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Maximum and Minimum values of univariate

functions = uno ')L seveva Oren}clom\
Let f: D — R. Now f has intevvals Q/K
@ An absolute maximum (or global maximum) value at point
ceDif

fix) < flc), Vxe D

@ An absolute minimum (or global minimum) value at c € D if

fix) > flc), Vxe D

@ A Jocal maximum value at c if there is an open interval Z

containing c in which f{c) > f(x), Vxe€ T Cy T)
’

@ A local minimum value at c if there is an open interval Z
containing c in which fic) < f(x), Vxe T

@ A local extreme value at ¢, if f(c) is either a local maximum or
local minimum value of fin an open interval Z with c€ Z

D January 8,2018 2 /51



First Derivative Test

First derivative test for local extreme value of f, when fis
differentiable at the extremum.

Claim

f(c)=0. wlod |t Hnic ey h min
Prop L& p<c k9rc st PgEL©

e 5)}@ > £0 > 5’@ O <
g@Pof{'(Z}) 739 5 ;f(J 1® 20

-C
1By virtue of the squeeze or sandwich theorem 1

If f(c) is a local extreme value and if f is differentiable at x = c, then‘
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First Derivative Test

First derivative test for local extreme value of f, when fis
differentiable at the extremum.

Claim

If f(c) is a local extreme value and if f is differentiable at x = c, then
f(c)=0.

Proof: Suppose f{c) > f(x) for all x in an open interval Z containing
c and that f(c¢) exists. Then the difference quotient f(cLi)ff(c) <0
for small h > 0 (so that ¢+ h € Z). This inequality remains true as
h — 0 from the right. In the limit, f(c) < 0.

1By virtue of the squeeze or sandwich theorem
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First Derivative Test

First derivative test for local extreme value of f, when fis
differentiable at the extremum.

Claim

If f(c) is a local extreme value and if f is differentiable at x = c, then
f(c)=0.

Proof: Suppose f{c) > f(x) for all x in an open interval Z containing
c and that f(c¢) exists. Then the difference quotient f(cLi)ff(c) <0
for small h > 0 (so that ¢+ h € Z). This inequality remains true as
h — 0 from the right. In the limit, f(c) < 0. Also, the difference
quotient Mhﬂfl > 0 for small h <0 (so that c+ h € Z). This
inequality remains true as h — 0 from the left. In the limit, 7(c) > 0.
Since f(c) < 0 as well as (c) > 0, we must have f(c) = 0. ([l

1By virtue of the squeeze or sandwich theorem
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The Extreme Value Theorem

W ab)7 umon !
6\‘!:\_1/' LQJC [ 8;3\‘)(@ los e Ipl,:.(\,a\j, on
o} whach £ 1 Mm

A most fundamental theorems in calcutis concerning continuous
functions on closed intervals.

Claim
A continuous function f(x) on a closed and bounded interval [a, b]
attains a minimum value f(c) for some c € [a, b] and a maximum

value f(d) for some d € [a, b]. That is, a continuous function on a
closed, bounded interval attains a minimum and a maximum value.

W xsn(Ly on [0
o f =9
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The Extreme Value Theorem (contd.)

We must point out that either or both of the values ¢ and d may be
attained at the end points of the interval [a, b]. Based on theorem
(1), the extreme value theorem can extended as:

Claim

A continuous function f(x) on a closed and bounded interval |a, b]
attains a minimum value f(c) for some c € [a, b| and a maximum
value f(d) for some d € [a, b]. If a < c < b and f(c) exists, then
f(c)=0. Ifa< d< b and f(d) exists, then f(d) = 0.

Proof sketch: In 4 parts. In R", one additionally needs compactness
of the set in order to get this result.

L January 8,2018 5 /51



Rolle's Theorem () Zxlyeme Jalue 4hw (QVD
Claim @7{ §@)= 1) =f(b)- K 17J =0

If f is continuous on [a, b| and differentiable at all x € (a, b) and if
fla) = f(b), then f(c) = 0 for some c € (a, b).

This result can be easily proved using the Extreme value theorem.
Figure 1 illustrates Rolle's theorem with an example function

flx) = 9 — x* on the interval [—3, +3]. O )f }(7‘)
msk.

] e evl

:: o kel §E

fest
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Mean Value Theorem

A generalization of the Rolle's theorem and proved using the Rolle's
theorem:

Claim

If f is continuous on [a, b] and differentiable at all x € (a, b), then
there is some ¢ € (a, b) such that, f(c) = 1813

= "ba - (x —0\)
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Mean Value Theorem

A generalization of the Rolle's theorem and proved using the Rolle's
theorem:

Claim

If f is continuous on [a, b] and differentiable at all x € (a, b), then
there is some c € (a, b) such that, f(c) = 1&=Aa).

b—a

Proof: Define g(x) = f(x) — f(b) fla )(x— a) on [a, b]. We note

rightaway that g(a) = g(b) and g( x) = f(x) — 18219 - Applying
Rolle’s theorem on g(x), we know that there eX|sts ce (a, b) such
that g'(c) = 0. Which implies that f(c) = %. [
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Mean Value Theorem (contd.)

