
There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.
That is, with a good understanding of one, we can easily understand the other one. See

http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick summary!
(Better) Convergence Using Strong Convexity
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Second Order Conditions for Convexity

Theorem
A twice differential function f : D → ℜ for a nonempty open convex set D

1 is convex if and only if its domain is convex and its Hessian matrix is positive semidefinite
at each point in D. That is ∇2f(x) ⪰ 0 ∀ x ∈ D

2 is strictly convex if its domain is convex and its Hessian matrix is positive definite at each
point in D. That is ∇2f(x) ≻ 0 ∀ x ∈ D

3 is uniformly convex if and only if its domain is convex and its Hessian matrix is uniformly
positive definite at each point in D. That is, for any v ∈ ℜn and any x ∈ D, there exists
a c > 0 such that vT∇2f(x)v ≥ c||v||2
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c and m are used interchangebly as the strong convexity factor/constant



Proof of Second Order Conditions for Convexity
In other words

∇2f(x) ⪰ cIn×n
where In×n is the n× n identity matrix and ⪰ corresponds to the positive semidefinite
inequality. That is, the function f is strongly convex iff ∇2f(x)− cIn×n is positive semidefinite,
for all x ∈ D and for some constant c > 0, which corresponds to the positive minimum
curvature of f.
PROOF: We will prove only the first statement; the other two statements are proved in a
similar manner.
Necessity: Suppose f is a convex function, and consider a point x ∈ D. We will prove that for
any h ∈ ℜn, hT∇2f(x)h ≥ 0. Since f is convex, we have

f(x + th) ≥ f(x) + t∇Tf(x)h (46)

Consider the function ϕ(t) = f(x + th) defined on the domain Dϕ = [0, 1].
March 27, 2018 153 / 264



Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

ϕ′(t) =
n∑

i=1

fxi(x + th)dxidt = hT.∇f(x + th)

Since f has partial and mixed partial derivatives, ϕ′ is a differentiable function of t on Dϕ and

ϕ′′(t) = hT∇2f(x + th)h

Since ϕ and ϕ′ are continous on Dϕ and ϕ′ is differentiable on int(Dϕ), we can make use of
the Taylor’s theorem with n = 3 to obtain:

ϕ(t) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(0) + O(t3)

Writing this equation in terms of f gives
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Proof of Second Order Conditions for Convexity (contd.)
Using the chain rule,

ϕ′(t) =
n∑

i=1

fxi(x + th)dxidt = hT.∇f(x + th)

Since f has partial and mixed partial derivatives, ϕ′ is a differentiable function of t on Dϕ and

ϕ′′(t) = hT∇2f(x + th)h

Since ϕ and ϕ′ are continous on Dϕ and ϕ′ is differentiable on int(Dϕ), we can make use of
the Taylor’s theorem with n = 3 to obtain:

ϕ(t) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(0) + O(t3)

Writing this equation in terms of f gives

f(x + th) = f(x) + thT∇f(x) + t2 1
2
hT∇2f(x)h + O(t3)
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Proof of Second Order Conditions for Convexity (contd.)

In conjunction with (46), the above equation implies that

t2
2
hT∇2f(x)h + O(t3) ≥ 0

Dividing by t2 and taking limits as t → 0, we get

hT∇2f(x)h ≥ 0
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For necessary condition, take limits



Proof of Second Order Conditions for Convexity (contd.)
Sufficiency: Suppose that the Hessian matrix is positive semidefinite at each point x ∈ D.
Consider the same function ϕ(t) defined above with h = y− x for y,x ∈ D. Applying Taylor’s
theorem with n = 2 and a = 0, we obtain,

ϕ(1) = ϕ(0) + t.ϕ′(0) + t2.1
2
ϕ′′(c)

for some c ∈ (0, 1). Writing this equation in terms of f gives

f(x) = f(y) + (x − y)T∇f(y) + 1

2
(x − y)T∇2f(z)(x − y)

where z = y + c(x − y). Since D is convex, z ∈ D. Thus, ∇2f(z) ⪰ 0. It follows that

f(x) ≥ f(y) + (x − y)T∇f(y)

By a previous result, the function f is convex.
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Lipschitz Continuity vs. Strong Convexity
Lipschitz continuity of gradient (references to ∇2 assume double differentiability)

∇2f(x) ⪯ LI
∇f(x)−∇f(y)

 ≤ L∥x− y∥

f(y) ≤ f(x) +∇⊤f(x)(y− x) + L
2
∥y− x∥2

Strong convexity: Curvature should be atleast somewhat positive

∇2f(x) ⪰ mI

f(y) ≥ f(x) +∇⊤f(x)(y− x) + m
2
∥y− x∥2

▶ m = 0 corresponds to (sufficient condition for) normal convexity.
▶ Later: For example, augmented Lagrangian is used to introduce strong convexity
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Conjugate Functions, Strong Convexity and Lipschitz Continuity

