Definition 41 [Subgradient]: Let $f: \mathcal{D} \rightarrow \Re$ be a convex function defined on a convex set \mathcal{D}. A vector $\mathbf{h} \in \Re^{n}$ is said to be a subgradient of f at the point $\mathbf{x} \in \mathcal{D}$ if

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\mathbf{h}^{T}(\mathbf{y}-\mathbf{x})
$$

for all $\mathbf{y} \in \mathcal{D}$. The set of all such vectors is called the subdifferential of f at \mathbf{x}.

Theorem 76 Let $f: \mathcal{D} \rightarrow \Re$ be a convex function defined on a convex set \mathcal{D}. A point $\mathbf{x} \in \mathcal{D}$ corresponds to a minimum if and only if

$$
\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \geq 0
$$

for all $\mathbf{y} \in \mathcal{D}$.
If $\nabla f(\mathbf{x})$ is nonzero, it defines a supporting hyperplane to \mathcal{D} at the point \mathbf{x}. Theorem 77 implies that for a differentiable convex function defined on an open set, every critical point must be a point of (global) minimum.

Theorem 77 Let $f: \mathcal{D} \rightarrow \Re$ be differentiable and convex on an open convex domain $\mathcal{D} \subseteq \Re^{n}$. Then \mathbf{x} is a critical point of f if and only if it is a (global) minimum.

Theorem 78 Let $f: \mathcal{D} \rightarrow \Re$ with $\mathcal{D} \subseteq \Re^{n}$ be differentiable on the convex set D. Then,

1. f is convex on \mathcal{D} if and only if is its gradient ∇f is monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq 0 \tag{4.53}
\end{equation*}
$$

2. f is strictly convex on \mathcal{D} if and only if is its gradient ∇f is strictly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$ with $\mathbf{x} \neq \mathbf{y}$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y})>0 \tag{4.54}
\end{equation*}
$$

3. f is uniformly or strongly convex on \mathcal{D} if and only if is its gradient ∇f is uniformly monotone. That is, for all $\mathbf{x}, \mathbf{y} \in \Re$,

$$
\begin{equation*}
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq c\|\mathbf{x}-\mathbf{y}\|^{2} \tag{4.55}
\end{equation*}
$$

for some constant $c>0$.

Necessity: Suppose f is uniformly convex on \mathcal{D}. Then from theorem 75, we know that for any $\mathbf{x}, \mathbf{y} \in \mathcal{D}$,

$$
\begin{aligned}
& f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})-\frac{1}{2} c\|\mathbf{y}+\mathbf{x}\|^{2} \\
& f(\mathbf{x}) \geq f(\mathbf{y})+\nabla^{T} f(\mathbf{y})(\mathbf{x}-\mathbf{y})-\frac{1}{2} c\|\mathbf{x}+\mathbf{y}\|^{2}
\end{aligned}
$$

Adding the two inequalities, we get (4.55). If f is convex, the inequalities hold with $c=0$, yielding (4.54). If f is strictly convex, the inequalities will be strict, yielding (4.54).

Sufficiency: Suppose ∇f is monotone. For any fixed $\mathbf{x}, \mathbf{y} \in \mathcal{D}$, consider the function $\phi(t)=f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))$. By the mean value theorem applied to $\phi(t)$, we should have for some $t \in(0,1)$,

$$
\begin{equation*}
\phi(1)-\phi(0)=\phi^{\prime}(t) \tag{4.56}
\end{equation*}
$$

Letting $\mathbf{z}=\mathbf{x}+t(\mathbf{y}-\mathbf{x}),(4.56)$ translates to

$$
\begin{equation*}
f(\mathbf{y})-f(\mathbf{x})=\nabla^{T} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \tag{4.57}
\end{equation*}
$$

Also, by definition of monotonicity of ∇f, (from (4.53)),

$$
\begin{equation*}
(\nabla f(\mathbf{z})-\nabla f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x})=\frac{1}{t}(\nabla f(\mathbf{z})-\nabla f(\mathbf{x}))^{T}(\mathbf{z}-\mathbf{x}) \geq 0 \tag{4.58}
\end{equation*}
$$

