Definition 41 [Subgradient]: Let f: D — R be a conver function defined

on a conver set D. A vector h € R™ is said to be a subgradient of [ at the
point x € D if

f(y) = f(x) + h' (y = x)
for all y € D. The set of all such vectors is called the subdifferential of f
at x.

Theorem 76 Let f: D — R be a conver function defined on a convex set D.
A point x € D corresponds to a mintmum if and only if

Vi) =x) =0
for all y € D.

If ¥V f(x) is nonzero, it defines a supporting hyperplane to D at the point x.
Theorem 77 implies that for a differentiable convex function defined on an open
set, every critical point must be a point of (global) minimum.

Theorem 77 Let f: D — R be differentiable and conver on an open convez

domain D C R". Then x is a eritical point of [ if and only if it is a (global)
AT,

Theorem T8 Let f: D — R with D C R™ be differentiable on the conver set
D. Then,

1. f is conver on D if and only if is its gradient V f is monotone. That is,
forallx,y € R

(Vix)=Viy) (x=y)=0 (4.53)

2. [ is strictly conver on D if and only if is its gradient V [ is strictly mono-
tone. That is, for all x,y € R with x # y,

(Vf(x)=Viy) (x—y)>0 (4.54)

3. f is uniformly or strongly conver on D if and only if is its gradient V f is
uniformly monotone. That s, for all x,y € R,

(VI(x)=Viy)' (x=y) =[x =y (4.55)

for some constant ¢ > (.



I":Iecessit}r: Suppose f is uniformly convex on D. Then from theorem 75,
we know that for any x,. ¥y € D,

1) 2 £6) + V6 (y =) = selly +xIP
1) 2 1) + V7 f(y) o~ y) — zellx+ 1P

Adding the two inequalities, we get (4.55). If f is convex, the inequalities hold
with ¢ = (0, yielding (4.54). If f is strictly convex, the inequalities will be strict,
vielding (4.54).

Sufficiency: Suppose V f is monotone. For any fixed x, y € D, consider the
function @#(t) = f (x +t{y — x)). By the mean value theorem applied to ¢(t),
we should have for some t € (0,1).

#(1) — a(0) = ¢'(t) (4.56)

Letting z = x + t(y — x), (4.56) translates to

f(y) - f(x) =V f(z)(y —x) (4.57)
Also, by definition of monotonicity of V f, (from (4.53)).

(Vf(2) = V1) (v =%) = 7 (V/(2) = VF() (2=2) 20 (458)

Combining (4.57) with (4.58), we get.

f(y) = f(x) = (Vf(z) = f(x)" (v —%) + V' f(x)(y — x)
>V f(x)(y — x) (4.59)

By theorem 75, this inequality proves that f is convex. Strict convexity can
be similarly proved by using the strict inequality in (4.58) inherited from strict
monotonicity, and letting the strict inequality follow through to (4.59). For the
case of strong convexity, from (4.55), we have

@'(t) = #'(0) = (Vf(=z) — F(x))" (¥ —x)
(Vf(z) = f(x)" (2—x) 2 %f—‘ll55 —x||* = etlly — x||* (4.60)

] =

8(1) = 6(0) - 60) = [ [#0) = SOt 2 gelly <l (461)
which translates to

Fly) > f(x) + VT F )y — %) + elly — x||2



. /?(m) (0 g(,,c)

" *

st %:G;O <0 | = cy C(S-l(a,) 40
- Qﬂj(’%){@

Q{\j(ﬁ) & ‘%’@Q ave et
Conver = N 15 effne 1

[Q\ (M} A tb=0

rxﬁﬂ ‘V-m byl
bqr \9]0

CD'n dagion e & ()ﬁhﬁﬂ
@ exdosey st gim <0 } Ax<h
6(\ ~
Q}\q—‘(\; % \\D§S A)(':XQ
N A
Ac\qvt set '{\nc:\’%oas ‘v\%efﬂovf fj?omf Ymi)ﬂnao’
K sa) COﬁs\&u a\\ mea[uu\va
ld 2" be 5b 3;(,3&- -3&81.'50 Copstvau M, buk Penahg
§ ossume S')Grﬂ <O orW\wJ a%oaa\\rd u\\.{n /\%z \
L <H g A@) 10 Consanky 15 \ndude

o 6070 4u)=0 - -t W\ e opechve
MC[“AQI}?CCéAQ coﬂs\ﬂ:m% bz{ﬂ?c'K ’mx’t 't e 5



Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

e eliminating equality constraints

6 SOVE OHO\\j‘ku\b minimize  fo(x)

G‘R subject to  fi(x) <0, i=1,....,m
Mo 0 A(Sﬂm\(' \ilfi\:,.ﬂ
mc'\h S is equivalent to

