Optimization Principles for Univariate Functions

Maximum and Minimum values of univariate

functions

Let $f: \mathcal{D} \rightarrow \Re$. Now f has

- An absolute maximum (or global maximum) value at point $c \in \mathcal{D}$ if

$$
f(x) \leq f(c), \forall x \in \mathcal{D}
$$

- An absolute minimum (or global minimum) value at $c \in \mathcal{D}$ if

$$
f(x) \geq f(c), \forall x \in \mathcal{D}
$$

- A local maximum value at c if there is an open interval \mathcal{I} containing c in which $f(c) \geq f(x), \forall x \in \mathcal{I}$
- A local minimum value at c if there is an open interval \mathcal{I} containing c in which $f(c) \leq f(x), \forall x \in \mathcal{I}$
- A local extreme value at c, if $f(c)$ is either a local maximum or local minimum value of f in an open interval \mathcal{I} with $c \in \mathcal{I}$

First Derivative Test

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim

If $f(c)$ is a local extreme value and if f is differentiable at $x=c$, then $f(c)=0$.

Proof: Suppose $f(c) \geq f(x)$ for all x in an open interval \mathcal{I} containing c and that $f(c)$ exists. Then the difference quotient $\frac{f(c+h)-f(c)}{h} \leq 0$ for small $h \geq 0$ (so that $c+h \in \mathcal{I}$). This inequality remains true as $h \rightarrow 0$ from the right. In the limit, $f(c) \leq 0$. Also, the difference quotient $\frac{f(c+h)-f(c)}{h} \geq 0$ for small $h \leq 0$ (so that $c+h \in \mathcal{I}$). This inequality remains true as $h \rightarrow 0$ from the left. In the limit, $f(c) \geq 0$. Since $f(c) \leq 0$ as well as $f(c) \geq 0$, we must have $f(c)=0^{1}$.

[^0]
The Extreme Value Theorem

A most fundamental theorems in calculus concerning continuous functions on closed intervals.

Claim

A continuous function $f(x)$ on a closed and bounded interval $[a, b]$ attains a minimum value $f(c)$ for some $c \in[a, b]$ and a maximum value $f(d)$ for some $d \in[a, b]$. That is, a continuous function on a closed, bounded interval attains a minimum and a maximum value.

The Extreme Value Theorem (contd.)

We must point out that either or both of the values c and d may be attained at the end points of the interval $[a, b]$. Based on theorem (3), the extreme value theorem can extended as:

Claim

A continuous function $f(x)$ on a closed and bounded interval $[a, b]$ attains a minimum value $f(c)$ for some $c \in[a, b]$ and a maximum value $f(d)$ for some $d \in[a, b]$. If $a<c<b$ and $f(c)$ exists, then $f(c)=0$. If $a<d<b$ and $f(d)$ exists, then $f(d)=0$.

Rolle's Theorem

Claim

If f is continuous on $[a, b]$ and differentiable at all $x \in(a, b)$ and if $f(a)=f(b)$, then $f(c)=0$ for some $c \in(a, b)$.

Figure 1 illustrates Rolle's theorem with an example function $f(x)=9-x^{2}$ on the interval $[-3,+3]$.

Mean Value Theorem

A generalization of the Rolle's theorem and proved using the Rolle's theorem:

Claim

If f is continuous on $[a, b]$ and differentiable at all $x \in(a, b)$, then there is some $c \in(a, b)$ such that, $f(c)=\frac{f(b)-f(a)}{b-a}$.

Proof: Define $g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$ on $[a, b]$. We note rightaway that $g(a)=g(b)$ and $g^{\prime}(x)=f(x)-\frac{f(b)-f(a)}{b-a}$. Applying Rolle's theorem on $g(x)$, we know that there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$. Which implies that $f(c)=\frac{f(b)-f(a)}{b-a}$.

Mean Value Theorem (contd.)

Figure 2 illustrates the mean value theorem for $f(x)=9-x^{2}$ on the interval $[-3,1]$. We observe that the tanget at $x=-1$ is parallel to the secant joining -3 to 1 . That is, $f(-1)=\frac{f(1)-f(-3)}{4}$ One could think of the mean value theorem as a slanted version of Rolle's theorem.

