2. Convex sets

- affine and convex sets
- some important examples
- operations that preserve convexity
- generalized inequalities
- separating and supporting hyperplanes
- dual cones and generalized inequalities

Affine set

line through x_{1}, x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2} \quad(\theta \in \mathbf{R})
$$

affine set: contains the line through any two distinct points in the set

For answer: pages 145 to 181 of hitpo/www. cse.itb.ac.inp cs709.notesLinearalisebra.pot, underconstrained prob

Figure 3.3: Summary of the properties of the solutions to the system of equations $A x=b$.

$$
A \mathbf{x}_{\text {complete }}=A\left(\mathbf{x}_{\text {particular }}+\mathbf{x}_{\text {nullspace }}\right)=\mathbf{b}+\mathbf{0}=\mathbf{b}
$$

Example:

$$
A \mathbf{x}=\left[\begin{array}{cccc}
1 & 2 & 2 & 2 \\
2 & 4 & 6 & 8 \\
3 & 6 & 8 & 10
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\mathbf{b}
$$

- (Gauss Elimination)

$$
\begin{aligned}
& {[A \mathbf{b}]=\left[\begin{array}{lllcc}
1 & 2 & 2 & 2 & b_{1} \\
2 & 4 & 6 & 8 & b_{2} \\
3 & 6 & 8 & 10 & b_{3}
\end{array}\right] } \stackrel{E_{2,1, E 3,1}}{\Longrightarrow}\left[\begin{array}{ccccc}
{[1]} & 2 & 2 & 2 & b_{1} \\
0 & 0 & {[2]} & 4 & b_{2}-2 b_{1} \\
0 & 0 & 2 & 4 & b_{3}-3 b_{1}
\end{array}\right] \\
& \stackrel{E 3,2}{\Longrightarrow}\left[\begin{array}{ccccc}
{[1]} & 2 & 2 & 2 & b_{1} \\
0 & 0 & {[2]} & 4 & b_{2}-2 b_{1} \\
0 & 0 & 0 & 0 & b_{3}-b_{1}-b_{2}
\end{array}\right] \\
& \text { condition for } \\
& \text { sduability: } b_{\mathbf{3}}-b_{1}-b_{\mathbf{2}}=\mathbf{0}
\end{aligned}
$$

Thus:

The system of equations $A \mathbf{x}=\mathbf{b}$ is solvable when \mathbf{b} is in the column space $C(A)$.

Another way of describing solvability is:
The system of equations $A \mathbf{x}=\mathbf{b}$ is solvable if a combination of the rows of A produces a zero row, the requirement on \mathbf{b} is that the same combination of the components of \mathbf{b} has to yield zero.
steps to find x particular:

1. $\mathbf{x}_{\text {particular }}{ }^{2}$: Set all free variables (corresponding to columns with no pivots) to 0 . In the example above, we should set $x_{2}=0$ and $x_{4}=0$.
2. Solve $A \mathbf{x}=\mathbf{b}$ for pivot variables.

In this example:

$$
x_{1}+2 x_{3}=b_{1} \quad \text { \& } \quad 2 x_{3}=b_{2}-2 b_{1}
$$

Now:

$$
\mathbf{x}_{\text {particular }}=\left[\begin{array}{c}
b_{2}+3 b_{1} \\
0 \\
\frac{b_{2}-2 b_{1}}{2} \\
0
\end{array}\right]
$$

\qquad
$x_{n a l}$ space is $s^{\circ} t$
\qquad
Eg: if we choose $\mathbf{b}=\left[\begin{array}{lll}5 & 1 & 6\end{array}\right]^{T}$, we get

$$
\mathbf{x}_{\text {particular }}=\left[\begin{array}{c}
-2 \\
0 \\
\frac{3}{2} \\
0
\end{array}\right]
$$

Show that $x_{\text {complete }}=\theta x_{1}+(1-\theta) x_{2}$ for some

$$
x_{1}, x_{2} \in \mathbb{R}^{4} \& \theta \in \mathbb{R}
$$

we knew $\{x \mid A x=b\}$ is an affine set

Q: What is a more generalised definition of affine sets?
Ans(Clue from linear algebra discussion on affine sets):

Please understand/Drush up following concepts from linear algebra:
(a) Vector space: \qquad 4 sec 3.5 of
(b) Null space: Sec 3.5 .2 from
$\{x \mid A x=0\}$ is null space of A
(c) Independence, basis \& dimension: Sec 3.7 from
H / ω : Present some basis for \mathbb{R}^{4}
\longrightarrow Q1: How do you venfy that you have indeed generated a basis?
Ans: © Look at RREF offer Gauss elimination \& ensure 4 pivuto
(b) Look at $\left.\operatorname{det}\left(V_{1} v_{2} v_{3} v_{4}\right]\right)$ and ensure it is $\neq 0$
(c) ensure that basis has size $=4$

