

Maximum and Minimum values of univariatefunctionsLet $f: \mathcal{D} \to \Re$. Now f hasD = union y several open/closedIntervals $\subseteq R$

• An *absolute maximum* (or global maximum) value at point $c \in \mathcal{D}$ if

$$f(x) \leq f(c), \ \forall x \in \mathcal{D}$$

• An *absolute minimum* (or global minimum) value at $c \in \mathcal{D}$ if

$$f(x) \ge f(c), \ \forall x \in \mathcal{D}$$

- A local maximum value at c if there is an open interval \mathcal{I} containing c in which $f(c) \ge f(x), \forall x \in \mathcal{I}$
- A local minimum value at c if there is an open interval I containing c in which f(c) ≤ f(x), ∀x ∈ I
- A local extreme value at c, if f(c) is either a local maximum or local minimum value of f in an open interval I with c∈I

First Derivative Test

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim

If f(c) is a local extreme value and if f is differentiable at x = c, then wlog Let this refer to min f(c) = 0.Let P<C & g>C st P.9 EI() Proof. $f(c) \leq 0 \underset{p \to c}{\longleftarrow} f(p) \geq f(c) \Rightarrow f(p) \cdot f(c) \leq 0$ ¹By virtue of the *squeeze* or *sandwich theorem* January 8, 2018 3 / 51

First Derivative Test

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim

If f(c) is a local extreme value and if f is differentiable at x = c, then f'(c) = 0.

Proof: Suppose $f(c) \ge f(x)$ for all x in an open interval \mathcal{I} containing c and that f'(c) exists. Then the difference quotient $\frac{f(c+h)-f(c)}{h} \le 0$ for small $h \ge 0$ (so that $c+h \in \mathcal{I}$). This inequality remains true as $h \to 0$ from the right. In the limit, $f'(c) \le 0$.

¹By virtue of the squeeze or sandwich theorem $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$

First Derivative Test

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim

If f(c) is a local extreme value and if f is differentiable at x = c, then f'(c) = 0.

Proof: Suppose $f(c) \ge f(x)$ for all x in an open interval \mathcal{I} containing c and that f'(c) exists. Then the difference quotient $\frac{f(c+h)-f(c)}{h} \le 0$ for small $h \ge 0$ (so that $c+h \in \mathcal{I}$). This inequality remains true as $h \to 0$ from the right. In the limit, $f'(c) \le 0$. Also, the difference quotient $\frac{f(c+h)-f(c)}{h} \ge 0$ for small $h \le 0$ (so that $c+h \in \mathcal{I}$). This inequality remains true as $h \to 0$ from the left. In the limit, $f'(c) \ge 0$. Since $f'(c) \le 0$ as well as $f'(c) \ge 0$, we must have $f'(c) = 0^1$.

¹By virtue of the squeeze or sandwich theorem $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle z \rangle \langle z \rangle$

The Extreme Value Theorem Sketch: Let [a,b] = union of finile closed intervals, on each of which f is monotone A most fundamental theorems in calculus concerning continuous

functions on closed intervals.

Claim

A continuous function f(x) on a closed and bounded interval [a, b] attains a minimum value f(c) for some $c \in [a, b]$ and a maximum value f(d) for some $d \in [a, b]$. That is, a continuous function on a closed, bounded interval attains a minimum and a maximum value.

$$x \sin(\frac{1}{x})$$
 on $[0,1]$
0 if $x=0$

The Extreme Value Theorem (contd.)

We must point out that either or both of the values c and d may be attained at the end points of the interval [a, b]. Based on theorem (1), the extreme value theorem can extended as:

Claim

A continuous function f(x) on a closed and bounded interval [a, b] attains a minimum value f(c) for some $c \in [a, b]$ and a maximum value f(d) for some $d \in [a, b]$. If a < c < b and f'(c) exists, then f'(c) = 0. If a < d < b and f(d) exists, then f'(d) = 0.

Proof sketch: In 4 parts. In \Re^n , one additionally needs compactness of the set in order to get this result.

500

소 曰 돈 소 曰 돈 소 글 돈 소 말

Rolle's Theorem \bigcirc Extreme value thm (evt)Claim \bigcirc If f(x) = f(a) = f(b) = K = If' = 0

If f is continuous on [a, b] and differentiable at all $x \in (a, b)$ and if f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.