Corollary and Approximations

A natural corollary of Mean Value Theorem is as follows:

Corollary

Let f be continuous on $[a, b]$ and differentiable on (a, b) with $m \leq f(x) \leq M, \forall x \in(a, b)$. Then, $m(x-t) \leq f(x)-f(t) \leq M(x-t)$, if $a \leq t \leq x \leq b$.

Corollary and Approximations (contd.)

Let \mathcal{D} be the domain of function f. We define
(1) the linear approximation of a differentiable function $f(x)$ as $L_{a}(x)=f(a)+f(a)(x-a)$ for some $a \in \mathcal{D}$. We note that $L_{a}(x)$ and its first derivative at a agree with $f(a)$ and $f(a)$ respectively.
(2) the quadratic approximatin of a twice differentiable function $f(x)$ as the parabola $Q_{a}(x)=f(a)+f(a)(x-a)+\frac{1}{2} f^{\prime}(a)(x-a)^{2}$. We note that $Q_{a}(x)$ and its first and second derivatives at a agree with $f(a), f(a)$ and $f^{\prime}(a)$ respectively.
(3) the cubic approximation of a thrice differentiable function $f(x)$ is $C_{a}(x)=f(a)+f(a)(x-a)+\frac{1}{2} f^{\prime}(a)(x-a)^{2}+\frac{1}{6} f^{\prime \prime}(a)(x-a)^{3}$. $C_{a}(x)$ and its first, second and third derivatives at a agree with $f(a), f(a), f^{\prime}(a)$ and $f^{\prime \prime}(a)$ respectively.

Convexity and Concavity of Approximations

The parabola given by $Q_{a}(x)$ is strictly convex if $f^{\prime}(a)>0$ and is strictly concave if $f^{\prime}(a)<0$. The coefficient of x^{2} in $Q_{a}(x)$ is $\frac{1}{2} f^{\prime}(a)$. Figure 3 illustrates the linear, quadratic and cubic approximations to the function $f(x)=\frac{1}{x}$ with $a=1$.

Figure 3:

Taylor's Theorem and $n^{\text {th }}$ degree polynomial approximation

The $n^{\text {th }}$ degree polynomial approximation of a function is used to prove a generalization of the mean value theorem, called the Taylor's theorem.

Claim

The Taylor's theorem states that if f and its first n derivatives $f, f^{\prime}, \ldots, f^{(n)}$ are continuous on the closed interval $[a, b]$, and differentiable on (a, b), then there exists a number $c \in(a, b)$ such that

$$
f(b)=f(a)+f(a)(b-a)+\frac{1}{2!} f^{\prime}(a)(b-a)^{2}+\ldots+\frac{1}{n!} f^{(n)}(a)(b-a)^{n}+\frac{1}{(n+1)!}
$$

Proof:

Define
$p_{n}(x)=f(a)+f(a)(x-a)+\frac{1}{2!} f^{\prime}(a)(x-a)^{2}+\ldots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}$ and

$$
\phi_{n}(x)=p_{n}(x)+\Gamma(x-a)^{n+1}
$$

The polynomials $p_{n}(x)$ as well as $\phi_{n}(x)$ and their first n derivatives match f and its first n derivatives at $x=a$. We will choose a value of Γ so that

$$
f(b)=p_{n}(b)+\Gamma(b-a)^{n+1}
$$

This requires that $\Gamma=\frac{f(b)-p_{n}(b)}{(b-a)^{n+1}}$. Define the function $g(x)=f(x)-\phi_{n}(x)$ that measures the difference between function f and the approximating function $\phi_{n}(x)$ for each $x \in[a, b]$.

Mean Value, Taylor's Theorem and words of

caution

Note that if f fails to be differentiable at even one number in the interval, then the conclusion of the mean value theorem may be false. For example, if $f(x)=x^{2 / 3}$, then $f(x)=\frac{2}{3 \sqrt[3]{x}}$ and the theorem does not hold in the interval $[-3,3]$, since f is not differentiable at $s 0$ as can be seen in Figure 4.