Conjugate Function of f : D → ℜ: f∗(h) = sup
x∈D

(hTx − f(x))

f∗ is convex and closed (even if f is not)
∇f∗(h) = argmax

x∈D
(hTx − f(x))

If f is closed and strongly convex with parameter m, then f∗ has a Lipschitz continuous
gradient with parameter 1/m.
If f is convex and has a Lipschitz continuous gradient with parameter L, then f∗ is
strongly convex with parameter 1/L

There exits (Fenchel) duality between strong convexity and Lipschitz continuous gradient.
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lower bound on curvature of f is 1/upper bound
on curvature of f^*



f** is the convex envelope of f



increasing
slope

Shapewise f** corresponds to
a convex envelope of the
function

Homework: Find convex conjugate f* of f(x) = a x^2 + bx 
   (assume a>0 and x, a & b are Reals) 
   What will be f**?



Fenchel Duality, Strong Convexity and Lipschitz Continuity

Let f be a closed convex function on ℜn and let g be a closed concave function on ℜn.
Then, under some general conditions:

inf
x
(f(x)− g(x)) = sup

h
(g∗(h)− f∗(h))

where f∗ is the convex conjugate of f and g∗ is the concave conjugate of g
Thus, there exits (Fenchel) duality between strong convexity and Lipschitz continuous
gradient. That is, with a good understanding of one, we can easily understand the other
one. See http://xingyuzhou.org/talks/Fenchel_duality.pdf for a quick
summary!
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f

g

Primal: Find x that gives smalles gap between f and g

Dual: Find slope h that gives largest
gap between g* and f*

Since f and g are convex, the gaps are the same
Otherwise, we expect largest gap in the dual to be 
less than or equal to gap in primal



Lipschitz Continuity vs. Strong Convexity: Example

Consider the linear regression loss function f(x) = 1
2∥y − Ax∥2

∇f(x) = −AT(y − Ax)
∇2f(x) = ATA
One can show that
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Max and min eigenvalues of A^T A
characterize strong convexity and 
Lipschitz continuity respective.



Lipschitz Continuity vs. Strong Convexity: Example

Consider the linear regression loss function f(x) = 1
2∥y − Ax∥2

∇f(x) = −AT(y − Ax)
∇2f(x) = ATA
One can show that

▶ ∇2f(x) = ATA ⪯ LI where L = σmax is the largest eigenvalue of ATA
▶ ∇2f(x) = ATA ⪰ mI where m = σmin is the smallest eigenvalue of ATA
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L/m puts some bound on the condition number



Using Strong Convexity: Revisiting Convergence Analysis

f(y) ≥ f(x) +∇⊤f(x)(y− x) + m
2 ∥y− x∥2

≥ minimum value the RHS can take as a function of y
Minimum value of RHS
∇f(x) +my−mx = 0
=⇒ y = x− 1

m∇f(x)
Thus,
f(y) ≥ f(x) +∇⊤f(x)

(
− 1
m∇f(x)

)
+ m

2

− 1
m∇f(x)


2

=⇒ f(y) ≥ f(x)− 1
2m

∇f(x)
2

▶ Here, LHS is independent of x, and RHS is independent of y
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Using Strong Convexity: Revisiting Convergence Analysis (contd.)

f(x∗) ≥ f(x)− 1

2m
∇f(x)

2

If
∇f(x)

 is small, the point is nearly optimal
▶ If

∇f(x)
 ≤

√
2mϵ, then:

f(x)− f(x∗) ≤ ϵ
▶ As the gradient

∇f(x)
 approaches 0, we get closer to the optimal solution x∗
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Since f is strongly convex, and also Lipschitz continuous, we have for some L :

f(xk+1) ≤ f(xk) + (
Lt2
2

− t)
∇f(xk)


2

We also consider
0 < t ≤ 2

L(1− c1) =⇒ Lt2
2 − t ≤ −c1t

Thus, we get the exit condition of backtracking line search

f(xk+1) ≤ f(xk)− c1t
∇f(xk)


2

=⇒ f
(
xk − t∇f(xk)

)
≤ f(xk)− c1t

∇f(xk)

2

Often c1 = 1
2 . Convergence of gradient descent, given this condition, has been proved.
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Recall from previous
class

Most books and notes simplify by assuming
c1 = 1/2



Let p∗ = f(x∗)
f
(
x− t∇f(x)

)
≤ f(x)− t

∇f(x)
2 + Lt2

2

∇f(x)
2

▶ RHS here will be maximum for t = 1
L

=⇒ f
(
x− t∗∇f(x)

)
≤ f(x)− 1

2L
∇f(x)

2

=⇒ f
(
x− t∗∇f(x)

