(1) Contruity, ine selen (3) differentiable
(2) Closed interval $[a, b]$ on (a, b)
open interral: $(a, b)=[a, b] \backslash\{a, b\}$
Optimization Principles for Univariate Functions

Maximum and Minimum values of univariate

functions

Let $f: \mathcal{D} \rightarrow \Re$. Now f has $D=$ union of several open/closed intervals $\subseteq \mathbb{R}$

- An absolute maximum (or global maximum) value at point $c \in \mathcal{D}$ if

$$
f(x) \leq f(c), \forall x \in \mathcal{D}
$$

- An absolute minimum (or global minimum) value at $c \in \mathcal{D}$ if

$$
f(x) \geq f(c), \forall x \in \mathcal{D}
$$

- A local maximum value at c if there is an open interval \mathcal{I} containing c in which $f(c) \geq f(x), \forall x \in \mathcal{I}$
- A local minimum value at c if there is an open interval \mathcal{I} containing c in which $f(c) \leq f(x), \forall x \in \mathcal{I}$
- A local extreme value at c, if $f(c)$ is either a local maximum or local minimum value of f in an open interval \mathcal{I} with $c \in \mathcal{I}$

First Derivative Test
First derivative test for local extreme value of f, when f is differentiable at the extremum.
Claim
If $f(c)$ is a local extreme value and if f is differentiable at $x=c$, then
$f(c)=0$.
wog Let this refer to min
Proof. Let $p<c \& q>c$ st $p, q \in I(0$

$$
\begin{aligned}
& f^{\prime}(x) \leqslant 0 \rightleftharpoons f(p) \geqslant f(c) \Rightarrow \frac{f(p)-f(c)}{p-c} \leq 0 \\
& \begin{array}{l}
f^{\prime}(c) \geqslant 0 \sum_{-c}^{p \rightarrow c} f(q) \geqslant f(1) \Rightarrow \frac{f(c)-c}{\sum^{p}-c}(0)
\end{array} 0 \\
& { }^{1} \text { By virtue of the squeeze or sandwich theorem }
\end{aligned}
$$

First Derivative Test

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim

If $f(c)$ is a local extreme value and if f is differentiable at $x=c$, then $f(c)=0$.

Proof: Suppose $f(c) \geq f(x)$ for all x in an open interval \mathcal{I} containing c and that $f(c)$ exists. Then the difference quotient $\frac{f(c+h)-f(c)}{h} \leq 0$ for small $h \geq 0$ (so that $c+h \in \mathcal{I}$). This inequality remains true as $h \rightarrow 0$ from the right. In the limit, $f(c) \leq 0$.

[^0]
First Derivative Test

First derivative test for local extreme value of f, when f is differentiable at the extremum.

Claim

If $f(c)$ is a local extreme value and if f is differentiable at $x=c$, then $f(c)=0$.

Proof: Suppose $f(c) \geq f(x)$ for all x in an open interval \mathcal{I} containing c and that $f(c)$ exists. Then the difference quotient $\frac{f(c+h)-f(c)}{h} \leq 0$ for small $h \geq 0$ (so that $c+h \in \mathcal{I}$). This inequality remains true as $h \rightarrow 0$ from the right. In the limit, $f(c) \leq 0$. Also, the difference quotient $\frac{f(c+h)-f(c)}{h} \geq 0$ for small $h \leq 0$ (so that $c+h \in \mathcal{I}$). This inequality remains true as $h \rightarrow 0$ from the left. In the limit, $f(c) \geq 0$. Since $f(c) \leq 0$ as well as $f(c) \geq 0$, we must have $f(c)=0^{1}$.

[^1]
The Extreme Value Theorem

Sketch: Let $[a, b]=$ union of
finite closed intervals, on each of which f is monotone
A most fundamental theorems in calculus concerning continuous functions on closed intervals.

