent Algorithm

Consider the general descent algorithm (∇Tf(xk)∆xk < 0 for each k) with each step:
xk+1 = xk + tk∆xk.

▶ Suppose f is bounded below in ℜn and
▶ is continuously differentiable in an open set N containing the level set {x|f(x) ≤ f(x0)}
▶ ∇f is Lipschiz continuous.

Then,
∞∑

k=1

(∇Tf(xk)∆xk)2

∥∆xk∥2 < ∞ (that is, it is finite)

Thus, limk→0
∇Tf(xk)∆xk

∥∆xk∥ = 0.
If we additionally assume that the descent direction is not orthogonal to the gradient, i.e.,
− ∇Tf(xk)∆xk

∥∆xk∥|∇f(xk)∥ ≥ Γ for some Γ > 0, then, we can show that limk→0 ∥∇f(xk)∥ = 0

Before we try and prove this result, let us discuss Lipschitz continuity (recall from
midsem).
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Lipschitz Continuity
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Recall: Lipschitz Continuity of f

Formally, f(x) : D ⊆ ℜn → ℜ is Lipschitz continuous if |f(x)− f(y)| ≤ L∥x − y∥ for all
x,y ∈ D.
A Lipschitz continuous function is limited in how fast it changes: there exists a definite
positive real number L > 0 such that, for every pair of points on the graph of the
function, the absolute value of the slope of the line connecting them is not greater than
this real number. This bound is called the function’s Lipschitz constant, L > 0.
We showed that if a function f : ℜ → ℜ is convex in (α,β) it is Lipschitz continuous in
[γ, δ] where α < γ < δ < β. We did not assume that f is differentiable.
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Lipschitz continuity

Intuitively, a Lipschitz continuous function is limited in how fast it changes: there exists a
definite real number L such that, for every pair of points on the graph of the gradient, the
absolute value of the slope of the line connecting them is not greater than this real
number

▶ This bound is called the function’s Lipschitz constant, L > 0
▶ The sum of two Lipschitz continuous functions is also Lipschitz continuous with the Lipschitz

constant specified as the sum of the respective Lipschitz constants.
▶ The product of two Lipschitz continuous and bounded functions is also Lipschitz continuous

Now, ∇f(x) is Lipschitz continuous if
∇f(x)−∇f(y)

 ≤ L∥x− y∥
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Interpretation of Lipschitz continuity of ∇f(x)
Consider ∇f(x) ∈ R, and ∇f(x) = df

dx = f ′(x)
|f ′(x)− f ′(y)| ≤ L|x− y|
=⇒ f ′(x)−f ′(y)

|x−y| ≤ L
=⇒

��� f ′(x+h)−f ′(x)
h

��� (putting y = x+ h)
Taking limit h → 0, we get
|f ′′(x)| ≤ L (assuming the limit exits)
f ′′ represents curvature
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Lipschitz Continuity of ∇f(x) and Hessian

Let f(x) have continuous partial derivatives and continuous mixed partial derivatives in an
open ball R containing a point x∗ where ∇f(x∗) = 0.
Let ∇2f(x) denote an n× n matrix of mixed partial derivatives of f evaluated at the point
x, such that the ijth entry of the matrix is fxixj . The matrix ∇2f(x) is called the Hessian
matrix.
The Hessian matrix is symmetric4.

4By Clairaut’s Theorem, if the partial and mixed derivatives of a function are continuous on an open region
containing a point x∗, then fxixj(x∗) = fxjxi(x∗), for all i, j ∈ [1, n].
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Let ∇2f(x) denote an n× n matrix of mixed partial derivatives of f evaluated at the point
x, such that the ijth entry of the matrix is fxixj . The matrix ∇2f(x) is called the Hessian
matrix.
The Hessian matrix is symmetric4.
For a Lipschitz continuous ∇f : Rn → Rn, we can show that for any vector v,

▶ v⊤∇2f(x)v ≤ v⊤Lv
=⇒ v⊤(∇2f(x)− LI)v ≤ 0

▶ That is, ∇2f(x)− LI is negative semi-definite
▶ This can be written as:

∇2f(x) ⪯ LI

4By Clairaut’s Theorem, if the partial and mixed derivatives of a function are continuous on an open region
containing a point x∗, then fxixj(x∗) = fxjxi(x∗), for all i, j ∈ [1, n].
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Example: f(x) = x3
3

f(x) = x3
3 =⇒ f ′(x) = x2

Claim: f ′(x) is locally Lipschitz continuous but not globally
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Example: f(x) = x3
3

f(x) = x3
3 =⇒ f ′(x) = x2

Claim: f ′(x) is locally Lipschitz continuous but not globally
Consider x ∈ R
supy∈(x−1,x+1) |f ′′(y)| = supy∈(x−1,x+1) |2y| ≤ 2|x|+ 1

Applying mean value theorem:
∃ (y, z) ∈ (x− 1, x+ 1)2,λ

f ′′(λ) = f ′(y)−f ′(z)
y−z
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|f ′(y)− f ′(z)| = |f ′′(λ)(y− z)|
≤

��2|x|+ 1
�� |y− x|, ∀(y, z) ∈ (x− 1, x+ 1)2

Thus, L =
��2|x|+ 1

��
Therefore,
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|f ′(y)− f ′(z)| = |f ′′(λ)(y− z)|
≤

��2|x|+ 1
�� |y− x|, ∀(y, z) ∈ (x− 1, x+ 1)2

Thus, L =
��2|x|+ 1

��
Therefore, f′ is Lipschitz continuous in (x− 1, x+ 1)

But as x → ∞, L → ∞
This implies that f′ may not be Lipschitz continuous everywhere
Consider y ̸= 0, and
f ′(y)−f ′(0)

|y−0| = |y|
|y| → ∞ as y → ∞
Thus, f′ is proved to not be Lipschitz continuous globally
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Another example

Consider

f(x) =




x2sin

(
1
x2
)

if x ̸= 0

0 if x = 0

We can verify that this function is continuous and differentiable everywhere
i.e. f ′′(0) = 0 from left and right
However, we can show that f(x) is not Lipschitz continuous
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Lipschitz continuity: another example

Consider: f ′(x) = |x|
Since |f ′(x)− f ′(y)| =

��|x|− |y|
�� ≤ |x− y|,

f is Lipschitz continuous with L = 1

However, it is not differentiable everywhere (not at 0)
In fact, if f is continuously differentiable everywhere, it is also Lipschitz continuous
For functions over a closed and bounded subset of the real line: f is continuous ⊇ f is
differentiable (almost everywhere) ⊇ f is Lipschitz continuous ⊇ f ′ is continuous ⊇ f ′ is
differentiable
Recap from midsem (generalized now to f : ℜn → ℜ) that f is Lipschitz continuous ⊇ f is
convex
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Considering gradients in Lipschitz continuity

If ∇f is Lipschitz continuous, then
∇f(x)−∇f(y)

 ≤ L∥x− y∥

Taylor’s theorem states that if f and its first n derivatives f ′, f ′′, . . . , f (n) are continuous
in the closed interval [a, b], and differentiable in (a, b), then there exists a number
c ∈ (a, b) such that

f(b) = f(a) + f ′(a)(b − a) +
1

2!
f ′′(a)(b − a)2 + . . . +

1

n!
f (n)

(a)(b − a)n
+

1

(n + 1)!
f (n+1)

(c)(b − a)n+1
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We will invoke Taylor’s theorem up to the second degree:

f(y) = f(x) + f ′(x)(y− x) + 1

2
f ′′(c)(y− x)2

where c ∈ (x, y) and x, y ∈ R
Let us generalize to f : Rn → R:

f(y) = f(x) +∇⊤f(x)(y − x) + 1

2
(y − x)T∇2f(c)(y − x)

where c = x + Γ(y − x), Γ ∈ (0, 1), and x,y ∈ Rn

If ∇f is Lipschitz continuous and f is doubly differentiable,

f(y) ≤ f(x) +∇⊤f(x)(y − x) + L
2
∥y − x∥2 (34)
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We will invoke Taylor’s theorem up to the second degree:

f(y) = f(x) + f ′(x)(y− x) + 1

2
f ′′(c)(y− x)2

where c ∈ (x, y) and x, y ∈ R
Let us generalize to f : Rn → R:

f(y) = f(x) +∇⊤f(x)(y − x) + 1

2
(y − x)T∇2f(c)(y − x)

where c = x + Γ(y − x), Γ ∈ (0, 1), and x,y ∈ Rn

If ∇f is Lipschitz continuous and f is doubly differentiable,

f(y) ≤ f(x) +∇⊤f(x)(y − x) + L
2
∥y − x∥2 (34)