Move approniate name when $x_{1} \& x_{2}$ ave pto in veal,

line segment between x_{1} and x_{2} : all points

$$
x=\theta x_{1}+(1-\theta) x_{2}
$$

with $0 \leq \theta \leq 1$
\rightarrow For an affine set no constraints convex set: contains line segment between any two points in the set set is convert

$$
x_{1}, x_{2} \in C, \quad 0 \leq \theta \leq 1 \quad \Longrightarrow \quad \theta x_{1}+(1-\theta) x_{2} \in C
$$

examples (one convex, two nonconvex sets) versa)

Aside:
 Convex sets convex set can, but not necessarily contains

Convex combination and convex hull
convex combination of x_{1}, \ldots, x_{k} : any point x of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}+\cdots+\theta_{k} x_{k}
$$

with $\theta_{1}+\cdots+\theta_{k}=1, \theta_{i} \geq 0$
convex hull conv S : set of all convex combinations of points in S

Proof that any affine set is convert

- Let c be an affine set
$\therefore \therefore$ Given any $x_{1}, x_{2} \in C, \forall \theta \in \mathbb{R}$

$$
\theta \cdot x_{1}+(1-\theta) x_{2} \in C
$$

\Rightarrow Given any $x_{1}, x_{2} \in C, \forall \theta \in[0,1]$

$$
\theta x_{1}+(1-\theta) x_{2} \in C
$$

$\Rightarrow C$ is convex
Converse is NoT true
\therefore Every affine set is convex but every convex set is NOT affine

Computing the converse hull:

1) Requires a yon-ambiguous representation of the required convex shape
Lee $n=\#$ if input p ts \& $h=\#$ pto on convex hull
(a) Simplest algo (Gift wrapping or Jarvis March). $O(n h)$

(1) Find 'leftmost' point P1
(2) Rick next pt p_{2} st all other pto lie to only ane side of line segment $p_{1} \beta_{2}$
(3) \& so on....
complexity $=O(n h)$

(b) Faster algo
hull/Divide and conquer) $O(n \log n)$

Convex cone

conic (nonnegative) combination of x_{1} and x_{2} : any point of the form

$$
x=\theta_{1} x_{1}+\theta_{2} x_{2}
$$

with $\theta_{1} \geq 0, \theta_{2} \geq 0$

convex cone: set that contains all conic combinations of points in the se
Q: Retaiion between convex cone, convex set \& affine set? Ans: on neat page.

Hyperplanes and halfspaces

hyperplane: set of the form $\left\{x \mid a^{T} x=b\right\}(a \neq 0)$

halfspace: set of the form $\left\{x \mid a^{T} x \leq b\right\}(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

In general for $x_{1} x_{2} \ldots x_{n}$
(a) Affine combination

$$
\sum_{i=1}^{n} \theta_{i} \lambda_{i} \quad \text { sine combination } \sum_{i=1}^{n} \theta_{i}=1
$$

(b) Convex combination

$$
\begin{aligned}
& \text { Convex combination } \\
& \sum_{i=1}^{n} \theta x_{i} \quad s^{\cdot} t \sum_{i=1}^{n} \theta_{i} \leq 1 \& \theta_{i} \in[0,1]
\end{aligned}
$$

(c) Conic combination

$$
\sum_{i=}^{n} \theta_{i} a_{i} \quad \text { st } \theta_{i} \geqslant 0
$$

Set is called a, b or c if corresponding combination of pts in the set belongs to the set for all choices of θ under corresponding constraint

Easy to see that EVERY CONIC SET is CONVEX * EVERY AFFINE SET IS CONVEX

Euclidean balls and ellipsoids
(Euclidean) ball with center x_{c} and radius r :

$$
B\left(x_{c}, r\right)=\left\{x \mid\left\|x-x_{c}\right\|_{2} \leq r\right\}=\left\{x_{c}+r u \mid\|u\|_{2} \leq 1\right\}
$$

Eucledian or L_{2} nom

$$
\left\{x \mid\left(x-x_{c}\right)^{T} P^{-1}\left(x-x_{c}\right) \leq 1\right\}
$$

u is a vector

$$
\text { with } \left.P \in \mathbf{S}_{++}^{n} \text { (ie., } P \text { symmetric positive definite }\right)
$$

ellipsoid: set of the form
$\|u\| \leq 1$

Rotation with suave and nonsingular

2-7

Norm balls and norm cones
norm: a function $\|\cdot\|$ that satisfies

- $\|x\| \geq 0 ;\|x\|=0$ if and only if $x=0$
- $\|t x\|=|t|\|x\|$ for $t \in \mathbf{R}$
- $\|x+y\| \leq\|x\|+\|y\|$
notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text {symb }}$ is particular norm norm ball with center x_{c} and radius $r:\left\{x \mid\left\|x-x_{c}\right\| \leq r\right\}$
norm cone: $\{(x, t) \mid\|x\| \leq t\}$
Euclidean norm cone is called secondorder cone

norm balls and cones are convex

Q1: Is a norm cone a converse cone?
Ans:

Q2: Is every convex cone a norm cone?

Q3: Is there a convex cone that is also affine?