Sufficient Conditions for Increasing and decreasing

 functionsA function f is said to be ...

- increasing on an interval \mathcal{I} in its domain \mathcal{D} if $f(t)<f(x)$ whenever $t<x$.
- decreasing on an interval $\mathcal{I} \in \mathcal{D}$ if $f(t)>f(x)$ whenever $t<x$. Consequently:

Claim

Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on int (\mathcal{I}). Then:
(1) if $f(x)>0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is increasing on \mathcal{I};
(2) if $f(x)<0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is decreasing on \mathcal{I};
(3) if $f(x)=0$ for all $x \in \operatorname{int}(\mathcal{I})$, iff, f is constant on \mathcal{I}.

Proof

Proof:

Let $t \in \mathcal{I}$ and $x \in \mathcal{I}$ with $t<x$. By virtue of the mean value theorem, $\exists c \in(t, x)$ such that $f(c)=\frac{f(x)-f(t)}{x-t}$.

- If $f(x)>0$ for all $x \in \operatorname{int}(\mathcal{I}), f(c)>0$, which implies that $f(x)-f(t)>0$ and we can conclude that f is increasing on \mathcal{I}.
- If $f(x)<0$ for all $x \in \operatorname{int}(\mathcal{I}), f(c)<0$, which implies that $f(x)-f(t)<0$ and we can conclude that f is decreasing on \mathcal{I}.
- If $f(x)=0$ for all $x \in \operatorname{int}(\mathcal{I}), f(c)=0$, which implies that $f(x)-f(t)=0$, and since x and t are arbitrary, we can conclude that f is constant on \mathcal{I}.

Illustration

Figure 5 illustrates the intervals in $(-\infty, \infty)$ on which the function $f(x)=3 x^{4}+4 x^{3}-36 x^{2}$ is decreasing and increasing. First we note that $f(x)$ is differentiable everywhere on $(-\infty, \infty)$ and compute $f(x)=12\left(x^{3}+x^{2}-6 x\right)=12(x-2)(x+3) x$, which is negative in the intervals $(-\infty,-3]$ and $[0,2]$ and positive in the intervals $[-3,0]$ and $[2, \infty)$. We observe that f is decreasing in the intervals $(-\infty,-3]$ and $[0,2]$ and while it is increasing in the intervals $[-3,0]$ and $[2, \infty)$.

Another sufficient condition for

increasing/decreasing function

A related sufficient condition for a function f to be increasing/decreasing on an interval \mathcal{I} :

Claim

Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on $\operatorname{int}(\mathcal{I})$. Then:
(1) if $f(x) \geq 0$ for all $x \in \operatorname{int}(\mathcal{I})$, and if $f(x)=0$ at only finitely many $x \in \mathcal{I}$, then f is increasing on \mathcal{I};
(2) if $f(x) \leq 0$ for all $x \in \operatorname{int}(\mathcal{I})$, and if $f(x)=0$ at only finitely many $x \in \mathcal{I}$, then f is decreasing on \mathcal{I}.

For example, the derivative of the function $f(x)=6 x^{5}-15 x^{4}+10 x^{3}$ vanishes at 0 , and 1 and $f(x)>0$ elsewhere. So $f(x)$ is increasing on $(-\infty, \infty)$.

Necessary conditions for increasing/decreasing

function

The conditions for increasing and decreasing properties of $f(x)$ in theorem 15 are not necesssary. Figure 6 shows that for the function $f(x)=x^{5}$, though $f(x)$ is increasing in $(-\infty, \infty), f(0)=0$.

Necessary conditions for increasing/decreasing

 function (contd.)We have a slightly different necessary condition..

Claim

Let \mathcal{I} be an interval, and suppose f is continuous on \mathcal{I} and differentiable in int (\mathcal{I}). Then:
(1) if f is increasing on \mathcal{I}, then $f(x) \geq 0$ for all $x \in \operatorname{int}(\mathcal{I})$;
(3) if f is decreasing on \mathcal{I}, then $f(x) \leq 0$ for all $x \in \operatorname{int}(\mathcal{I})$.

