






Equivalent convex problems

two problems are (informally) equivalent if the solution of one is readily
obtained from the solution of the other, and vice-versa

some common transformations that preserve convexity:

• eliminating equality constraints

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b

is equivalent to

minimize (over z) f0(Fz + x0)
subject to fi(Fz + x0) ≤ 0, i = 1, . . . ,m

where F and x0 are such that

Ax = b ⇐⇒ x = Fz + x0 for some z
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• introducing equality constraints

minimize f0(A0x + b0)
subject to fi(Aix + bi) ≤ 0, i = 1, . . . ,m

is equivalent to

minimize (over x, yi) f0(y0)
subject to fi(yi) ≤ 0, i = 1, . . . ,m

yi = Aix + bi, i = 0, 1, . . . ,m

• introducing slack variables for linear inequalities

minimize f0(x)
subject to aT

i x ≤ bi, i = 1, . . . , m

is equivalent to

minimize (over x, s) f0(x)
subject to aT

i x + si = bi, i = 1, . . . ,m
si ≥ 0, i = 1, . . .m
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Quadratic Optimization:
Primal Active-Set
Algorithm

Consider the quadratic optimization problem

minimize 1
2x

TQx + cT x + β

subject to Ax ≥ b
(1)

where Q � 0.
Below, we reproduce the primal active-set method (the motivation for each

step was discussed in class) for optimization.
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Step 1
Input a feasible point, x0, identify the active set I0, form matrix AI0 , and
set k = 0.
Step 2
Compute gk = Qxk + c.
Check the rank condition rank[AT

Ik gk] = rank[AT
Ik ]. If it does not hold,

go to Step 4.
Step 3
Solve the system AT

Ik λ̂ = gk. If λ̂ ≥ 0, output xk as the solution and
stop; otherwise, remove the index that is associated with the most negative
Lagrange multiplier (some λ̂t) from Ik.
Step 4
Compute the value of dk:

dk = argmin
d

1
2d

TQd + (gk)T d

subject to aT
i d = 0 for i ∈ Ik

(2)

Step 5
Compute αk:

αk = min

1, min
j /∈Ik

aT
j

dk<0

aT
j xk − bj
−aT

j dk

 (3)

Set xk+1 = xk + αkdk.
Step 6
If αk < 1, construct Ik+1 by adding the index that yields the minimum
value of αk in (??). Otherwise, let Ik+1 = Ik.
Step 7
Set k = k + 1 and repeat from Step 2.

Figure 1: Optimization for the quadratic problem in (??) using Primal Active-
set Method.





Convex Optimization — Boyd & Vandenberghe

12. Interior-point methods

• inequality constrained minimization

• logarithmic barrier function and central path

• barrier method

• feasibility and phase I methods

• complexity analysis via self-concordance

• generalized inequalities
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Inequality constrained minimization

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b
(1)

• fi convex, twice continuously differentiable

• A ∈ Rp×n with rankA = p

• we assume p⋆ is finite and attained

• we assume problem is strictly feasible: there exists x̃ with

x̃ ∈ dom f0, fi(x̃) < 0, i = 1, . . . ,m, Ax̃ = b

hence, strong duality holds and dual optimum is attained
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Examples

• LP, QP, QCQP, GP

• entropy maximization with linear inequality constraints

minimize
∑n

i=1 xi log xi

subject to Fx � g
Ax = b

with dom f0 = Rn
++

• differentiability may require reformulating the problem, e.g.,
piecewise-linear minimization or ℓ∞-norm approximation via LP

• SDPs and SOCPs are better handled as problems with generalized
inequalities (see later)
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Logarithmic barrier

reformulation of (1) via indicator function:

minimize f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where I−(u) = 0 if u ≤ 0, I−(u) = ∞ otherwise (indicator function of R−)

approximation via logarithmic barrier

minimize f0(x) − (1/t)
∑m

i=1 log(−fi(x))
subject to Ax = b

• an equality constrained problem

• for t > 0, −(1/t) log(−u) is a
smooth approximation of I−

• approximation improves as t→ ∞
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logarithmic barrier function

φ(x) = −
m

∑

i=1

log(−fi(x)), domφ = {x | f1(x) < 0, . . . , fm(x) < 0}

• convex (follows from composition rules)

• twice continuously differentiable, with derivatives

∇φ(x) =

m
∑

i=1

1

−fi(x)
∇fi(x)

∇2φ(x) =

m
∑

i=1

1

fi(x)2
∇fi(x)∇fi(x)