Combining (4.57) with (4.58), we get,

$$
\begin{align*}
f(\mathbf{y})-f(\mathbf{x})=(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) & +\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \\
& \geq \nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x}) \tag{4.59}
\end{align*}
$$

By theorem 75, this inequality proves that f is convex. Strict convexity can be similarly proved by using the strict inequality in (4.58) inherited from strict monotonicity, and letting the strict inequality follow through to (4.59). For the case of strong convexity, from (4.55), we have

$$
\begin{gather*}
\phi^{\prime}(t)-\phi^{\prime}(0)=(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{y}-\mathbf{x}) \\
=\frac{1}{t}(\nabla f(\mathbf{z})-f(\mathbf{x}))^{T}(\mathbf{z}-\mathbf{x}) \geq \frac{1}{t} c\|\mathbf{z}-\mathbf{x}\|^{2}=c t\|\mathbf{y}-\mathbf{x}\|^{2} \tag{4.60}\\
\phi(1)-\phi(0)-\phi^{\prime}(0)=\int_{0}^{1}\left[\phi^{\prime}(t)-\phi^{\prime}(0)\right] d t \geq \frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2}
\end{gather*}
$$

which translates to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla^{T} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+\frac{1}{2} c\|\mathbf{y}-\mathbf{x}\|^{2}
$$

\min	$f(x)$			
x				
st	$g_{i}(x) \leqslant 0$			
$h_{j}(x)=0$		\equiv	\min	$f(x)$
:---	:---			
x				
st t	$g_{i}(x) \leqslant 0$			
	$h_{j}(x) \leqslant 0$			
	$-h_{j}(x) \leqslant 0$			

$h_{j}(x) \&-h_{j}(x)$ are both
convex $\Rightarrow h_{j}(x)$ is affine ie

$$
\begin{gathered}
{\left[\begin{array}{l}
h(x)
\end{array}\right]=A x+b=0} \\
A=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
\dot{a}_{p}
\end{array}\right] \quad b=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{p}
\end{array}\right] h_{j}\left[(a)=a_{j}^{\top} x+b_{j}\right.
\end{gathered}
$$

Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily obtained from the solution of the other, and vice-versa
some common transformations that preserve convexity:

- eliminating equality constraints

To save analytically OR

To apply descent

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

is equivalent to
minimize (over $z) \quad f_{0}\left(F z+x_{0}\right)$
subject to $\quad f_{i}\left(F z+x_{0}\right) \leq 0, \quad i=1, \ldots, m$

Q: What if we where F and x_{0} are such that
want to invoke steepest
descent with ∞ nom or 1 norm? $A x=b \Longleftrightarrow x=F z+x_{0}$ for some z
Convex optimization problems

$$
\underbrace{x=F z+x_{0} \text { for some } z}_{\text {Trans formation of } x \text { to account }}
$$

$$
\text { for } A x=b
$$

- introducing equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}\left(A_{0} x+b_{0}\right) \\
\text { subject to } & f_{i}\left(A_{i} x+b_{i}\right) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}\left(\text { over } x, y_{i}\right) & f_{0}\left(y_{0}\right) \\
\text { subject to } & f_{i}\left(y_{i}\right) \leq 0, \quad i=1, \ldots, m \\
& y_{i}=A_{i} x+b_{i}, \quad i=0,1, \ldots, m
\end{array}
$$

- introducing slack variables for linear inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, m
\end{array}
$$

is equivalent to

$$
\begin{array}{ll}
\operatorname{minimize}(\text { over } x, s) & f_{0}(x) \\
\text { subject to } & a_{i}^{T} x+s_{i}=b_{i}, \quad i=1, \ldots, m \\
& s_{i} \geq 0, \quad i=1, \ldots m
\end{array}
$$