V'S:O(z:) - (ng(rg minimize (over z) fo(Fz + xo)
Qi) EIRAT  mbiectio AP ra) <0 =L
‘B’-\SM\ \g W& where F and z are such that

Daok 1o vioke SRUYCSQ

Ar=b <= x = Fz+ xg for some z
N,
* ~ Iy qta(\s’gmu)ﬂo“‘ « unt

4-11

Convex optimization problems A L
Sov M=

e introducing equality constraints

minimize  fo(Aoz + bo)
subject to  fi(Ajz+0b;) <0, i=1,...,m

is equivalent to
minimize (over z, v;)  fo(yo)

subject to fily;)) <0, i=1,...,m
yi=Axz+0b, i=01,....,m

e introducing slack variables for linear inequalities

minimize  fo(x)
subject to alx <b;, i=1,...,m

is equivalent to
minimize (over z, s) fo(x)

subject to alz+s;=0b;, i=1,...,m
SZ'ZO, z:l,m

Convex optimization problems 4-12






Quadratic Optimization:
Primal Active-Set
Algorithm

Consider the quadratic optimization problem

o . . 1 T T
minimize  5x°Qx+c'x+f

~ - ° 1
subject to Ax>b — 0::7(2\0\ \=l.-N S
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A5 Check the rank condition rank[AZ,

4 Solve the system AT X = g‘

Step 1

Input a feasible point, x°, identify the active set 79, form matrix Azo, and
set k= 0.

Step 2

Compute gF¥ = Qx* + c.

g*] = rank[AL,]. If it does not hold,

go to Step 4. S~

Step 3 R
If A > 0, output x* as the solution and
stop; otherwise, remove thg index that is assomated with the most negative

Lagrange multiplier (some )\t) from Z*. \(TV)
&( S

Step 4
'Su

Compute the value of d*:

\v\\"’
d¥ = argmin 1dTQd + (g")"d @
d 2
subject to ald =0 for i € T

Step 5
Compute ay:

ind1 ajx" b (3)
o = min min ——————
’ j¢Tk —adek
Tdk<0

Set x**t1 = x* 4 ay.dF.

Step 6

If o, < 1, construct ZF*! by adding the index that yields the minimum
value of ay, in (3) Otherwise, let ZF+1 = 7%,

Step 7

Set k =k + 1 and repeat from Step 2.

\4 a’o\ <O
d«(aTd )>b “aji

Figure 1: Optimization for the quadratic problem in (??) using Primal Active-
set Method.







Convex Optimization — Boyd & Vandenberghe

\*&\70;& Seq 12. Interior-point methods
\(.

(e
W

inequality constrained minimization

logarithmic barrier function and central path

barrier method

feasibility and phase | methods

12-1

Inequality constrained minimization

minimize  fo(x
subject to  fi(z

)
) <0, i=1,....,m (1)
Ar =b

fi convex, twice continuously differentiable

A € RP*™ with rank A = p

e we assume p* is finite and attained

e we assume problem is strictly feasible: there exists & with
————— S —
7 € dom fj, fi(z) <0, i=1,...,m, AT =b

@\ 5\0\\@6

Ta)
0.0 st %ence, strong duality holds and dual optimum is attained
CoQ
ey

Interior-point methods 12-2



Examples

LP, QP, QCQP, GP
entropy maximization with linear inequality constraints \(IJ\D )(D z\ﬁi
k o
minimize Y. x;log; /{\'\\ﬂ . X Yo
subjectto Fz <g \\(XN
Ar =10

with dom f, = R} |

differentiability may require reformulating the problem, e.g.,
piecewise-linear minimization or ¢,.-norm approximation via LP

SDPs and SOCPs are better handled as problems with generalized
inequalities (see later)

Interior-point methods 12-3

Logarithmic barrier

reformulation of (1) via indicator function:

minimize  fo(z) + >0, I-(fi(x))

subjectto Ax =10 \/‘\<Z

where I_(u) =0 if u <0, I_(u) = oo otherwise (indicator function of R_)

approximation via logarithmic barrier _lo (;X-)

)L minimize  fo(x) — (1/t) Z?lﬂog(—fi(x))
j’ (%t> subject to Ax =10

e an equality constrained problem

o fort >0, —(1/t)log(—u) is a
smooth approximation of 1_

e approximation improves as t — o0

Interior-point methods 12-4



logarithmic barrier function

$(z) = — Zlog(—fi(w)), dom¢ = {z | fi(x) <0,..., fm(z) < 0}

e convex (follows from composition rules)

e twice continuously differentiable, with derivatives

|

Vé(z) —= ;_ﬁ(x}v,@(m)

Vi) = 3 rmVA@VA@ + Y V)
=1 =1

Central path

e for t > 0, define x*(¢) as the solution of

minimize  tfo(x) + ¢(x)
subject to Ax =1b

(for now, assume x*(t) exists and is unique for each ¢ > 0)

e central path is {z*(¢) | t > 0}

example: central path for an LP

minimize Iz

subject to alx <b;, i=1,...,6

hyperplane ¢Tx = ¢T'x*(t) is tangent to
level curve of ¢ through x*(t)