This result can be easily proved using the Extreme value theorem. Figure 1 illustrates Rolle's theorem with an example function $f(x) = 9 - x^2$ on the interval [-3, +3].

Mean Value Theorem

A generalization of the Rolle's theorem and proved using the Rolle's theorem:

Claim

If f is continuous on [a, b] and differentiable at all $x \in (a, b)$, then there is some $c \in (a, b)$ such that, $f'(c) = \frac{f(b) - f(a)}{b-a}$. g(a) = g(b) = f(a)January 8, 2018 7 / 51

Mean Value Theorem

A generalization of the Rolle's theorem and proved using the Rolle's theorem:

Claim

If f is continuous on [a, b] and differentiable at all $x \in (a, b)$, then there is some $c \in (a, b)$ such that, $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Proof: Define $g(x) = f(x) - \frac{f(b)-f(a)}{b-a}(x-a)$ on [a, b]. We note rightaway that g(a) = g(b) and $g'(x) = f'(x) - \frac{f(b)-f(a)}{b-a}$. Applying Rolle's theorem on g(x), we know that there exists $c \in (a, b)$ such that g'(c) = 0. Which implies that $f(c) = \frac{f(b)-f(a)}{b-a}$.

500

人口 医水槽 医水体 医下颌的

Mean Value Theorem (contd.)

Figure 2 illustrates the mean value theorem for $f(x) = 9 - x^2$ on the interval [-3, 1]. We observe that the tanget at x = -1 is parallel to the secant joining -3 to 1. That is, $f(-1) = \frac{f(1) - f(-3)}{4}$ One could think of the *mean value theorem* as a slanted version of Rolle's theorem.

ຈາຊດ

Corollary and Approximations

A natural corollary of Mean Value Theorem is as follows:

Corollary

Let f be continuous on [a, b] and differentiable on (a, b) with $m \leq f(x) \leq M$, $\forall x \in (a, b)$. Then, $m(x-t) \leq f(x) - f(t) \leq M(x-t)$, if $a \leq t \leq x \leq b$.

Corollary and Approximations (contd.)

Let \mathcal{D} be the domain of function f. We define

- It the linear approximation of a differentiable function f(x) as L_a(x) = f(a) + f'(a)(x − a) for some a ∈ D. We note that L_a(x) and its first derivative at a agree with f(a) and f'(a) respectively.
- the quadratic approximatin of a twice differentiable function f(x) as the parabola Q_a(x) = f(a) + f'(a)(x a) + ¹/₂f'(a)(x a)². We note that Q_a(x) and its first and second derivatives at a agree with f(a), f'(a) and f''(a) respectively.
- the cubic approximation of a thrice differentiable function f(x) is $C_a(x) = f(a) + f'(a)(x-a) + \frac{1}{2}f'(a)(x-a)^2 + \frac{1}{6}f''(a)(x-a)^3$. $C_a(x)$ and its first, second and third derivatives at a agree with f(a), f'(a), f'(a) and f''(a) respectively.

ຈາຊາ

이미가 이랍게 이 돈이 이 돈이

Convexity and Concavity of Approximations

The parabola given by $Q_a(x)$ is strictly convex if f'(a) > 0 and is strictly concave if f'(a) < 0. The coefficient of x^2 in $Q_a(x)$ is $\frac{1}{2}f'(a)$. Figure 3 illustrates the linear, quadratic and cubic approximations to the function $f(x) = \frac{1}{x}$ with a = 1.

Figure 3:

< 🗆 > < 🖪 > .

January 8, 2018

500

11 / 51

Taylor's Theorem and n^{th} degree polynomial approximation

The n^{th} degree polynomial approximation of a function is used to prove a generalization of the mean value theorem, called the Taylor's theorem

Claim

The Taylor's theorem states that if f and its first n derivatives $f, f', \ldots, f^{(n)}$ are continuous on the closed interval [a, b], and differentiable on (a, b), then there exists a number $c \in (a, b)$ such that

$$f(b) = f(a) + f'(a)(b-a) + \frac{1}{2!}f'(a)(b-a)^2 + \ldots + \frac{1}{n!}f^{(n)}(a)(b-a)^n + \frac{1}{(n+1)!}f^{(n+1)}(c)(b-a)^{n+1}$$

38

500

A D F A B F A B F

Proof:

Define

$$p_n(x) = f(a) + f'(a)(x-a) + \frac{1}{2!}f''(a)(x-a)^2 + \ldots + \frac{1}{n!}f^{(n)}(a)(x-a)^n$$

and

$$\phi_n(\mathbf{x}) = \mathbf{p}_n(\mathbf{x}) + \Gamma(\mathbf{x} - \mathbf{a})^{n+1}$$

The polynomials $p_n(x)$ as well as $\phi_n(x)$ and their first *n* derivatives match *f* and its first *n* derivatives at x = a. We will choose a value of Γ so that

$$f(b) = p_n(b) + \Gamma(b-a)^{n+1}$$

200

13 / 51

January 8, 2018

This requires that $\Gamma = \frac{f(b) - p_n(b)}{(b-a)^{n+1}}$.