Quadratic Optimization: Primal Active-Set Algorithm

Consider the quadratic optimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2} \mathbf{x}^{T} Q \mathbf{x}+\mathbf{c}^{T} \mathbf{x}+\beta \\
\text { subject to } & A \mathbf{x} \geq \mathbf{b} \rightarrow a_{i}^{T} x \geq b_{i} \quad i \neq 1 \cdot \cdot n \tag{1}
\end{array}
$$

where $Q \succ 0$.
(A) $I_{0}=$ index set of active constraints, ie $\forall i \in I_{0} a_{i} x^{0}=b i$ $\& \forall$ i\& $I_{0} a_{i}^{T} x^{0}>b_{i}$ (often .initial) $x^{(0)}$ is obtained using nternor pt $k=0 \quad$ methods)
(B) $x^{(k+1)}=\operatorname{argmin} \frac{1}{2} x^{\top} Q x+C^{\top} x+\beta$
(c) If $x^{(k+1)}$ violates $a_{i}^{\top} x^{(k+1)} \geqslant b_{i}$ for any iq I_{k} then find $\alpha_{k} s t$

$$
x^{(k+1)}=x^{(k)}+\alpha_{k} d^{(k+1)} \& a_{i}^{T} x^{(k+1)} \geqslant b_{i} \forall i
$$

find $\alpha_{k} \in\left[a_{1}\right]$ to project back
(1) If convergence is not yet attained, update $I_{(k+1)} \rightarrow$ in found feaster sol

$$
\begin{aligned}
& \text { converge (k+1) } A^{\top} \lambda=0 \quad a_{(k+1)} \geqslant b_{i} \forall_{i} 1 \alpha_{k} d^{(k+1)} 0 \text { then }
\end{aligned}
$$ for step (2) it might need if $\alpha_{k}<1$ then change in I_{k} change in $I_{k} \quad$ some conslicant

to do better has become antic
Might need to update $I_{(k+1)}$ even has become active
Add it to $I_{(k+1)}$ If $d_{k}=1$ since some constraint might have still become active.

Step 1

Input a feasible point, \mathbf{x}^{0}, identify the active set \mathcal{I}^{0}, form matrix $A_{\mathcal{I}^{0}}$, and set $k=0$.
Step 2
Compute $\mathbf{g}^{k}=Q \mathbf{x}^{k}+\mathbf{c}$.

go to Step 4.

Step 3
\rightarrow Solve the system $A_{\mathcal{I}_{k}}^{T} \widehat{\lambda}=\mathrm{g}^{k}$. If $\widehat{\lambda} \geq \mathbf{0}$, output \mathbf{x}^{k} as the solution and stop; otherwise, remove the index that is associated with the most negative Lagrange multiplier (some $\widehat{\lambda}_{t}$) from \mathcal{I}^{k}.

Step 4

Compute the value of \mathbf{d}^{k} :

$$
\begin{equation*}
\mathbf{d}^{k}=\underset{\mathbf{d}}{\operatorname{argmin}} \quad \frac{1}{2} \mathbf{d}^{T} Q \mathbf{d}+\left(\mathbf{g}^{k}\right)^{T} \mathbf{d} \tag{2}
\end{equation*}
$$

$$
\text { subject to } \quad \mathbf{a}_{i}^{T} \mathbf{d}=0 \quad \text { for } i \in \mathcal{I}^{k}
$$

Step 5

Compute α_{k} :

$$
\begin{equation*}
\alpha_{k}=\min \left\{1, \min _{\substack{j \notin \mathcal{I}^{k} \\ \mathbf{a}_{j}^{T} \mathbf{d}^{k}<0}} \frac{\mathbf{a}_{j}^{T} \mathbf{x}^{k}-b_{j}}{-\mathbf{a}_{j}^{T} \mathbf{d}^{k}}\right\} \tag{3}
\end{equation*}
$$

Set $\mathbf{x}^{k+1}=\mathbf{x}^{k}+\alpha_{k} \mathbf{d}^{k}$.

Step 6

If $\alpha_{k}<1$, construct \mathcal{I}^{k+1} by adding the index that yields the minimum value of α_{k} in (3). Otherwise, let $\mathcal{I}^{k+1}=\mathcal{I}^{k}$.
Step 7
Set $k=k+1$ and repeat from Step 2.