Claim

A continuous function $f(x)$ on a closed and bounded interval $[a, b]$ attains a minimum value $f(c)$ for some $c \in[a, b]$ and a maximum value $f(d)$ for some $d \in[a, b]$. That is, a continuous function on a closed, bounded interval attains a minimum and a maximum value.

$$
\begin{array}{ll}
x \sin \left(\frac{1}{x}\right) & \text { on }[0,1] \\
0 & \text { if } x=0
\end{array}
$$

$$
\begin{aligned}
f(x) & =x \sin \left(\frac{1}{x}\right) & \text { if } x \in(0,1] \\
& =0 & \text { if } x=0
\end{aligned}
$$

This is where compactries etc help in \mathbb{R}^{n}

The Extreme Value Theorem (contd.)

We must point out that either or both of the values c and d may be attained at the end points of the interval $[a, b]$. Based on theorem (1), the extreme value theorem can extended as:

Claim

A continuous function $f(x)$ on a closed and bounded interval $[a, b]$ attains a minimum value $f(c)$ for some $c \in[a, b]$ and a maximum value $f(d)$ for some $d \in[a, b]$. If $a<c<b$ and $f(c)$ exists, then $f(c)=0$. If $a<d<b$ and $f(d)$ exists, then $f(d)=0$.

Proof sketch: In 4 parts. In \Re^{n}, one additionally needs compactness of the set in order to get this result.

Rolle's Theorem

If f is continuous on $[a, b]$ and differentiable at all $x \in(a, b)$ and if $f(a)=f(b)$, then $f(c)=0$ for some $c \in(a, b)$.

This result can be easily proved using the Extreme value theorem.
Figure 1 illustrates Rolle's theorem with an example function $f(x)=9-x^{2}$ on the interval $[-3,+3]$.

is not cost. by ert 4 crincal pt
test

Mean Value Theorem

A generalization of the Rolle's theorem and proved using the Rolle's theorem:

Claim

If f is continuous on $[a, b]$ and differentiable at all $x \in(a, b)$, then there is some $c \in(a, b)$ such that, $f(c)=\frac{f(b)-f(a)}{b-a}$.

Mean Value Theorem

A generalization of the Rolle's theorem and proved using the Rolle's theorem:

Claim

If f is continuous on $[a, b]$ and differentiable at all $x \in(a, b)$, then there is some $c \in(a, b)$ such that, $f(c)=\frac{f(b)-f(a)}{b-a}$.

Proof: Define $g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$ on $[a, b]$. We note rightaway that $g(a)=g(b)$ and $g^{\prime}(x)=f(x)-\frac{f(b)-f(a)}{b-a}$. Applying Rolle's theorem on $g(x)$, we know that there exists $c \in(a, b)$ such that $g^{\prime}(c)=0$. Which implies that $f(c)=\frac{f(b)-f(a)}{b-a}$.

Mean Value Theorem (contd.)

Figure 2 illustrates the mean value theorem for $f(x)=9-x^{2}$ on the interval $[-3,1]$. We observe that the tanget at $x=-1$ is parallel to the secant joining -3 to 1 . That is, $f(-1)=\frac{f(1)-f(-3)}{4}$ One could think of the mean value theorem as a slanted version of Rolle's theorem.

Corollary and Approximations

A natural corollary of Mean Value Theorem is as follows:

Corollary

Let f be continuous on $[a, b]$ and differentiable on (a, b) with $\underline{m} \leq f(x) \leq \underline{M}, \forall x \in(a, b)$. Then, $m(x-t) \leq f(x)-f(t) \leq M(x-t)$, if $a \leq t \leq x \leq b$.

Corollary and Approximations (contd.)

