2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_1 , x_2 : all points

affine set: contains the line through any two distinct points in the set example: solution set of linear equations $\{x \mid Ax = b\}$ in ear algebra and (conversely, every affine set can be expressed as solution set of system of linear equations)

Thus:

The system of equations $A\mathbf{x} = \mathbf{b}$ is solvable when \mathbf{b} is in the column space C(A).

Another way of describing solvability is:

The system of equations $A\mathbf{x} = \mathbf{b}$ is solvable if a combination of the rows of A produces a zero row, the requirement on \mathbf{b} is that the same combination of the components of \mathbf{b} has to yield zero.

Steps to Sind X particular:

- x_{particular}²: Set all free variables (corresponding to columns with no pivots) to 0. In the example above, we should set x₂ = 0 and x₄ = 0.
- Solve Ax = b for pivot variables.

$$x_{complete} = \begin{bmatrix} -2\\ 0\\ \frac{3}{2}\\ 0 \end{bmatrix} + \begin{bmatrix} -2 & 2\\ 1 & 0\\ 0 & -2\\ 0 \end{bmatrix} \begin{bmatrix} c_1\\ c_2\\ c_2 \end{bmatrix} (3.36)$$

$$x_{particular} = x_{nullopare} \begin{bmatrix} obtained from setting form sett$$

Please understand brush up following concepts from linear algebra: 4 Sec 3.5 dy (a) Vector Space: https://en.wikipedia.org/wiki/Vector_space (b) Null space: Sec 3.5.2 from https://en.wikipedia.org/wiki/Vector space fx Ax= 0 { is nullspace of A O Independence, basis & dimension : Sec 3.7 from http://www.cse.iitb.ac.in/~cs709/notes/LinearAlgebra.pdf H/W: Present some basis for R4 Lo Q 1: How do you very that you have indeed generated a basis? Ans: © Look at RREF after Graves elimination & ensure 4 prvoto (b) Look at det (VI V2V3V4) and ensure it is FD @Ensure that bosis has size = 4

More appropriate name when
$$x_1 & t_2$$
 are the in real,
interview of Eucledian Vector space, where the inverse
ine segment between x_1 and x_2 : all points
 $x = \theta x_1 + (1 - \theta) x_2$
with $0 \le \theta \le 1$ For an affine set no constraints
convex set: contains line segment between any two points in the set
 $x_1, x_2 \in C$, $0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta) x_2 \in C$
(not vice
examples (one convex, two nonconvex sets)
Aside: convert set is connected; https://en.wikipedia.org/wiki/Connected_space
convex set: contains bit mot necessarily contains (a)

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with $heta_1 + \dots + heta_k = 1$, $heta_i \geq 0$

convex hull $\operatorname{conv} S$: set of all convex combinations of points in S

Proof that any affine set is (ourer o let c be an affine set . Given any X, XZEC, YOER θ , $t(1-\theta)$, $z \in C$ • \Rightarrow Given ony $x_1, x_2 \in C$, $\forall \in [0, 1]$ 0x, f(1-0)22EC ⇒ C is convex Converse is NOT true : Every affine set is convex but every convex set is NOT affine

Computing the convex hull) Requires a non-ambiguous representation of the required convex shape Let n=# if input pts & h=# ato on convex hull a Simplest algo (Guft wrapping or Janis March). Guess: http://en.wikipedia.org/wiki/Gift_wrapping_algorithm Find leftmost point Pi Pick next pt p2 st all other pto lie to only one side of line segment (3) 4 so on complexity = O(mh) Iny out apple 1: http://www.cs.princeton.edu/courses/archive/spr09/cos226/dem o/ah/&rvisMarch.html Faster algo (Merge hull/Divide and conquer Tny. applet at http://students.cec.wustl.edu/~tpt1/cse546/HullAp

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \geq 0$, $\theta_2 \geq 0$

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\}$ $(a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

In general for
$$x_1, x_2, ..., x_n$$

(a) Affine combination
 $2 = \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{5} \frac{1}$

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t| ||x|| for $t \in \mathbf{R}$
- $||x+y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm

norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$

norm cone: $\{(x,t) \mid ||x|| \le t\}$ Euclidean norm cone is called secondorder cone

norm balls and cones are convex

