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Maximum and Minimum values of univariate
functions
Let f : D → ℜ. Now f has

An absolute maximum (or global maximum) value at point
c ∈ D if

f(x) ≤ f(c), ∀x ∈ D
An absolute minimum (or global minimum) value at c ∈ D if

f(x) ≥ f(c), ∀x ∈ D
A local maximum value at c if there is an open interval I
containing c in which f(c) ≥ f(x), ∀x ∈ I
A local minimum value at c if there is an open interval I
containing c in which f(c) ≤ f(x), ∀x ∈ I
A local extreme value at c, if f(c) is either a local maximum or
local minimum value of f in an open interval I with c ∈ I
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First Derivative Test
First derivative test for local extreme value of f, when f is
differentiable at the extremum.
Claim
If f(c) is a local extreme value and if f is differentiable at x = c, then
f′(c) = 0.

1By virtue of the squeeze or sandwich theorem
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First Derivative Test
First derivative test for local extreme value of f, when f is
differentiable at the extremum.
Claim
If f(c) is a local extreme value and if f is differentiable at x = c, then
f′(c) = 0.

Proof: Suppose f(c) ≥ f(x) for all x in an open interval I containing
c and that f′(c) exists. Then the difference quotient f(c+h)−f(c)

h ≤ 0
for small h ≥ 0 (so that c+ h ∈ I). This inequality remains true as
h→ 0 from the right. In the limit, f′(c) ≤ 0.
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First Derivative Test
First derivative test for local extreme value of f, when f is
differentiable at the extremum.
Claim
If f(c) is a local extreme value and if f is differentiable at x = c, then
f′(c) = 0.

Proof: Suppose f(c) ≥ f(x) for all x in an open interval I containing
c and that f′(c) exists. Then the difference quotient f(c+h)−f(c)

h ≤ 0
for small h ≥ 0 (so that c+ h ∈ I). This inequality remains true as
h→ 0 from the right. In the limit, f′(c) ≤ 0. Also, the difference
quotient f(c+h)−f(c)

h ≥ 0 for small h ≤ 0 (so that c+ h ∈ I). This
inequality remains true as h→ 0 from the left. In the limit, f′(c) ≥ 0.
Since f′(c) ≤ 0 as well as f′(c) ≥ 0, we must have f′(c) = 01.

1By virtue of the squeeze or sandwich theorem
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The Extreme Value Theorem

A most fundamental theorems in calculus concerning continuous
functions on closed intervals.
Claim
A continuous function f(x) on a closed and bounded interval [a, b]
attains a minimum value f(c) for some c ∈ [a, b] and a maximum
value f(d) for some d ∈ [a, b]. That is, a continuous function on a
closed, bounded interval attains a minimum and a maximum value.
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The Extreme Value Theorem (contd.)

We must point out that either or both of the values c and d may be
attained at the end points of the interval [a, b]. Based on theorem
(1), the extreme value theorem can extended as:

Claim
A continuous function f(x) on a closed and bounded interval [a, b]
attains a minimum value f(c) for some c ∈ [a, b] and a maximum
value f(d) for some d ∈ [a, b]. If a < c < b and f′(c) exists, then
f′(c) = 0. If a < d < b and f′(d) exists, then f′(d) = 0.

Proof sketch: In 4 parts. In ℜn, one additionally needs compactness
of the set in order to get this result.
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Rolle’s Theorem
Claim
If f is continuous on [a, b] and differentiable at all x ∈ (a, b) and if
f(a) = f(b), then f′(c) = 0 for some c ∈ (a, b).

This result can be easily proved using the Extreme value theorem.
Figure 1 illustrates Rolle’s theorem with an example function
f(x) = 9− x2 on the interval [−3,+3].
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Mean Value Theorem

A generalization of the Rolle’s theorem and proved using the Rolle’s
theorem:
Claim
If f is continuous on [a, b] and differentiable at all x ∈ (a, b), then
there is some c ∈ (a, b) such that, f′(c) = f(b)−f(a)

b−a .
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Mean Value Theorem

A generalization of the Rolle’s theorem and proved using the Rolle’s
theorem:
Claim
If f is continuous on [a, b] and differentiable at all x ∈ (a, b), then
there is some c ∈ (a, b) such that, f′(c) = f(b)−f(a)

b−a .

Proof: Define g(x) = f(x)− f(b)−f(a)
b−a (x− a) on [a, b]. We note

rightaway that g(a) = g(b) and g′(x) = f′(x)− f(b)−f(a)
b−a . Applying

Rolle’s theorem on g(x), we know that there exists c ∈ (a, b) such
that g′(c) = 0. Which implies that f′(c) = f(b)−f(a)

b−a .
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Mean Value Theorem (contd.)
Figure 2 illustrates the mean value theorem for f(x) = 9− x2 on the
interval [−3, 1]. We observe that the tanget at x = −1 is parallel to
the secant joining −3 to 1. That is, f′(−1) = f(1)−f(−3)

4
One could

think of the mean value theorem as a slanted version of Rolle’s
theorem.
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Corollary and Approximations

A natural corollary of Mean Value Theorem is as follows:

Corollary
Let f be continuous on [a, b] and differentiable on (a, b) with
m ≤ f′(x) ≤ M, ∀x ∈ (a, b). Then,
m(x− t) ≤ f(x)− f(t) ≤ M(x− t), if a ≤ t ≤ x ≤ b.