Interior-point methods 12-6



Dual points on central path

x = x*(t) if there exists a w such that

tV fo(z) + Z%(:C)sz(x) + ATw =0, Az =b
i=1 7

e therefore, £*(¢) minimizes the Lagrangian
L{z, N*(8), (1)) = fola) + ) _ N (8) fi(x) +v*(6)T (Az — b)
i=1

where we define A*(t) = 1/(—tf;(x*(t)) and v*(t) = w/t

e this confirms the intuitive idea that fo(z*(t)) — p* if t — oo

p* > g\ (1), v (1))
= L(x*(t), \*(t), v*(t))

= Jfo(z"(t)) —m/t

Interior-point methods 12-7

Interpretation via KKT conditions

x =x*(t), A = \*(t), v = v*(t) satisfy

1. primal constraints: f;(x) <0,i=1,...,m, Ax =b
dual constraints: A > 0

approximate complementary slackness: —\;fi(z) =1/t,i=1,...,m

= W N

gradient of Lagrangian with respect to = vanishes:

Vi) + > NVfi(z)+ ATv =0
=1

difference with KKT is that condition 3 replaces \; f;(x) =0

Interior-point methods 12-8



393’\ oS“ O\
. ‘5 Barrier method X{X
AR

AR AN
v\/‘ Usc ﬁ\t
given strlctl feasible x, {f_lf.(-g) > 0, p > 1, tolerance € > 0.
repeat

1. Centering step. Compute z*(t) by minimizing ¢ fo + ¢, subject to Az = b.
. Update. x := z*(¢t).

2

3. Stopping criterion. quit if r\r%&;e. A o0

4. Increaset. t := ut. U\YYU{ \70\”\ Bﬂg
L

e terminates with fo(x) — p* < € (stopping criterion follows from
fo(*(t)) — p* < m/t)
e centering usually done using Newton's method, starting at current x

e choice of y involves a trade-off: large u means fewer outer iterations,
more inner (Newton) iterations; typical values: p = 10-20

e several heuristics for choice of (9

Interior-point methods 12-11

Convergence analysis

number of outer (centering) iterations: exactly

[log(m/ (et(o)))l

log p

plus the initial centering step (to compute 2*(t(9)))

centering problem
minimize tfo(z) + ¢(x)

see convergence analysis of Newton's method

e tfy+ ¢ must have closed sublevel sets for ¢ > £(0)
e classical analysis requires strong convexity, Lipschitz condition

e analysis via self-concordance requires self-concordance of tfy + ¢

Interior-point methods 12-12



family of standard LPs (4 € R™*?™)

minimize Lz

subjectto Axr =0, x>0

m = 10,...,1000; for each m, solve 100 randomly generated instances

35

(%2}

c

S

-

o

2

c

@]

-

2

[}

=
155 ‘ ‘

10! 102 10°

m

number of iterations grows very slowly as m ranges over a 100 : 1 ratio

Interior-point methods 12-15

Feasibility and phase | methods

feasibility problem: find x such that
filx) <0, i=1,...,m, Ar =0 (2)

phase |: computes strictly feasible starting point for barrier method

basic phase | method

minimize (over x, s) s
subject to filx) <s, i=1,....m (3)
Az =b
e if x, s feasible, with s < 0, then z is strictly feasible for (2)
e if optimal value p* of (3) is positive, then problem (2) is infeasible

e if p* = 0 and attained, then problem (2) is feasible (but not strictly);
if p* = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase | method
minimize 175
subjectto s>=0, fi(z)<s;, i=1,...,m
Az =b

for infeasible problems, produces a solution that satisfies many more
inequalities than basic phase | method

example (infeasible set of 100 linear inequalities in 50 variables)

60 60 -
o 40¢ o 40¢
0 Q0
S 1S
E 20 Z 20/
0 [l n 0 mee o TH HHA O n n
-1 -0.5 0 0.5 1 1.5 -1 -0.5 0 0.5 1 1.5

T T
b; — a; Tmax b; — a; Tsum

left: basic phase | solution; satisfies 39 inequalities
right: sum of infeasibilities phase | solution; satisfies 79 solutions
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example: family of linear inequalities Az < b+ vAb
e data chosen to be strictly feasible for v > 0, infeasible for v < 0

e use basic phase |, terminate when s < 0 or dual objective is positive

—_
o
o

80r  Infeasible Feasible

Newton iterations

0.5 1

T o

ju—y
o
e}
ey
o
]

Newton iterations
Newton iterations

10 —1072 _ —107* —1076 10-6 1074 1072 10°
Y Y

number of iterations roughly proportional to log(1/|v])
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