
Convex Optimization — Boyd & Vandenberghe

2. Convex sets

• affine and convex sets

• some important examples

• operations that preserve convexity

• generalized inequalities

• separating and supporting hyperplanes

• dual cones and generalized inequalities

2–1

Affine set

line through x1, x2: all points

x = θx1 + (1 − θ)x2 (θ ∈ R)

x1

x2

θ = 1.2
θ = 1

θ = 0.6

θ = 0
θ = −0.2

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Ax = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)
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Convex set

line segment between x1 and x2: all points

x = θx1 + (1 − θ)x2

with 0 ≤ θ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1 − θ)x2 ∈ C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = θ1x1 + θ2x2 + · · · + θkxk

with θ1 + · · · + θk = 1, θi ≥ 0

convex hull conv S: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x1 and x2: any point of the form

x = θ1x1 + θ2x2

with θ1 ≥ 0, θ2 ≥ 0

0
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convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a 6= 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a 6= 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ‖x − xc‖2 ≤ r} = {xc + ru | ‖u‖2 ≤ 1}

ellipsoid: set of the form

{x | (x − xc)
TP−1(x − xc) ≤ 1}

with P ∈ Sn
++ (i.e., P symmetric positive definite)

xc

other representation: {xc + Au | ‖u‖2 ≤ 1} with A square and nonsingular
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Norm balls and norm cones

norm: a function ‖ · ‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x + y‖ ≤ ‖x‖ + ‖y‖

notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x − xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}

Euclidean norm cone is called second-
order cone
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norm balls and cones are convex
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