January 8, 2018 9 / 51



Corollary and Approximations (contd.)

Let D be the domain of function f. We define
1 the linear approximation of a differentiable function f(x) as
La(x) = f(a) + f′(a)(x− a) for some a ∈ D. We note that La(x)
and its first derivative at a agree with f(a) and f′(a) respectively.

2 the quadratic approximatin of a twice differentiable function f(x)
as the parabola Qa(x) = f(a) + f′(a)(x− a) + 1

2
f′′(a)(x− a)2. We

note that Qa(x) and its first and second derivatives at a agree
with f(a), f′(a) and f′′(a) respectively.

3 the cubic approximation of a thrice differentiable function f(x) is
Ca(x) = f(a) + f′(a)(x− a) + 1

2
f′′(a)(x− a)2 + 1

6
f′′′(a)(x− a)3.

Ca(x) and its first, second and third derivatives at a agree with
f(a), f′(a), f′′(a) and f′′′(a) respectively.
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Convexity and Concavity of Approximations
The parabola given by Qa(x) is strictly convex if f′′(a) > 0 and is
strictly concave if f′′(a) < 0. The coefficient of x2 in Qa(x) is 1

2
f′′(a).

Figure 3 illustrates the linear, quadratic and cubic approximations to
the function f(x) = 1

x with a = 1.

Figure 3:
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Taylor’s Theorem and nth degree polynomial
approximation
The nth degree polynomial approximation of a function is used to
prove a generalization of the mean value theorem, called the Taylor’s
theorem.
Claim
The Taylor’s theorem states that if f and its first n derivatives
f′, f′′, . . . , f(n) are continuous on the closed interval [a, b], and
differentiable on (a, b), then there exists a number c ∈ (a, b) such
that

f(b) = f(a)+f′(a)(b−a)+ 1

2!
f′′(a)(b−a)2+ . . .+

1

n!
f(n)(a)(b−a)n+

1

(n + 1)!
f(n+1)(c)(b−a)n+1
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Proof:
Define

pn(x) = f(a) + f′(a)(x− a) + 1

2!
f′′(a)(x− a)2 + . . .+

1

n! f
(n)(a)(x− a)n

and

ϕn(x) = pn(x) + Γ(x− a)n+1

The polynomials pn(x) as well as ϕn(x) and their first n derivatives
match f and its first n derivatives at x = a. We will choose a value of
Γ so that

f(b) = pn(b) + Γ(b− a)n+1

This requires that Γ = f(b)−pn(b)
(b−a)n+1 .
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Taylor’s Theorem and nth degree polynomial
approximation
Define the function g(x) = f(x)− ϕn(x) that measures the difference
between function f and the approximating function ϕn(x) for each
x ∈ [a, b].

Since g(a) = g(b) = 0 and since g and g′ are both continuous
on [a, b], we can apply the Rolle’s theorem to conclude that
there exists c1 ∈ [a, b] such that g′(c1) = 0.
Similarly, since g′(a) = g′(c1) = 0, and since g′ and g′′ are
continuous on [a, c1], we can apply the Rolle’s theorem to
conclude that there exists c2 ∈ [a, c1] such that g′′(c2) = 0.
In this way, Rolle’s theorem can be applied successively to
g′′, g′′′, . . . , g(n+1) to imply the existence of ci ∈ (a, ci−1) such
that g(i)(ci) = 0 for i = 3, 4, . . . , n+ 1. Note however that
g(n+1)(x) = f(n+1)(x)− 0− (n+ 1)!Γ which gives us another
representation ‘of Γ as f(n+1)(cn+1)

(n+1)!
.
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Mean Value, Taylor’s Theorem and words of
caution
Note that if f fails to be differentiable at even one number in the
interval, then the conclusion of the mean value theorem may be false.
For example, if f(x) = x2/3, then f′(x) = 2

3 3√x and the theorem does
not hold in the interval [−3, 3], since f is not differentiable at s0 as
can be seen in Figure 4.
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Sufficient Conditions for Increasing and decreasing
functions
A function f is said to be ...

increasing on an interval I in its domain D if f(t) < f(x)
whenever t < x.
decreasing on an interval I ∈ D if f(t) > f(x) whenever t < x.