T +

m
∑

i=1

1

−fi(x)
∇2fi(x)
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Central path

• for t > 0, define x⋆(t) as the solution of

minimize tf0(x) + φ(x)
subject to Ax = b

(for now, assume x⋆(t) exists and is unique for each t > 0)

• central path is {x⋆(t) | t > 0}

example: central path for an LP

minimize cTx
subject to aT

i x ≤ bi, i = 1, . . . , 6

hyperplane cTx = cTx⋆(t) is tangent to
level curve of φ through x⋆(t)

c

x⋆ x⋆(10)
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Dual points on central path

x = x⋆(t) if there exists a w such that

t∇f0(x) +

m
∑

i=1

1

−fi(x)
∇fi(x) +ATw = 0, Ax = b

• therefore, x⋆(t) minimizes the Lagrangian

L(x, λ⋆(t), ν⋆(t)) = f0(x) +

m
∑

i=1

λ⋆
i (t)fi(x) + ν⋆(t)T (Ax− b)

where we define λ⋆
i (t) = 1/(−tfi(x

⋆(t)) and ν⋆(t) = w/t

• this confirms the intuitive idea that f0(x
⋆(t)) → p⋆ if t→ ∞:

p⋆ ≥ g(λ⋆(t), ν⋆(t))

= L(x⋆(t), λ⋆(t), ν⋆(t))

= f0(x
⋆(t)) −m/t
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Interpretation via KKT conditions

x = x⋆(t), λ = λ⋆(t), ν = ν⋆(t) satisfy

1. primal constraints: fi(x) ≤ 0, i = 1, . . . ,m, Ax = b

2. dual constraints: λ � 0

3. approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . ,m

4. gradient of Lagrangian with respect to x vanishes:

∇f0(x) +

m
∑

i=1

λi∇fi(x) +ATν = 0

difference with KKT is that condition 3 replaces λifi(x) = 0
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Barrier method

given strictly feasible x, t := t(0) > 0, µ > 1, tolerance ǫ > 0.

repeat

1. Centering step. Compute x⋆(t) by minimizing tf0 + φ, subject to Ax = b.

2. Update. x := x⋆(t).

3. Stopping criterion. quit if m/t < ǫ.

4. Increase t. t := µt.

• terminates with f0(x) − p⋆ ≤ ǫ (stopping criterion follows from
f0(x

⋆(t)) − p⋆ ≤ m/t)

• centering usually done using Newton’s method, starting at current x

• choice of µ involves a trade-off: large µ means fewer outer iterations,
more inner (Newton) iterations; typical values: µ = 10–20

• several heuristics for choice of t(0)
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Convergence analysis

number of outer (centering) iterations: exactly

⌈

log(m/(ǫt(0)))

logµ

⌉

plus the initial centering step (to compute x⋆(t(0)))

centering problem

minimize tf0(x) + φ(x)

see convergence analysis of Newton’s method

• tf0 + φ must have closed sublevel sets for t ≥ t(0)

• classical analysis requires strong convexity, Lipschitz condition

• analysis via self-concordance requires self-concordance of tf0 + φ
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family of standard LPs (A ∈ Rm×2m)

minimize cTx
subject to Ax = b, x � 0

m = 10, . . . , 1000; for each m, solve 100 randomly generated instances
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number of iterations grows very slowly as m ranges over a 100 : 1 ratio
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Feasibility and phase I methods

feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . ,m, Ax = b (2)

phase I: computes strictly feasible starting point for barrier method

basic phase I method

minimize (over x, s) s
subject to fi(x) ≤ s, i = 1, . . . ,m

Ax = b
(3)

• if x, s feasible, with s < 0, then x is strictly feasible for (2)

• if optimal value p̄⋆ of (3) is positive, then problem (2) is infeasible

• if p̄⋆ = 0 and attained, then problem (2) is feasible (but not strictly);
if p̄⋆ = 0 and not attained, then problem (2) is infeasible
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sum of infeasibilities phase I method

minimize 1Ts
subject to s � 0, fi(x) ≤ si, i = 1, . . . ,m

Ax = b

for infeasible problems, produces a solution that satisfies many more
inequalities than basic phase I method

example (infeasible set of 100 linear inequalities in 50 variables)

bi − aT
i xmax
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bi − aT
i xsum

left: basic phase I solution; satisfies 39 inequalities
right: sum of infeasibilities phase I solution; satisfies 79 solutions
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example: family of linear inequalities Ax � b+ γ∆b

• data chosen to be strictly feasible for γ > 0, infeasible for γ ≤ 0

• use basic phase I, terminate when s < 0 or dual objective is positive
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number of iterations roughly proportional to log(1/|γ|)
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