Let \mathcal{D} be the domain of function f. We define
(1) the linear approximation of a differentiable function $f(x)$ as $L_{a}(x)=f(a)+f(a)(x-a)$ for some $a \in \mathcal{D}$. We note that $L_{a}(x)$ and its first derivative at a agree with $f(a)$ and $f(a)$ respectively.
(2) the quadratic approximatin of a twice differentiable function $f(x)$ as the parabola $Q_{a}(x)=f(a)+f(a)(x-a)+\frac{1}{2} f^{\prime}(a)(x-a)^{2}$. We note that $Q_{a}(x)$ and its first and second derivatives at a agree with $f(a), f(a)$ and $f^{\prime}(a)$ respectively.
(3) the cubic approximation of a thrice differentiable function $f(x)$ is $C_{a}(x)=f(a)+f(a)(x-a)+\frac{1}{2} f^{\prime}(a)(x-a)^{2}+\frac{1}{6} f^{\prime \prime}(a)(x-a)^{3}$. $C_{a}(x)$ and its first, second and third derivatives at a agree with $f(a), f(a), f^{\prime}(a)$ and $f^{\prime \prime}(a)$ respectively.

Convexity and Concavity of Approximations

The parabola given by $Q_{a}(x)$ is strictly convex if $f^{\prime}(a)>0$ and is strictly concave if $f^{\prime}(a)<0$. The coefficient of x^{2} in $Q_{a}(x)$ is $\frac{1}{2} f^{\prime}(a)$. Figure 3 illustrates the linear, quadratic and cubic approximations to the function $f(x)=\frac{1}{x}$ with $a=1$.

Figure 3:

Taylor's Theorem and $n^{t h}$ degree polynomial approximation

The $n^{\text {th }}$ degree polynomial approximation of a function is used to prove a generalization of the mean value theorem, called the Taylor's theorem.

Claim

The Taylor's theorem states that if f and its first n derivatives $f, f^{\prime}, \ldots, f^{(n)}$ are continuous on the closed interval $[a, b]$, and differentiable on (a, b), then there exists a number $c \in(a, b)$ such that
$f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{1}{2!} f^{\prime}(a)(b-a)^{2}+\ldots+\frac{1}{n!} f^{(n)}(a)(b-a)^{n}+\frac{1}{(n+1)!} f^{(n+1)}(c)(b-a)^{n+1}$

Proof:

Define

$$
p_{n}(x)=f(a)+f(a)(x-a)+\frac{1}{2!} f^{\prime}(a)(x-a)^{2}+\ldots+\frac{1}{n!} f^{(n)}(a)(x-a)^{n}
$$

and

$$
\phi_{n}(x)=p_{n}(x)+\Gamma(x-a)^{n+1}
$$

The polynomials $p_{n}(x)$ as well as $\phi_{n}(x)$ and their first n derivatives match f and its first n derivatives at $x=a$. We will choose a value of Γ so that

$$
f(b)=p_{n}(b)+\Gamma(b-a)^{n+1}
$$

This requires that $\Gamma=\frac{f(b)-p_{n}(b)}{(b-a)^{n+1}}$.

Taylor's Theorem and $n^{\text {th }}$ degree polynomial

approximation

Define the function $g(x)=f(x)-\phi_{n}(x)$ that measures the difference between function f and the approximating function $\phi_{n}(x)$ for each $x \in[a, b]$.

- Since $g(a)=g(b)=0$ and since g and g^{\prime} are both continuous on $[a, b]$, we can apply the Rolle's theorem to conclude that there exists $c_{1} \in[a, b]$ such that $g^{\prime}\left(c_{1}\right)=0$.
- Similarly, since $g^{\prime}(a)=g^{\prime}\left(c_{1}\right)=0$, and since g^{\prime} and $g^{\prime \prime}$ are continuous on $\left[a, c_{1}\right]$, we can apply the Rolle's theorem to conclude that there exists $c_{2} \in\left[a, c_{1}\right]$ such that $g^{\prime \prime}\left(c_{2}\right)=0$.
- In this way, Rolle's theorem can be applied successively to $g^{\prime \prime}, g^{\prime \prime \prime}, \ldots, g^{(n+1)}$ to imply the existence of $c_{i} \in\left(a, c_{i-1}\right)$ such that $g^{(i)}\left(c_{i}\right)=0$ for $i=3,4, \ldots, n+1$. Note however that $g^{(n+1)}(x)=f^{(n+1)}(x)-0-(n+1)!\Gamma$ which gives us another representation 'of Γ as $\frac{f^{(n+1)}\left(c_{n+1}\right)}{(n+1)!}$.