Proof: Suppose f is increasing on \mathcal{I}, and let $x \in \operatorname{int}(\mathcal{I})$. Them $\frac{f(x+h)-f(x)}{h}>0$ for all h such that $x+h \in \operatorname{int}(\mathcal{I})$. This implies that $f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \geq 0$. For the case when f is decreasing on \mathcal{I}, it can be similarly proved that $f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \leq 0$.

Critical Point

This concept will help us derive the general condition for local extrema.

Definition

[Critical Point]: A point c in the domain \mathcal{D} of f is called a critical point of f if either $f(c)=0$ or $f(c)$ does not exist.

The following general condition for local extrema extends the result in theorem 3 to general non-differentiable functions.

Claim
If $f(c)$ is a local extreme value, then c is a critical number of f.
The converse of theorem 21 does not hold (see Figure 6); 0 is a critical number $(f(0)=0)$, although $f(0)$ is not a local extreme value.

Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if $f(c)$ is a local extreme value:

Procedure

[Local Extreme Value]: Let c be an isolated critical point of f
(1) $f(c)$ is a local minimum if $f(x)$ is decreasing in an interval $\left[c-\epsilon_{1}, c\right]$ and increasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(2) $f(c)$ is a local maximum if $f(x)$ is increasing in an interval $\left[c-\epsilon_{1}, c\right]$ and decreasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.

Given a critical point c, first derivative test (sufficient condition) helps determine if $f(c)$ is a local extreme value:

Procedure

[First derivative test]: Let c be an isolated critical point of f
(1) $f(c)$ is a local minimum if the sign of $f(x)$ changes from negative in $\left[c-\epsilon_{1}, c\right]$ to positive in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(2) $f(c)$ is a local maximum if $f(x)$ the sign of $f(x)$ changes from positive in $\left[c-\epsilon_{1}, c\right]$ to negative in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(3) If $f(x)$ is positive in an interval $\left[c-\epsilon_{1}, c\right]$ and also positive in an interval $\left[c, c-\epsilon_{2}\right]$, or $f(x)$ is negative in an interval $\left[c-\epsilon_{1}, c\right]$ and also negative in an interval $\left[c, c-\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$, then $f(c)$ is not a local extremum.

First Derivative Test: Critical Point and Local

Extreme Value

As an example, the function $f(x)=3 x^{5}-5 x^{3}$ has the derivative $f(x)=15 x^{2}(x+1)(x-1)$. The critical points are 0,1 and -1 . Of the three, the sign of $f(x)$ changes at 1 and -1 , which are local minimum and maximum respectively. The sign does not change at 0 , which is therefore not a local supremum.

First Derivative Test: Critical Point and Local
 Extreme Value

As another example, consider the function

$$
f(x)=\left\{\begin{array}{cl}
-x & \text { if } x \leq 0 \\
1 & \text { if } x>0
\end{array}\right.
$$

Then,

$$
f(x)=\left\{\begin{array}{cl}
-1 & \text { if } x<0 \\
0 & \text { if } x>0
\end{array}\right.
$$

Note that $f(x)$ is discontinuous at $x=0$, and therefore $f(x)$ is not defined at $x=0$. All numbers $x \geq 0$ are critical numbers. $f(0)=0$ is a local minimum, whereas $f(x)=1$ is a local minimum as well as a local maximum $\forall x>0$.

Strict Convexity and Extremum

- A differentiable function f is said to be strictly convex (or strictly concave up) on an open interval \mathcal{I}, iff, $f(x)$ is increasing on \mathcal{I}.
- Recall from theorem 15 , the graphical interpretation of the first derivative $f(x) ; f(x)>0$ implies that $f(x)$ is increasing at x.
- Similarly, $f(x)$ is increasing when $f^{\prime}(x)>0$. This gives us a sufficient condition for the strict convexity of a function:

Claim

If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime}(x)>0, \forall x \in \mathcal{I}$, then the slope of the function is always increasing with x and the graph is strictly convex. This is illustrated in Figure 8.

- On the other hand, if the function is strictly convex and doubly differentiable in \mathcal{I}, then $f^{\prime}(x) \geq 0, \forall x \in \mathcal{I}$.