Figure 2 illustrates the mean value theorem for f{x) = 9 — x* on the
interval [—3,1]. We observe that the tanget at x = —1 is parallel to
the secant joining —3 to 1. That is, f(—1) = ﬂ%ﬁ One could
think of the mean value theorem as a slanted version of Rolle’s
theorem.

T January 8,2018 8 /51



Corollary and Approximations

A natural corollary of Mean Value Theorem is as follows:
Corollary

Let f be continuous on [a, b| and differentiable on (a, b) with
m < f(x) < M, Vx& (a,b). Then,

m(x—t) < fix) — f(t) < M(x—1t), ifa<t<x<b.

X
P

January 8, 2018
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Corollary and Approximations (contd.)

Let D be the domain of function £ We define

@ the linear approximation of a differentiable function f(x) as
L,(x) = fla) + f(a)(x— a) for some a € D. We note that L,(x)
and its first derivative at a agree with f{a) and f(a) respectively.

@ the quadratic approximatin of a twice differentiable function f{x)

as the parabola Q,(x) = ( )+ f(a)(x—a) + 3'(a)(x— a)%. We

note that Q,(x) and its first and second derivatives at a agree
with f(a), f(a) and f’(a) respectively.

@ the cubic approximation of a thrice differentiable function f(x) is
Colx) = fla) + F(a)(x— a) + LF'(a) (x— a)* + LF"(a)(x— a)".
Ci(x) and its first, second and third derivatives at a agree with
fla), f(a), f'(a) and f"(a) respectively.

L January 8,2018 10/ 51



Convexity and Concavity of Approximations

The parabola given by Q,(x) is strictly convex if f'(a) > 0 and is
strictly concave if /(a) < 0. The coefficient of x* in Q,(x) is 5/'(a)

Figure 3 illustrates the linear, quadratic and cubic approximations to
the function f{x) = & with a = 1.

Figure 3:
]
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Taylor's Theorem and n'" degree polynomial
approximation

The n'" degree polynomial approximation of a function is used to
prove a generalization of the mean value theorem, called the Taylor’s
theorem.

Claim

The Taylor's theorem states that if f and its first n derivatives

f, f' ..., £" are continuous on the closed interval [a, b], and
differentiable on (a, b), then there exists a number ¢ € (a, b) such
that

1

16) = f2) +£ (@) (=) + 57" (@) (b=)* + ...+ = ) (a) (b—a)" + ]

A1 () (b—a)"
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Proof:

Define
po(X) = fla) + f(a)(x— 8) + 5 () (x— o ..+ V(@) (x— )"
and

On(x) = pa(x) + T'(x— a)""

The polynomials p,(x) as well as ¢,(x) and their first n derivatives
match f and its first n derivatives at x = a. We will choose a value of
I' so that

f(b) = pu(b) + T'(b— a)"*!
This requires that I' = %’l.

L January 8,2018 13 /51



Taylor's Theorem and n'" degree polynomial

approximation

Define the function g(x) = f(x) — ¢a(x) that measures the difference
between function f and the approximating function ¢,(x) for each
x € [a, b

e Since g(a) = g(b) = 0 and since g and g’ are both continuous
on [a, b], we can apply the Rolle’s theorem to conclude that
there exists ¢, € [a, b] such that g'(¢;) = 0.

e Similarly, since g'(a) = g(c1) =0, and since g’ and g" are
continuous on [a, ¢;], we can apply the Rolle's theorem to
conclude that there exists ¢; € |a, ¢;| such that g’(c;) = 0.

@ In this way, Rolle’s theorem can be applied successively to
g',g", ..., g """ to imply the existence of ¢; € (a, ¢;_1) such
that g(¢;) =0 for i=3,4,...,n+ 1. Note however that
g (x) = AV (x) — 0 — (n+ 1)!T" which gives us another

f("+1)(cn+1)
(n+1)!

representation ‘of I' as
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Mean Value, Taylor's Theorem and words of

caution

Note that if ffails to be differentiable at even one number in the
interval, then the conclusion of the mean value theorem may be false.
For example, if f{x) = x*/3, then f(x) = :%)-( and the theorem does
not hold in the interval [—3, 3], since fis not differentiable at sO as

can be seen in Figure 4.

U a8, 208 15751



Sufficient Conditions for Increasing and decreasing

functions /
A function fis said to be ...

@ increasing on an interval Z in its domain D if f{t) < f(x)
———
whenever t < x.

e decreasing on an interval Z € D if f(t) > f(x) whenever t < x.

Consequently: \
Claim

Let 7 be an interval and suppose f is continuous on Z and
differentiable on int(Z). Then:

Q iff(x) > 0 for all x € int(Z), then f is increasing on Z;
@ iff(x) <O for all x € int(Z), then f is decreasing on Z;
@ iff(x) =0 for all x € int(Z), iff, fis constant on T.