12. Interior-point methods

- inequality constrained minimization
- logarithmic barrier function and central path
- barrier method
- feasibility and phase I methods

Inequality constrained minimization

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \tag{1}\\
& A x=b
\end{array}
$$

- f_{i} convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\operatorname{rank} A=p$
- we assume p^{\star} is finite and attained
- we assume problem is strictly feasible: there exists \tilde{x} with

Examples

- LP, QP, QCQP, GP
- entropy maximization with linear inequality constraints minimize subject to
 $A x=b$

with $\operatorname{dom} f_{0}=\mathbf{R}_{++}^{n}$
- differentiability may require reformulating the problem, e.g., piecewise-linear minimization or ℓ_{∞}-norm approximation via LP
- SDPs and SOCPs are better handled as problems with generalized inequalities (see later)

Logarithmic barrier

reformulation of (1) via indicator function:

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x)+\sum_{i=1}^{m} I_{-}\left(f_{i}(x)\right) \\
\text { subject to } & A x=b
\end{array}
$$

where $I_{-}(u)=0$ if $u \leq 0, I_{-}(u)=\infty$ otherwise (indicator function of \mathbf{R}_{-})

approximation via logarithmic barrier

$I_{-}\left(f_{i}\right) \begin{array}{ll}\text { minimize } & f_{0}(x)- \\ \text { subject to } & A x=b\end{array}$

- an equality constrained problem
- for $t>0,-(1 / t) \log (-u)$ is a smooth approximation of I_{-}
- approximation improves as $t \rightarrow \infty$

$$
\phi(x)=-\sum_{i=1}^{m} \log \left(-f_{i}(x)\right), \quad \operatorname{dom} \phi=\left\{x \mid f_{1}(x)<0, \ldots, f_{m}(x)<0\right\}
$$

- convex (follows from composition rules)
- twice continuously differentiable, with derivatives

$$
\begin{aligned}
\nabla \phi(x) & =\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x) \\
\nabla^{2} \phi(x) & =\sum_{i=1}^{m} \frac{1}{f_{i}(x)^{2}} \nabla f_{i}(x) \nabla f_{i}(x)^{T}+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla^{2} f_{i}(x)
\end{aligned}
$$

Central path

- for $t>0$, define $x^{\star}(t)$ as the solution of

$$
\begin{array}{ll}
\text { minimize } & t f_{0}(x)+\phi(x) \\
\text { subject to } & A x=b
\end{array}
$$

(for now, assume $x^{\star}(t)$ exists and is unique for each $t>0$)

- central path is $\left\{x^{\star}(t) \mid t>0\right\}$

example: central path for an LP
minimize $\quad c^{T} x$
subject to $\quad a_{i}^{T} x \leq b_{i}, \quad i=1, \ldots, 6$
hyperplane $c^{T} x=c^{T} x^{\star}(t)$ is tangent to level curve of ϕ through $x^{\star}(t)$

Dual points on central path

$x=x^{\star}(t)$ if there exists a w such that

$$
t \nabla f_{0}(x)+\sum_{i=1}^{m} \frac{1}{-f_{i}(x)} \nabla f_{i}(x)+A^{T} w=0, \quad A x=b
$$

- therefore, $x^{\star}(t)$ minimizes the Lagrangian

$$
L\left(x, \lambda^{\star}(t), \nu^{\star}(t)\right)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star}(t) f_{i}(x)+\nu^{\star}(t)^{T}(A x-b)
$$

where we define $\lambda_{i}^{\star}(t)=1 /\left(-t f_{i}\left(x^{\star}(t)\right)\right.$ and $\nu^{\star}(t)=w / t$

- this confirms the intuitive idea that $f_{0}\left(x^{\star}(t)\right) \rightarrow p^{\star}$ if $t \rightarrow \infty$:

$$
\begin{aligned}
p^{\star} & \geq g\left(\lambda^{\star}(t), \nu^{\star}(t)\right) \\
& =L\left(x^{\star}(t), \lambda^{\star}(t), \nu^{\star}(t)\right) \\
& =f_{0}\left(x^{\star}(t)\right)-m / t
\end{aligned}
$$