Strict Convexity and Extremum (Illustrated)

Figure 8:

Strict Convexity and Extremum: Slopeless interpretation (SI)

Claim
A function f is strictly convex on an open interval \mathcal{I}, iff

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{1}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.

SI: Necessity when f is differentiable

First we will prove the necessity. Suppose f is increasing on \mathcal{I}. Let $0<a<1, x_{1}, x_{2} \in \mathcal{I}$ and $x_{1} \neq x_{2}$. Without loss of generality assume that $x_{1}<x_{2}^{2}$. Then, $x_{1}<a x_{1}+(1-a) x_{2}<x_{2}$ and therefore $a x_{1}+(1-a) x_{2} \in \mathcal{I}$. By the mean value theorem, there exist s and t with $x_{1}<s<a x_{1}+(1-a) x_{2}<t<x_{2}$, such that
$f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)=f(s)\left(x_{2}-x_{1}\right)(1-a)$ and
$f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)=f(t)\left(x_{2}-x_{1}\right) a$. Therefore,

$$
\begin{array}{r}
(1-a) f\left(x_{1}\right)-f\left(a x_{1}+(1-a) x_{2}\right)+a f\left(x_{2}\right) \\
=\quad \\
a\left[f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)\right]-(1-a)\left[f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)\right] \\
a(1-a)\left(x_{2}-x_{1}\right)\left[f^{\prime}(t)-f^{\prime}(s)\right]
\end{array}
$$

Since $f(x)$ is strictly convex on $\mathcal{I}, f(x)$ is increasing \mathcal{I} and therefore, $f(t)-f(s)>0$. Moreover, $x_{2}-x_{1}>0$ and $0<a<1$. This implies that $(1-a) f\left(x_{1}\right)-f\left(a x_{1}+(1-a) x_{2}\right)+a f\left(x_{2}\right)>0$, or equivalently, $f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right)$, which is what we wanted to prove in 1.
${ }^{2}$ For the case $x_{2}<x_{1}$, the proof is very similar.

SI: Sufficiency when f is differentiable

 Suppose the inequality in 1 holds. Therefore, $\lim _{a \rightarrow 0} \frac{f\left(x_{2}+a\left(x_{1}-x_{2}\right)\right)-f\left(x_{2}\right)}{a} \leq f\left(x_{1}\right)-f\left(x_{2}\right)$. That is,$$
\begin{equation*}
f\left(x_{2}\right)\left(x_{1}-x_{2}\right) \leq f\left(x_{1}\right)-f\left(x_{2}\right) \tag{2}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{3}
\end{equation*}
$$

Adding the left and right hand sides of inequalities in (2) and (3), and multiplying the resultant inequality by -1 gives us

$$
\begin{equation*}
\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right) \geq 0 \tag{4}
\end{equation*}
$$

SI: Sufficiency when f is differentiable (contd) Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such that

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f(z)\left(x_{2}-x_{1}\right) \tag{5}
\end{equation*}
$$

Since 4 holds for any $x_{1}, x_{2} \in \mathcal{I}$, it also hold for $x_{2}=z$. Therefore,

$$
\left(f(z)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)=\frac{1}{t}\left(f(z)-f\left(x_{1}\right)\right)\left(z-x_{1}\right) \geq 0
$$

Additionally using 5 , we get

$$
f\left(x_{2}\right)-f\left(x_{1}\right)=\left(f(z)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)+f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \geq f\left(x_{1}\right)\left(x_{2}-x_{1}\right)
$$

SI: Sufficiency when f is differentiable (contd) Suppose equality holds in 4 for some $x_{1} \neq x_{2}$. Then equality holds in 6 for the same x_{1} and x_{2}. That is, $f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(x_{1}\right)\left(x_{2}-x_{1}\right)$. Applying 6 we can conclude that

$$
\begin{equation*}
f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right) \tag{7}
\end{equation*}
$$

From 1 and ??, we can derive that

$$
\begin{equation*}
f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right)<(1-a) f\left(x_{1}\right)+a f\left(x_{2}\right)=f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{8}
\end{equation*}
$$

However, equations 7 and 8 contradict each other. Therefore, equality in 4 cannot hold for any $x_{1} \neq x_{2}$, implying that

$$
\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)>0
$$

that is, $f(x)$ is increasing and therefore f is convex on \mathcal{I}.