Taylor's Theorem and *n*th degree polynomial approximation

Define the function $g(x) = f(x) - \phi_n(x)$ that measures the difference between function f and the approximating function $\phi_n(x)$ for each $x \in [a, b]$.

- Since g(a) = g(b) = 0 and since g and g' are both continuous on [a, b], we can apply the Rolle's theorem to conclude that there exists c₁ ∈ [a, b] such that g'(c₁) = 0.
- Similarly, since g'(a) = g'(c₁) = 0, and since g' and g'' are continuous on [a, c₁], we can apply the Rolle's theorem to conclude that there exists c₂ ∈ [a, c₁] such that g''(c₂) = 0.
- In this way, Rolle's theorem can be applied successively to $g'', g''', \ldots, g^{(n+1)}$ to imply the existence of $c_i \in (a, c_{i-1})$ such that $g^{(i)}(c_i) = 0$ for $i = 3, 4, \ldots, n+1$. Note however that $g^{(n+1)}(x) = f^{(n+1)}(x) 0 (n+1)!\Gamma$ which gives us another representation 'of Γ as $\frac{f^{(n+1)}(c_{n+1})!}{(n+1)!}$.

Mean Value, Taylor's Theorem and words of caution

Note that if *f* fails to be differentiable at even one number in the interval, then the conclusion of the mean value theorem may be false. For example, if $f(x) = x^{2/3}$, then $f'(x) = \frac{2}{3\sqrt[3]{x}}$ and the theorem does not hold in the interval [-3,3], since *f* is not differentiable at s0 as can be seen in Figure 4.

15 / 51

Sufficient Conditions for Increasing and decreasing functions

- A function f is said to be ...
 - *increasing* on an interval \mathcal{I} in its domain \mathcal{D} if f(t) < f(x) whenever t < x.
- decreasing on an interval $\mathcal{I} \in \mathcal{D}$ if f(t) > f(x) whenever t < x. Consequently:

Claim

Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on $int(\mathcal{I})$. Then:

- if f(x) > 0 for all $x \in int(\mathcal{I})$, then f is increasing on \mathcal{I} ;
- 3 if f(x) < 0 for all $x \in int(\mathcal{I})$, then f is decreasing on \mathcal{I} ;
- if f(x) = 0 for all $x \in int(\mathcal{I})$, iff, f is constant on \mathcal{I} .

< 🗆 🕨

< 🔳 🕨

Proof

Proof:

Let $t \in \mathcal{I}$ and $x \in \mathcal{I}$ with t < x. By virtue of the mean value theorem, $\exists c \in (t, x)$ such that $f'(c) = \frac{f(x) - f(t)}{x - t}$.

- If f(x) > 0 for all $x \in int(\mathcal{I})$, f(c) > 0, which implies that f(x) f(t) > 0 and we can conclude that f is increasing on \mathcal{I} .
- If f'(x) < 0 for all $x \in int(\mathcal{I})$, f'(c) < 0, which implies that f(x) f(t) < 0 and we can conclude that f is decreasing on \mathcal{I} .
- If f'(x) = 0 for all x ∈ int(I), f'(c) = 0, which implies that f(x) - f(t) = 0, and since x and t are arbitrary, we can conclude that f is constant on I.

Illustration

Figure 5 illustrates the intervals in $(-\infty, \infty)$ on which the function $f(x) = 3x^4 + 4x^3 - 36x^2$ is decreasing and increasing. First we note that f(x) is differentiable everywhere on $(-\infty, \infty)$ and compute $f'(x) = 12(x^3 + x^2 - 6x) = 12(x - 2)(x + 3)x$, which is negative in the intervals $(-\infty, -3]$ and [0, 2] and positive in the intervals [-3, 0] and $[2, \infty)$. We observe that f is decreasing in the intervals $(-\infty, -3]$ and [0, 2] and while it is increasing in the intervals [-3, 0] and $[2, \infty)$.