Interpretation via KKT conditions

$x=x^{\star}(t), \lambda=\lambda^{\star}(t), \nu=\nu^{\star}(t)$ satisfy

1. primal constraints: $f_{i}(x) \leq 0, i=1, \ldots, m, A x=b$
2. dual constraints: $\lambda \succeq 0$
3. approximate complementary slackness: $-\lambda_{i} f_{i}(x)=1 / t, i=1, \ldots, m$
4. gradient of Lagrangian with respect to x vanishes:

$$
\nabla f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} \nabla f_{i}(x)+A^{T} \nu=0
$$

difference with KKT is that condition 3 replaces $\lambda_{i} f_{i}(x)=0$

given strictly feasible $x, t:=t^{(0)}>0, \mu>1$, tolerance $\epsilon>0$. repeat

1. Centering step. Compute $x^{\star}(t)$ by minimizing $t f_{0}+\phi$, subject to $A x=b$.
2. Update. $x:=x^{\star}(t)$.
3. Stopping criterion. quit if $m / t<\epsilon$.
4. Increase t. $t:=\mu t$.
bound on gap

- terminates with $f_{0}(x)-p^{\star} \leq \epsilon$ (stopping criterion follows from $\left.f_{0}\left(x^{\star}(t)\right)-p^{\star} \leq m / t\right)$
- centering usually done using Newton's method, starting at current x
- choice of μ involves a trade-off: large μ means fewer outer iterations, more inner (Newton) iterations; typical values: $\mu=10-20$
- several heuristics for choice of $t^{(0)}$

Convergence analysis

number of outer (centering) iterations: exactly

$$
\left\lceil\frac{\log \left(m /\left(\epsilon t^{(0)}\right)\right)}{\log \mu}\right\rceil
$$

plus the initial centering step (to compute $x^{\star}\left(t^{(0)}\right)$)
centering problem

$$
\operatorname{minimize} \quad t f_{0}(x)+\phi(x)
$$

see convergence analysis of Newton's method

- $t f_{0}+\phi$ must have closed sublevel sets for $t \geq t^{(0)}$
- classical analysis requires strong convexity, Lipschitz condition
- analysis via self-concordance requires self-concordance of $t f_{0}+\phi$
family of standard LPs $\left(A \in \mathbf{R}^{m \times 2 m}\right)$

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & A x=b, \quad x \succeq 0
\end{array}
$$

$m=10, \ldots, 1000$; for each m, solve 100 randomly generated instances

number of iterations grows very slowly as m ranges over a $100: 1$ ratio

Feasibility and phase I methods

feasibility problem: find x such that

$$
\begin{equation*}
f_{i}(x) \leq 0, \quad i=1, \ldots, m, \quad A x=b \tag{2}
\end{equation*}
$$

phase I: computes strictly feasible starting point for barrier method basic phase I method

$$
\begin{array}{ll}
\operatorname{minimize}(\operatorname{over} x, s) & s \\
\text { subject to } & f_{i}(x) \leq s, \quad i=1, \ldots, m \tag{3}\\
& A x=b
\end{array}
$$

- if x, s feasible, with $s<0$, then x is strictly feasible for (2)
- if optimal value \bar{p}^{\star} of (3) is positive, then problem (2) is infeasible
- if $\bar{p}^{\star}=0$ and attained, then problem (2) is feasible (but not strictly); if $\bar{p}^{\star}=0$ and not attained, then problem (2) is infeasible

sum of infeasibilities phase I method

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{1}^{T} s \\
\text { subject to } & s \succeq 0, \quad f_{i}(x) \leq s_{i}, \quad i=1, \ldots, m \\
& A x=b
\end{array}
$$

for infeasible problems, produces a solution that satisfies many more inequalities than basic phase I method
example (infeasible set of 100 linear inequalities in 50 variables)

left: basic phase I solution; satisfies 39 inequalities right: sum of infeasibilities phase I solution; satisfies 79 solutions
example: family of linear inequalities $A x \preceq b+\gamma \Delta b$

- data chosen to be strictly feasible for $\gamma>0$, infeasible for $\gamma \leq 0$
- use basic phase I, terminate when $s<0$ or dual objective is positive

number of iterations roughly proportional to $\log (1 /|\gamma|)$