)
− p∗ ≤ f(x)− 1

2L
∇f(x)

2 − p∗

From strong convexity, we had
f(y) ≥ f(x)− 1

2m
∇f(x)

2

=⇒ p∗ ≥ f(x)− 1
2m

∇f(x)
2

=⇒
∇f(x)

2 ≥ 2m
(
f(x)− p∗

)
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Additional part: Assume STRONG CONVEXITY as well

Since f(y) was lower bounded by a function of x for all
choices of y, we should have that the minimum value
of f(y), that is p* is lower bounded by 
the same function of x



Thus,
f
(
x− t∗∇f(x)

)
− p∗ ≤ f(x)− 1

2L
∇f(x)

2 − p∗
=⇒ f

(
x− t∗∇f(x)

)
− p∗ ≤ f(x)− 2m

2L
(
f(x)− p∗

)
− p∗

=⇒ f
(
x− t∗∇f(x)

)
− p∗ ≤

(
1− m

L
) (

f(x)− p∗
)

Which is,
f(xk)− p∗ ≤

(
1− m

L
) (

f(xk−1)− p∗
)

≤
(
1− m

L
)2 (f(xk−2)− p∗

)

...
≤

(
1− m

L
)k (f(x(0))− p∗

)
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STEP 1

STEP 2

Is this Q-linear convergence... ? ANS: Yes. With r=1-m/L < 1 



We get linear convergence

f(xk)− p∗ ≤
(
1− m

L

)k (
f(x(0))− p∗

)

▶ Here, m
L ∈ (0, 1)

▶ This is, loosely speaking, faster than what we got using only Lipschitz continuity, which was:

f(xk)− p∗ ≤
���x(0)−x∗

���
2

2tk
(sublinear convergence)

Called linear convergence because plot of iterations on the x-axis, and difference in the
function values on the y-axis on a log scale makes it look linear
To obtain f(xk)− f(x∗) ≤ ϵ, we need O(log(1/ϵ)) iterations
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Because of the log scale,
some people also call
this exponential 
convergence



Summary of Convergence Rate of Gradient Descent Method
For the gradient method, it can be proved that if f is strongly convex,

f(x(k)− p∗ ≤ ρk
(
f(x(0) − p∗

)
(47)

The value of the linear convergence factor ρ ∈ (0, 1) depends on the strong convexity constant
c, the value of x(0) and type of ray search employed.
The convergence rate is 1−m/L, where L/m is proportional to the condition number of the
Hessian. Large eigenvalues correspond to high curvature directions and small eigenvalues
correspond to low curvature directions. Many methods (such as conjugate gradient) try to
improve upon the gradient method by making the hessian better conditioned. Convergence
can be very slow even for moderately well-conditioned problems, with condition number in the
100s. is only an O(n) operation. The gradient descent method however works very well if the
function is isotropic, that is if the level-curves are spherical or nearly spherical.
The convergence of the steepest descent method can be stated in the same form as in (47),
using the fact that any norm can be bounded in terms of the Euclidean norm, i.e., there exists
a constant η ∈ (0, 1] such that ||x|| ≥ η||x||2
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R-convergence assuming Strong convexity
Now, let us consider the convergence result we got by assuming Strong convexity with
backtracking and exact line searches:

f(xk)− f(x∗) ≤
(
1− m

M

)k (
f(x(0))− f(x∗)

)

Here, vk can be considered
(
1− m

M
)k

α
▶ v∗ = 0

We get
vk+1 − v∗
vk − v∗ =

(
1− m

M

)
∈ (0, 1)

▶ We now have an upper bound < 1, unlike before
As r =

(
1− m

M
)
∈ (0, 1), vk is Q-linearly convergent

▶ Thus, under strong convexity, gradient descent is R-linearly convergent
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Question: Is gradient descent under Strong convexity also Q-linearly convergent?
Recall one of the intermediate steps in getting the convergence results:
f(xk+1)− f(x∗) ≤

(
1− m

M
) (

f(xk)− f(x∗)
)

▶ =⇒ f(xk+1)−f(x∗)
f(xk)−f(x∗) ≤

(
1− m

M
)

Now, r =
(
1− m

M
)
∈ (0, 1)

Yes, gradient descent under Strong convexity is also Q-linearly convergent
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(Sub)Gradient Descent: Generalization of Gradient Descent
Given a convex function f : Rn → R, not necessarily differentiable. Subgradient method is just
like gradient descent, but replacing gradients with subgradients. I.e., initialize x(0), then repeat

x(k) = x(k−1) − tk · h(k−1), k = 1, 2, 3, · · ·

where h(k−1) is any subgradient of f at x(k−1). We keep track of best iterate xkbest among
x(1), · · · ,x(k):

f(x(k)
best) = min

i=1,··· ,k
f(x(i))

To update each x(i), there are basically two ways to select the step size:
Fixed step size: tk = t for all k = 1, 2, 3 · · ·
Diminishing step size: choose tk to satisfy

lim
k→∞

(tk) = 0 ,

∞∑

k=1

tk = ∞
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Deviation 1: Can't easily ensure
necessary condition for descent
So, keep track of best iterate...