Consequently:

Claim
Let I be an interval and suppose f is continuous on I and
differentiable on int(I). Then:

1 if f′(x) > 0 for all x ∈ int(I), then f is increasing on I;
2 if f′(x) < 0 for all x ∈ int(I), then f is decreasing on I;
3 if f′(x) = 0 for all x ∈ int(I), iff, f is constant on I.
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Proof

Proof:
Let t ∈ I and x ∈ I with t < x. By virtue of the mean value
theorem, ∃c ∈ (t, x) such that f′(c) = f(x)−f(t)

x−t .
If f′(x) > 0 for all x ∈ int(I), f′(c) > 0, which implies that
f(x)− f(t) > 0 and we can conclude that f is increasing on I.
If f′(x) < 0 for all x ∈ int(I), f′(c) < 0, which implies that
f(x)− f(t) < 0 and we can conclude that f is decreasing on I.
If f′(x) = 0 for all x ∈ int(I), f′(c) = 0, which implies that
f(x)− f(t) = 0, and since x and t are arbitrary, we can conclude
that f is constant on I.
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Illustration
Figure 5 illustrates the intervals in (−∞,∞) on which the function
f(x) = 3x4 + 4x3 − 36x2 is decreasing and increasing. First we note
that f(x) is differentiable everywhere on (−∞,∞) and compute
f′(x) = 12(x3 + x2 − 6x) = 12(x− 2)(x+ 3)x, which is negative in the
intervals (−∞,−3] and [0, 2] and positive in the intervals [−3, 0] and
[2,∞). We observe that f is decreasing in the intervals (−∞,−3]
and [0, 2] and while it is increasing in the intervals [−3, 0] and [2,∞).
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Another sufficient condition for
increasing/decreasing function
A related sufficient condition for a function f to be
increasing/decreasing on an interval I:

Claim
Let I be an interval and suppose f is continuous on I and
differentiable on int(I). Then:

1 if f′(x) ≥ 0 for all x ∈ int(I), and if f′(x) = 0 at only finitely
many x ∈ I, then f is increasing on I;

2 if f′(x) ≤ 0 for all x ∈ int(I), and if f′(x) = 0 at only finitely
many x ∈ I, then f is decreasing on I.

For example, the derivative of the function f(x) = 6x5 − 15x4 + 10x3
vanishes at 0, and 1 and f′(x) > 0 elsewhere. So f(x) is increasing on
(−∞,∞).
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Necessary conditions for increasing/decreasing
function
The conditions for increasing and decreasing properties of f(x) in
theorem 7 are not necesssary. Figure 6 shows that for the function
f(x) = x5, though f(x) is increasing in (−∞,∞), f′(0) = 0.

Figure 6:
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Necessary conditions for increasing/decreasing
function (contd.)
We have a slightly different necessary condition..

Claim
Let I be an interval, and suppose f is continuous on I and
differentiable in int(I). Then:

1 if f is increasing on I, then f′(x) ≥ 0 for all x ∈ int(I);
2 if f is decreasing on I, then f′(x) ≤ 0 for all x ∈ int(I).

Proof:
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Necessary conditions for increasing/decreasing
function (contd.)
We have a slightly different necessary condition..

Claim
Let I be an interval, and suppose f is continuous on I and
differentiable in int(I). Then:

1 if f is increasing on I, then f′(x) ≥ 0 for all x ∈ int(I);
2 if f is decreasing on I, then f′(x) ≤ 0 for all x ∈ int(I).

Proof: Suppose f is increasing on I, and let x ∈ int(I). Then
f(x+h)−f(x)

h > 0 for all h such that x+ h ∈ int(I). This implies that
f′(x) = lim

h→0

f(x+h)−f(x)
h ≥ 0. For the case when f is decreasing on I, it

can be similarly proved that f′(x) = lim
h→0

f(x+h)−f(x)
h ≤ 0.
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Critical Point
This concept will help us derive the general condition for local
extrema.
Definition
[Critical Point]: A point c in the domain D of f is called a critical

point of f if either f′(c) = 0 or f′(c) does not exist.

The following general condition for local extrema extends the result
in theorem 1 to general non-differentiable functions.

Claim
If f(c) is a local extreme value, then c is a critical number of f.

The converse of theorem 10 does not hold (see Figure 6); 0 is a
critical number (f′(0) = 0), although f(0) is not a local extreme value.
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Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if f(c) is a
local extreme value:
Procedure
[Local Extreme Value]: Let c be an isolated critical point of f

1 f(c) is a local minimum if f(x) is decreasing in an
interval [c− ϵ1, c] and increasing in an interval
[c, c+ ϵ2] with ϵ1, ϵ2 > 0.

2 f(c) is a local maximum if f(x) is increasing in an
interval [c− ϵ1, c] and decreasing in an interval
[c, c+ ϵ2] with ϵ1, ϵ2 > 0.
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Given a critical point c, first derivative test (sufficient condition)
helps determine if f(c) is a local extreme value:

Procedure
[First derivative test]: Let c be an isolated critical point of f

1 f(c) is a local minimum if the sign of f′(x) changes
from negative in [c− ϵ1, c] to positive in [c, c+ ϵ2]
with ϵ1, ϵ2 > 0.

2 f(c) is a local maximum if f(x) the sign of f′(x)
changes from positive in [c− ϵ1, c] to negative in
[c, c+ ϵ2] with ϵ1, ϵ2 > 0.

3 If f′(x) is positive in an interval [c− ϵ1, c] and also
positive in an interval [c, c− ϵ2], or f′(x) is negative
in an interval [c− ϵ1, c] and also negative in an
interval [c, c− ϵ2] with ϵ1, ϵ2 > 0, then f(c) is not a
local extremum.
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