January 8, 2018 16 / 51



Proof @/%‘70

Proof: L z

Let t € Z and x € Z with t < x. By virtue of the mean value
theorem, Jc € (t, x) such that f(c) = %
o If f(x) > 0 for all x € int(Z), f(c) > 0, which implies that
f(x) — f{t) > 0 and we can conclude that fis increasing on Z.
o If f(x) <O forall x€ int(Z), f(c) <0, which implies that
fix) — f(t) < 0 and we can conclude that fis decreasing on Z.
o If f(x) =0 for all x € int(Z), f(c) = 0, which implies that
fix) — f(t) = 0, and since x and t are arbitrary, we can conclude
that fis constant on Z.

l
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[[lustration

Figure 5 illustrates the intervals in (—o0, 00) on which the function
fix) = 3x* + 4x* — 36x% is decreasing and increasing. First we note
that f(x) is differentiable everywhere on (—o0, 00) and compute

f(x) = 1233 + x* — 6x) = 12(x — 2)(x+ 3)x, which is negative in the
intervals (—oo, —3] and [0, 2] and positive in the intervals [—3, 0] and
[2,00). We observe that fis decreasing in the intervals (—oo, —3]
and [0, 2] and while it is increasing in the intervals [—3, 0] and [2, 00).

e o o e e e
o e - - - -
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Another sufficient condition for

increasing /decreasing function

A related sufficient condition for a function fto be
increasing/decreasing on an interval Z:

Claim
Let 7 be an interval and suppose f is continuous on Z and

differentiable on int(Z). Then:
Q iff(x) >0 for all x € int(Z), and if f(x) = 0 at only finitely
many x € L, then f is_increasing on L,
@ iff(x) <0 for all x € int(Z), and if f(x) = O at only finitely
many x € I, then f is decreasing on T.

For example, the derivative of the function f{x) = 6x° — 15x* + 10X
vanishes at 0, and 1 and f(x) > 0 elsewhere. So f(x) is increasing on
(—00,00).
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Necessary conditions for increasing/decreasing

function

The conditions for increasing and decreasing properties of f(x) in
theorem 7 are not necesssary. Figure 6 shows that for the function
flx) = x°, though f(x) is increasing in (—o0, 00), f(0) = 0.

g’aﬂ%o
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Necessary conditions for increasing/decreasing
function (contd.)

We have a slightly different necessary condition..

Claim

Let I be an interval, and suppose f is continuous on Z and
differentiable in int(Z). Then:

Q if fis increasing on Z, then(f(x)
@ if fis decreasing on Z, then f(x)

IORSICER NI
= /}(M—S_E?70 T.,;)U.;-fc (x)%0
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>
<0 for all x € int(Z).

Proof:



Necessary conditions for increasing/decreasing
function (contd.)

We have a slightly different necessary condition..

Claim

Let I be an interval, and suppose f is continuous on Z and
differentiable in int(Z). Then:
Q if fis increasing on Z, then f(x) > 0 for all x € int(Z);
@ if fis decreasing on Z, then f(x) < 0 for all x € int(Z).

Proof: Suppose fis increasing on Z, and let x € int(Z). Then

BAN M9~ for all h such that x+ h € int(Z). This implies that

f( ) = }7111(1) M > 0. For the case when fis decreasing on Z, it
—>

can be similarly proved that f(x) = }711’% f(X”’) 9 <. ([l
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Critical Point

This concept will help us derive the general condition for local
extrema.

Definition
[Critical Point]: A point c in the domain D of f is called a critical
point of f if either f(c) = 0 or f(c) does not exist.

The following general condition for local extrema extends the result
in theorem 1 to general non-differentiable functions.

Claim

If f(c) is a local extreme value, then c is a critical number of f.

The converse of theorem 10 does not hold (see Figure 6); 0 is a
critical number (f(0) = 0), although f{0) is not a local extreme value.
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Critical Point and Local Extreme Value

Given a critical point ¢, the following test helps determine if f(c) is a
local extreme value:

Procedure
[Local Extreme Value]: Let c be an isolated critical point of f
Q f(¢) is a local minimum if f(x) is decreasing in an
interval [c — €1, c| and increasing in an interval
[C, c+ 62] with €1,€2 > 0.
@ f(c) is a local maximum if f(x) is increasing in an
interval [c — €1, c| and decreasing in an interval
[c, c+ €3] with €1,€e5 > 0.
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Given a critical point ¢, first derivative test (sufficient condition)
helps determine if f{c) is a local extreme value:

Procedure
[First derivative test]: Let c be an isolated critical point of f

Q f(¢) is a local minimum if the sign of f(x) changes
from negative in [c — ey, c| to positive in [c, c + €3]
with €1,6 > 0.

@ f(c) is a local maximum if f(x) the sign of f(x)
changes from positive in [c — €1, ] to negative in
[C, Cc+ 62] with €1,€2 > 0.

@ Iff(x) is positive in an interval [c — €1, c| and also
positive in an interval [c, c — €], or f(x) is negative
in an interval [c — €1, c| and also negative in an
interval [c, c — €3] with €1,€e; > 0, then f(c) is not a
local extremum.
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