Mean Value, Taylor's Theorem and words of

caution

Note that if f fails to be differentiable at even one number in the interval, then the conclusion of the mean value theorem may be false. For example, if $f(x)=x^{2 / 3}$, then $f(x)=\frac{2}{3 \sqrt[3]{x}}$ and the theorem does not hold in the interval $[-3,3]$, since f is not differentiable at s0 as can be seen in Figure 4.

SufficientConditions for Increasing and decreasing

 functionsA function f is said to be ...

- increasing on an interval \mathcal{I} in its domain \mathcal{D} if $f(t)<f(x)$ whenever $t<x$.
- decreasing on an interval $\mathcal{I} \in \mathcal{D}$ if $f(t)>f(x)$ whenever $t<x$.

Consequently:

Claim

Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on int (\mathcal{I}). Then:
(1) if $f(x)>0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is increasing on \mathcal{I};
(2) if $f(x)<0$ for all $x \in \operatorname{int}(\mathcal{I})$, then f is decreasing on \mathcal{I};
(3) if $f(x)=0$ for all $x \in \operatorname{int}(\mathcal{I})$, iff, f is constant on \mathcal{I}.

Proof

Proof:
Let $t \in \mathcal{I}$ and $x \in \mathcal{I}$ with $t<x$. By virtue of the mean value theorem, $\exists c \in(t, x)$ such that $f(c)=\frac{f(x)-f(t)}{x-t}$.

- If $f(x)>0$ for all $x \in \operatorname{int}(\mathcal{I}), f(c) \geqslant 0$, which implies that $f(x)-f(t)>0$ and we can conclude that f is increasing on \mathcal{I}.
- If $f(x)<0$ for all $x \in \operatorname{int}(\mathcal{I}), f(c)<0$, which implies that $f(x)-f(t)<0$ and we can conclude that f is decreasing on \mathcal{I}.
- If $f(x)=0$ for all $x \in \operatorname{int}(\mathcal{I}), f(c)=0$, which implies that $f(x)-f(t)=0$, and since x and t are arbitrary, we can conclude that f is constant on \mathcal{I}.

Illustration

Figure 5 illustrates the intervals in $(-\infty, \infty)$ on which the function $f(x)=3 x^{4}+4 x^{3}-36 x^{2}$ is decreasing and increasing. First we note that $f(x)$ is differentiable everywhere on $(-\infty, \infty)$ and compute $f(x)=12\left(x^{3}+x^{2}-6 x\right)=12(x-2)(x+3) x$, which is negative in the intervals $(-\infty,-3]$ and $[0,2]$ and positive in the intervals $[-3,0]$ and $[2, \infty)$. We observe that f is decreasing in the intervals $(-\infty,-3]$ and $[0,2]$ and while it is increasing in the intervals $[-3,0]$ and $[2, \infty)$.

Another sufficient condition for

increasing/decreasing function

A related sufficient condition for a function f to be increasing/decreasing on an interval \mathcal{I} :

Claim

Let \mathcal{I} be an interval and suppose f is continuous on \mathcal{I} and differentiable on int (\mathcal{I}). Then:
(1) if $\mathcal{f}(x) \geq 0$ for all $x \in \operatorname{int}(\mathcal{I})$, and if $f(x)=0$ at only finitely many $x \in \mathcal{I}$, then f is increasing on $\overline{\mathcal{I}}$;
(2) if $f(x) \leq 0$ for all $x \in \operatorname{int}(\mathcal{I})$, and if $f(x)=0$ at only finitely many $x \in \mathcal{I}$, then f is decreasing on \mathcal{I}.

For example, the derivative of the function $f(x)=6 x^{5}-15 x^{4}+10 x^{3}$ vanishes at 0 , and 1 and $f(x)>0$ elsewhere. So $f(x)$ is increasing on $(-\infty, \infty)$.