18 / 51

Another sufficient condition for increasing/decreasing function

A related sufficient condition for a function f to be increasing/decreasing on an interval \mathcal{I} :

Claim

Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on $int(\mathcal{I})$. Then:

- if $f(x) \ge 0$ for all $x \in int(\mathcal{I})$, and if f(x) = 0 at only finitely many $x \in \mathcal{I}$, then f is increasing on \mathcal{I} ;
- ② if f(x) ≤ 0 for all $x ∈ int(\mathcal{I})$, and if f(x) = 0 at only finitely many $x ∈ \mathcal{I}$, then f is decreasing on \mathcal{I} .

For example, the derivative of the function $f(x) = 6x^5 - 15x^4 + 10x^3$ vanishes at 0, and 1 and f(x) > 0 elsewhere. So f(x) is increasing on $(-\infty, \infty)$.

Necessary conditions for increasing/decreasing function

The conditions for increasing and decreasing properties of f(x) in theorem 7 are not necessary. Figure 6 shows that for the function $f(x) = x^5$, though f(x) is increasing in $(-\infty, \infty)$, f'(0) = 0.

Figure 6:

Necessary conditions for increasing/decreasing function (contd.)

We have a slightly different necessary condition..

Claim

Let \mathcal{I} be an interval, and suppose f is continuous on \mathcal{I} and differentiable in $int(\mathcal{I})$. Then:

- if f is increasing on \mathcal{I} , then $f(x) \ge 0$ for all $x \in int(\mathcal{I})$;
- **2** if f is decreasing on \mathcal{I} , then $f(x) \leq 0$ for all $x \in int(\mathcal{I})$.

Proof:

$$f(y) > f(x) \quad \forall y > x$$

=) $f(y) - f(x) = 0$
 $y - x = 0$
Then $y \to x$

• •

Necessary conditions for increasing/decreasing function (contd.)

We have a slightly different necessary condition..

Claim

Let \mathcal{I} be an interval, and suppose f is continuous on \mathcal{I} and differentiable in $int(\mathcal{I})$. Then:

- if f is increasing on \mathcal{I} , then $f(x) \ge 0$ for all $x \in int(\mathcal{I})$;
- **2** if f is decreasing on \mathcal{I} , then $f(x) \leq 0$ for all $x \in int(\mathcal{I})$.

Proof: Suppose *f* is increasing on \mathcal{I} , and let $x \in int(\mathcal{I})$. Then $\frac{f(x+h)-f(x)}{h} > 0$ for all *h* such that $x + h \in int(\mathcal{I})$. This implies that $f(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \ge 0$. For the case when *f* is decreasing on \mathcal{I} , it can be similarly proved that $f(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} \le 0$.

Critical Point

This concept will help us derive the general condition for local extrema.

Definition

[Critical Point]: A point c in the domain \mathcal{D} of f is called a critical point of f if either f(c) = 0 or f(c) does not exist.

The following general condition for local extrema extends the result in theorem 1 to general non-differentiable functions.

Claim

If f(c) is a local extreme value, then c is a critical number of f.

The converse of theorem 10 does not hold (see Figure 6); 0 is a critical number (f(0) = 0), although f(0) is not a local extreme value.

500

Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if f(c) is a local extreme value:

Given a critical point *c*, *first derivative test* (sufficient condition) helps determine if f(c) is a local extreme value:

Procedure

[First derivative test]: Let c be an isolated critical point of f

- f(c) is a local minimum if the sign of f(x) changes from negative in $[c - \epsilon_1, c]$ to positive in $[c, c + \epsilon_2]$ with $\epsilon_1, \epsilon_2 > 0$.
- 2 f(c) is a local maximum if f(x) the sign of f'(x)changes from positive in $[c - \epsilon_1, c]$ to negative in $[c, c + \epsilon_2]$ with $\epsilon_1, \epsilon_2 > 0$.
- 3 If f(x) is positive in an interval $[c \epsilon_1, c]$ and also positive in an interval $[c, c - \epsilon_2]$, or f(x) is negative in an interval $[c - \epsilon_1, c]$ and also negative in an interval $[c, c - \epsilon_2]$ with $\epsilon_1, \epsilon_2 > 0$, then f(c) is not a local extremum.

500

くロト 人間 とく ほとく 知ら