Strict Concavity

- A differentiable function f is said to be strictly concave on an open interval \mathcal{I}, iff, $f(x)$ is decreasing on \mathcal{I}.
- Recall from theorem 15, the graphical interpretation of the first derivative $f(x) ; f(x)<0$ implies that $f(x)$ is decreasing at x.
- Similarly, $f(x)$ is monotonically decreasing when $f^{\prime}(x)>0$. This gives us a sufficient condition for the concavity of a function:

Claim

If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime}(x)<0, \forall x \in \mathcal{I}$, then the slope of the function is always decreasing with x and the graph is strictly concave.

Strict Concavity

On the other hand, if the function is strictly concave and doubly differentiable in \mathcal{I}, then $f^{\prime}(x) \leq 0, \forall x \in \mathcal{I}$. This is illustrated in Figure 9.

Figure 9:

Strict Concavity (slopeless interpretation)

There is also a slopeless interpretation of concavity as stated in the following theorem:

Claim

A differentiable function f is strictly concave on an open interval \mathcal{I}, iff

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right)>a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{9}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.
The proof is similar to that for theorem 28.

Convex \& Concave Regions and Inflection Point

 Figure 10 illustrates a function $f(x)=x^{3}-x+2$, whose slope decreases as x increases to $0\left(f^{\prime}(x)<0\right)$ and then the slope increases beyond $x=0\left(f^{\prime}(x)>0\right)$. The point 0 , where the $f^{\prime}(x)$ changes sign is called the inflection point; the graph is strictly concave for $x<0$ and strictly convex for $x>0$.

Convex \& Concave Regions and Inflection Point

Along similar lines, we can diagnose the function $f(x)=\frac{1}{20} x^{5}-\frac{7}{12} x^{4}+\frac{7}{6} x^{3}-\frac{15}{2} x^{2}$
It is strictly concave on $(-\infty,-1]$ and $[3,5]$ and strictly convex on $[-1,3]$ and $[5, \infty]$.
The inflection points for this function are at $x=-1, x=3$ and $x=5$.

First Derivative Test: Restated using Strict Convexity

The first derivative test for local extrema can be restated in terms of strict convexity and concavity of functions.

Procedure

[First derivative test in terms of strict convexity]: Let c be a critical number of f and $f(c)=0$. Then,
(1) $f(c)$ is a local minimum if the graph of $f(x)$ is strictly convex on an open interval containing c.
(2) $f(c)$ is a local maximum if the graph of $f(x)$ is strictly concave on an open interval containing c.

Strict Convexity: Restated using Second Derivative

If the second derivative $f^{\prime}(c)$ exists, then the strict convexity conditions for the critical number can be stated in terms of the sign of of $f^{\prime \prime}(c)$, making use of theorems 26 and 33 . This is called the second derivative test.

Procedure

[Second derivative test]: Let c be a critical number of f where $f(c)=0$ and $f^{\prime}(c)$ exists.
(1) If $f^{\prime}(c)>0$ then $f(c)$ is a local minimum.
(2) If $f^{\prime}(c)<0$ then $f(c)$ is a local maximum.
(1) If $f^{\prime}(c)=0$ then $f(c)$ could be a local maximum, a local minimum, neither or both. That is, the test fails.

Convexity, Minima and Maxima: Illustrations

- If $f(x)=x^{4}$, then $f(0)=0$ and $f^{\prime}(0)=0$ and we can see that $f(0)$ is a local minimum.
- If $f(x)=-x^{4}$, then $f(0)=0$ and $f^{\prime}(0)=0$ and we can see that $f(0)$ is a local maximum.
- If $f(x)=x^{3}$, then $f(0)=0$ and $f^{\prime}(0)=0$ and we can see that $f(0)$ is neither a local minimum nor a local maximum. $(0,0)$ is an inflection point in this case.

Convexity, Minima and Maxima: Illustrations (contd.)