Deviation 2: Step sizes not as per 
Wolfe conditions. Instead individually
diminishing, but collectively non-trivial
step sizes

1/k, 1/sqrt{k}... give divergent
sums
1/k^2 gives a convergent 
sum (hence unacceptable)



Subgradient Algorithm: Convergence analysis
Given the convex function f : Rn → R that satisfies:

f is Lipschitz continuous with constant l > 0,
|f(x)− f(y)| ≤ l||x − y|| for all x,y

||x(1) − x∗|| ≤ R which means it is bounded

Theorem
For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x(k)best) ≤ f(x∗) +
l2t
2

For diminishing step size such as tk = O
(

1√
k

)
,

f(x(k)best) ≤ f(x∗) + O
(

1√
k

)
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Existence of R rather than actual value matters



Subgradient Descent: Convergence Analysis (contd.)
Proof:

||x(k+1) − x∗||2 = ||x(k) − tkh(k) − x∗||2
= ||x(k) − x∗||2 − 2tk(h(k))T(x(k) − x∗) + (tk)2||h(k)||2

By definition of the subgradient method, we have

f(x∗) ≥ f(x(k)) + (h(k))T(x∗ − x(k))

−(h(k))T(x∗ − x(k)) ≤ −(f(x(k))− f(x∗))

Using this inequality, for k, k− 1, . . . i, i− 1, . . . 0 we have
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Try and characterize distance of
x^{k+1} and x* in terms of
x^k and x*

(a)

(b) 

Substituting from (b) in (a) across iterations



Subgradient Descent: Convergence Analysis (contd.)
Proof:

||x(k+1) − x∗||2 = ||x(k) − tkh(k) − x∗||2
= ||x(k) − x∗||2 − 2tk(h(k))T(x(k) − x∗) + (tk)2||h(k)||2

By definition of the subgradient method, we have

f(x∗) ≥ f(x(k)) + (h(k))T(x∗ − x(k))

−(h(k))T(x∗ − x(k)) ≤ −(f(x(k))− f(x∗))

Using this inequality, for k, k− 1, . . . i, i− 1, . . . 0 we have

||x(k+1) − x∗||2 ≤ ||x(k) − x∗||2 − 2tk(f(x(k))− f(x∗)) + (tk)2||h(k)||2

≤ ||x(1) − x∗||2 − 2

k∑

i=1

ti(f(x(i))− f(x∗)) +
k∑

i=1

(ti)2||h(i)||2
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Subgradient Descent: Convergence Analysis (contd.)

And since this is lower bounded by 0, we have

0 ≤ ||x(k+1) − x∗||2 ≤ R2 − 2
k∑

i=1

ti(f(x(i))− f(x∗)) +
k∑

i=1

(ti)2l2

⇒ 2
k∑

i=1

ti(f(x(i))− f(x∗)) ≤ R2 +
k∑

i=1

(ti)2l2

⇒ 2(
k∑

i=1

ti)(f(x(k)
best)− f(x∗)) ≤ R2 +

k∑

i=1

(ti)2l2
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Subgradient Descent: Convergence Analysis (contd.)

For a constant step size ti = t:

R2 + l2t2k
2tk → l2t

2
, as k → ∞,

and for diminishing step size, we have:
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Subgradient Descent: Convergence Analysis (contd.)

For a constant step size ti = t:

R2 + l2t2k
2tk → l2t

2
, as k → ∞,

and for diminishing step size, we have:

k∑

i=0

(ti)2 ≤ 0,

k∑

i=0

ti = ∞

therefore,
R2 + l2

∑k
i=0(ti)2

2
∑k

i=0 ti
→ 0, as k → ∞,
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Subgradient Descent: Convergence Analysis (contd.)

Consider taking ti = R/(l
√
k), for all i = 1, ..., k. Then we can obtain the following tendency:
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Subgradient Descent: Convergence Analysis (contd.)

Consider taking ti = R/(l
√
k), for all i = 1, ..., k. Then we can obtain the following tendency:

R2 + l2
∑k

i=0(ti)2

2
∑k

i=0 ti
=

Rl√
k
.

That is, subgradient method has convergence rate of O( 1√
k), and to get f(x(k)best)− f(x∗) ≤ ϵ,

needs O( 1
ϵ2
) iterations.

This is a much worse convergence rate than even O
(
1
k

)
obtained for gradient descent under

Lipschitz continuity alone.
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