While we showed (34) assuming f is doubly differentiable, (34) holds for any Lipschitz
continuous ∇f(x).
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Gradient Descent and Lipschitz Continuity

1 Replacing x by xk and y by the gradient descent update xk+1 = xk − t∇f(xk), and
applying condition for Lipschitz continuity:

f(xk+1) ≤ f(xk) +∇Tf(xk)(xk+1 − x) + L
2

xk+1 − xk

2

2 For a descent algorithm, ∇Tf(xk)∆xk = ∇Tf(xk)∆(xk+1 − xk) < 0 for each k
3 Putting together steps 1 and 2 above,

f(xk+1) ≤ f(xk) +
L
2

xk+1 − xk

2

(35)

March 19, 2018 128 / 188

by (34)



Convergence of Descent Algorithms: Generic and
Specific Cases
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Back to: Generic Convergence of Descent Algorithm
Consider the general descent algorithm (∇Tf(xk)∆xk < 0 for each k) with each step:
xk+1 = xk + tk∆xk.

▶ Suppose f is bounded below in ℜn and
▶ is continuously differentiable in an open set N containing the level set {x|f(x) ≤ f(x0)}
▶ ∇f is Lipschiz continuous.

Then,
∞∑

k=1

(∇Tf(xk)∆xk)2

∥∆xk∥2 < ∞ (that is, it is finite)

Proof:
For any descent algorithm: ∇Tf(xk)∆xk < 0 for each k with each step:
xk+1 = xk + tk∆xk.
From the second Strong Wolfe condition:

���∇Tf(xk + tk∆xk)∆xk
��� ≤ c2

���∇Tf(xk)∆xk
��� (36)
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Proving Convergence of Descent Algorithm
Since c2 > 0 and ∇Tf(xk)∆xk < 0,

∇Tf(xk + tk∆xk)∆xk ≥ c2∇Tf(xk)∆xk (37)

Subtracting ∇Tf(xk)∆xk from both sides of (37)

[
∇f(xk + tk∆xk)−∇f(xk)

]T
∆xk ≥ (c2 − 1)∇Tf(xk)∆xk (38)

By Cauchy Shwarz inequality and from Lipschitz continuity,

[
∇f(xk + tk∆xk)−∇f(xk)

]T
∆xk ≤ ∥∇f(xk + tk∆xk)−∇f(xk)∥∥∆xk∥ ≤ L∥∆xk∥2tk

(39)
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Proving Convergence of Descent Algorithm (contd.)
Combining (38) and (39),

tk ≥ c2 − 1

L
∇Tf(xk)∆xk

∥∆xk∥2 (40)

Substituting (40) into the first Wolfe condition f(xk + t∆xk) < f(xk) + c1t∇Tf(xk)∆xk

f(xk+1) ≤ f(xk)− c1
1− c2

L

(
∇Tf(xk)∆xk

)2

∥∆xk∥2 (41)

Substituting c = c1 1−c2
L and applying (41) recursively,

f(xk+1) ≤ f(x0)− c
k∑

i=0

(
∇Tf(xi)∆xi

)2

∥∆xi∥2 (42)
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Proving Convergence of Descent Algorithm (contd.)
Taking limits of (42) as k → ∞,

lim
k→∞

c
k∑

i=0

(
∇Tf(xi)∆xi

)2

∥∆xi∥2 ≤ lim
k→∞

f(x0)− f(xk+1)≤ ∞ (43)

where the last inequality is because the descent algorithm proceeds only if
f(xk+1) ≤ f(xk), and we have assumed that f is bounded below in ℜn. This proves
finiteness of the summation
Thus, lim

k→0

∇Tf(xk)∆xk

∥∆xk∥ = 0.
If we additionally assume that the descent direction is not orthogonal to the gradient, i.e.,
− ∇Tf(xk)∆xk

∥∆xk∥|∇f(xk)∥ ≥ Γ for some Γ > 0, then, we can show5 that lim
k→0

∥∇f(xk)∥ = 0

This shows convergence for a generic descent algorithm. What we are more interested in
however, is the rate of convergence of a descent algorithm.

5Making use of the Cauchy Schwarz inequality
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