- If $f(x)=x+2 \sin x$, then $f(x)=1+2 \cos x . f(x)=0$ for $x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$, which are the critical numbers.
$f^{\prime}\left(\frac{2 \pi}{3}\right)=-2 \sin \frac{2 \pi}{3}=-\sqrt{3}<0 \Rightarrow f\left(\frac{2 \pi}{3}\right)=\frac{2 \pi}{3}+\sqrt{3}$ is a local maximum value. On the other hand, $f^{\prime}\left(\frac{4 \pi}{3}\right)=\sqrt{3}>0 \Rightarrow$ $f\left(\frac{4 \pi}{3}\right)=\frac{4 \pi}{3}-\sqrt{3}$ is a local minimum value.
- If $f(x)=x+\frac{1}{x}$, then $f(x)=1-\frac{1}{x^{2}}$. The critical numbers are $x= \pm 1$. Note that $x=0$ is not a critical number, even though $f(0)$ does not exist, because 0 is not in the domain of f. $f^{\prime}(x)=\frac{2}{x^{3}} . f^{\prime}(-1)=-2<0$ and therefore $f(-1)=-2$ is a local maximum. $f^{\prime}(1)=2>0$ and therefore $f(1)=2$ is a local minimum.

Global Extrema on Closed Intervals

Recall the extreme value theorem (theorem 4). An outcome of the extreme value theorem is that

- if either of c or d lies in (a, b), then it is a critical number of f;
- else each of c and d must lie on one of the boundaries of $[a, b]$. This gives us a procedure for finding the maximum and minimum of a continuous function f on a closed bounded interval \mathcal{I} :

Procedure

[Finding extreme values on closed, bounded intervals]:

(1) Find the critical points in int($\mathcal{I})$.
(2) Compute the values of f at the critical points and at the endpoints of the interval.

- Select the least and greatest of the computed values.

Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of $f(x)=4 x^{3}-8 x^{2}+5 x$ on the interval $[0,1]$, we first compute $f(x)=12 x^{2}-16 x+5$ which is 0 at $x=\frac{1}{2}, \frac{5}{6}$.
Values at the critical points are $f\left(\frac{1}{2}\right)=1, f\left(\frac{5}{6}\right)=\frac{25}{27}$.
The values at the end points are $f(0)=0$ and $f(1)=1$.
Therefore, the minimum value is $f(0)=0$ and the maximum value is $f(1)=f\left(\frac{1}{2}\right)=1$.
In this context, it is relevant to discuss the one-sided derivatives of a function at the endpoints of the closed interval on which it is defined.

Global Extrema on Closed Intervals (contd)

Definition

[One-sided derivatives at endpoints]: Let f be defined on a closed bounded interval $[a, b]$. The (right-sided) derivative of f at $x=a$ is defined as

$$
f^{\prime}(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}
$$

Similarly, the (left-sided) derivative of f at $x=b$ is defined as

$$
f(b)=\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h}
$$

Essentially, each of the one-sided derivatives defines one-sided slopes at the endpoints.

Global Extrema on Closed Intervals (contd)

 Based on these definitions, the following result can be derived.
Claim

If f is continuous on $[a, b]$ and $f(a)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at a.

- If $f(a)$ is the maximum value of f on $[a, b]$, then $f(a) \leq 0$ or $f(a)=-\infty$.
- If $f(a)$ is the minimum value of f on $[a, b]$, then $f(a) \geq 0$ or $f(a)=\infty$.
If f is continuous on $[a, b]$ and $f(b)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at b.
- If $f(b)$ is the maximum value of f on $[a, b]$, then $f(b) \geq 0$ or $f(b)=\infty$.
- If $f(b)$ is the minimum value of f on $[a, b]$, then $f(b) \leq 0$ or $f(b)=-\infty$.

Global Extrema on Closed Intervals (contd)

The following theorem gives a useful procedure for finding extrema on closed intervals.

Claim

If f is continuous on $[a, b]$ and $f^{\prime}(x)$ exists for all $x \in(a, b)$. Then,

- If $f^{\prime}(x) \leq 0, \forall x \in(a, b)$, then the minimum value of f on $[a, b]$ is either $f(a)$ or $f(b)$. If, in addition, f has a critical number $c \in(a, b)$, then $f(c)$ is the maximum value of f on $[a, b]$.
- If $f^{\prime}(x) \geq 0, \forall x \in(a, b)$, then the maximum value of f on $[a, b]$ is either $f(a)$ or $f(b)$. If, in addition, f has a critical number $c \in(a, b)$, then $f(c)$ is the minimum value of f on $[a, b]$.