Necessary conditions for increasing/decreasing

 functionThe conditions for increasing and decreasing properties of $f(x)$ in theorem 7 are not necesssary. Figure 6 shows that for the function $f(x)=x^{5}$, though $f(x)$ is increasing in $(-\infty, \infty), f(0)=0$.

Figure 6:

Necessary conditions for increasing/decreasing

 function (contd.)We have a slightly different necessary condition..

Claim

Let \mathcal{I} be an interval, and suppose f is continuous on \mathcal{I} and differentiable in int (\mathcal{I}). Then:
(1) if f is increasing on \mathcal{I}, then $f(x) \geq 0)$ for all $x \in \operatorname{int}(\mathcal{I})$;
(2) if f is decreasing on \mathcal{I}, then $\mathcal{f}(x) \leq 0$ for all $x \in \operatorname{int}(\mathcal{I})$.

Proof:

$$
\begin{array}{ll}
& f(y)>f(x) \quad \forall y>x \\
\Rightarrow & f(y)-f(x) \\
y-x
\end{array} 0 \xrightarrow[\lim _{y \rightarrow x}]{ } \quad f^{\prime}(x) \geqslant 0
$$

Necessary conditions for increasing/decreasing

 function (contd.)We have a slightly different necessary condition..

Claim

Let \mathcal{I} be an interval, and suppose f is continuous on \mathcal{I} and differentiable in int (\mathcal{I}). Then:
(1) if f is increasing on \mathcal{I}, then $f(x) \geq 0$ for all $x \in \operatorname{int}(\mathcal{I})$;
(3) if f is decreasing on \mathcal{I}, then $f(x) \leq 0$ for all $x \in \operatorname{int}(\mathcal{I})$.

Proof: Suppose f is increasing on \mathcal{I}, and let $x \in \operatorname{int}(\mathcal{I})$. Then $\frac{f(x+h)-f(x)}{h}>0$ for all h such that $x+h \in \operatorname{int}(\mathcal{I})$. This implies that $f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \geq 0$. For the case when f is decreasing on \mathcal{I}, it can be similarly proved that $f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \leq 0$.

Critical Point

This concept will help us derive the general condition for local extrema.

Definition

[Critical Point]: A point c in the domain \mathcal{D} of f is called a critical point of f if either $f(c)=0$ or $f(c)$ does not exist.

The following general condition for local extrema extends the result in theorem 1 to general non-differentiable functions.

Claim
If $f(c)$ is a local extreme value, then c is a critical number of f.
The converse of theorem 10 does not hold (see Figure 6); 0 is a critical number $(f(0)=0)$, although $f(0)$ is not a local extreme value.

Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if $f(c)$ is a local extreme value:

Procedure

[Local Extreme Value]: Let c be an isolated critical point of f
(1) $f(c)$ is a local minimum if $f(x)$ is decreasing in an interval $\left[c-\epsilon_{1}, c\right]$ and increasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(3) $f(c)$ is a local maximum if $f(x)$ is increasing in an interval $\left[c-\epsilon_{1}, c\right]$ and decreasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.

Given a critical point c, first derivative test (sufficient condition) helps determine if $f(c)$ is a local extreme value:

Procedure

[First derivative test]: Let c be an isolated critical point of f
(1) $f(c)$ is a local minimum if the sign of $f(x)$ changes from negative in $\left[c-\epsilon_{1}, c\right]$ to positive in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(2) $f(c)$ is a local maximum if $f(x)$ the sign of $f(x)$ changes from positive in $\left[c-\epsilon_{1}, c\right]$ to negative in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(3) If $f(x)$ is positive in an interval $\left[c-\epsilon_{1}, c\right]$ and also positive in an interval $\left[c, c-\epsilon_{2}\right]$, or $f(x)$ is negative in an interval $\left[c-\epsilon_{1}, c\right]$ and also negative in an interval $\left[c, c-\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$, then $f(c)$ is not a local extremum.

[^0]: ${ }^{1}$ By virtue of the squeeze or sandwich theorem

[^1]: ${ }^{1}$ By virtue of the squeeze or sandwich theorem