Global Extrema on Open Intervals

The next theorem is very useful for finding global extrema values on open intervals.

Claim

Let \mathcal{I} be an open interval and let $f^{\prime}(x)$ exist $\forall x \in \mathcal{I}$.

- If $f^{\prime}(x) \geq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f(c)=0$, then $f(c)$ is the global minimum value of f on \mathcal{I}.
- If $f^{\prime}(x) \leq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f(c)=0$, then $f(c)$ is the global maximum value of f on \mathcal{I}.

For example, let $f(x)=\frac{2}{3} x-\sec x$ and $\mathcal{I}=\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
$f(x)=\frac{2}{3}-\sec x \tan x=\frac{2}{3}-\frac{\sin x}{\cos ^{2} x}=0 \Rightarrow x=\frac{\pi}{6}$. Further, $f^{\prime}(x)=-\sec x\left(\tan ^{2} x+\sec ^{2} x\right)<0$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Therefore, f attains the maximum value $f\left(\frac{\pi}{6}\right)=\frac{\pi}{9}-\frac{2}{\sqrt{3}}$ on \mathcal{I}.

Global Extrema on Open Intervals (contd)

As another example, let us find the dimensions of the cone with minimum volume that can contain a sphere with radius R. Let h be the height of the cone and r the radius of its base. The objective to be minimized is the volume $f(r, h)=\frac{1}{3} \pi r^{2} h$. The constraint betwen r and h is shown in Figure 11. The traingle AEF is similar to traingle $A D B$ and therefore, $\frac{h-R}{R}=\frac{\sqrt{h^{2}+r^{2}}}{r}$.

Global Extrema on Open Intervals (contd)

Our first step is to reduce the volume formula to involve only one of r^{23} or h.
The algebra involved will be the simplest if we solved for h.
The constraint gives us $r^{2}=\frac{R^{2} h}{h-2 R}$. Substituting this expression for r^{2} into the volume formula, we get $g(h)=\frac{\pi R^{2}}{3} \frac{h^{2}}{(h-2 R)}$ with the domain given by $\mathcal{D}=\{h \mid 2 R<h<\infty\}$.
Note that \mathcal{D} is an open interval.
$g^{\prime}=\frac{\pi R^{2}}{3} \frac{2 h(h-2 R)-h^{2}}{(h-2 R)^{2}}=\frac{\pi R^{2}}{3} \frac{h(h-4 R)}{(h-2 R)^{2}}$ which is 0 in its domain \mathcal{D} if and only if $h=4 R$.
$g^{\prime \prime}=\frac{\pi R^{2}}{3} \frac{2(h-2 R)^{3}-2 h(h-4 R)(h-2 R)^{2}}{(h-2 R)^{4}}=\frac{\pi R^{2}}{3} \frac{2\left(h^{2}-4 R h+4 R^{2}-h^{2}+4 R h\right)}{(h-2 R)^{3}}=$ $\frac{\pi R^{2}}{3} \frac{8 R^{2}}{(h-2 R)^{3}}$, which is greater than 0 in \mathcal{D}.
Therefore, g (and consequently f) has a unique minimum at $h=4 R$ and correspondingly, $r^{2}=\frac{R^{2} h}{h-2 R}=2 R^{2}$.
${ }^{3}$ Since r appears in the volume formula only in terms of ε^{2}.

References

- Online Gradient Descent: Efficient Algorithm for Regret Minimization - Zinkevich 2005
- Yu-Hong Dai, Roger Fletcher. New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. http://link.springer.com/content/pdf/10. 1007\%2Fs10107-005-0595-2.pdf
- Kalai-Vempala 2005
- Regret bound for Adagrad: Duchi, Hazan, Singer 2010

[^0]: ${ }^{1}$ By virtue of the squeeze or sandwich theorem

