
Option 1: Generalized Gradient Descent

Interesting because in many settings, proxt(z) can be computed efficiently

proxt(z) = argmin
x

1

2t ||x − z||2 + c(x)

Illustration on Lasso: x∗ = argmin
x

||Ax − y||2 + ∥x∥1. You can successively use
z = xk − t∇f(xk).
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Illustration on Lasso
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Iterative Soft Thresholding Algorithm for Solving Lasso
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Proximal Subgradient Descent for Lasso

Let ε(w) =∥ϕw − y∥22
Proximal Subgradient Descent Algorithm:
Initialization: Find starting point w(0)

▶ Let bw(k+1) be a next gradient descent iterate for ε(wk)
▶ Compute w(k+1) = argmin

w
||w − bw(k+1)||22 + λt||w||1 by setting subgradient of this

objective to 0. This results in (see
https://www.cse.iitb.ac.in/~cs709/notes/enotes/lassoElaboration.pdf )

1 ...
2 ...
3 ...

▶ Set k = k+ 1, until stopping criterion is satisfied (such as no significant changes in wk w.r.t
w(k−1))
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Iterative Soft Thresholding Algorithm (Proximal Subgradient Descent) for
Lasso

Let ε(w) =∥ϕw − y∥22
Iterative Soft Thresholding Algorithm:
Initialization: Find starting point w(0)

▶ Let bw(k+1) be a next iterate for ε(wk) computed using using any (gradient) descent
algorithm

▶ Compute w(k+1) = argmin
w

||w − bw(k+1)||22 + λt||w||1 by:

1 If bw(k+1)
i > λt/2, then w(k+1)

i = −λt/2 + bw(k+1)
i

2 If bw(k+1)
i < −λt/2, then w(k+1)

i = λt/2 + bw(k+1)
i

3 0 otherwise.
▶ Set k = k+ 1, until stopping criterion is satisfied (such as no significant changes in wk w.r.t

w(k−1))
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Basically we translated
inequalities for w into
inequalities for \hat{w}



Option 1: Generalized Gradient Descent
Recall

proxt(z) = argmin
x

1

2t ||x − z||2 + c(x)

1 Gradient Descent: c(x) = 0
2 Projected Gradient Descent: c(x) =

∑
i ICi(x)

3 Proximal Minimization: f(x) = 0

We will discuss these specific cases after a short discussion on convergence

7Else we just treat this as another minimization problem and obtain an approximate solution. Practical
convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]
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∑
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Convergence: If f(x) is convex, differentiable, and ∇f is Lipschitz continuous with
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convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]

April 3, 2018 186 / 280



Option 1: Generalized Gradient Descent
Recall

proxt(z) = argmin
x

1

2t ||x − z||2 + c(x)

1 Gradient Descent: c(x) = 0
2 Projected Gradient Descent: c(x) =

∑
i ICi(x)

3 Proximal Minimization: f(x) = 0

We will discuss these specific cases after a short discussion on convergence
Convergence: If f(x) is convex, differentiable, and ∇f is Lipschitz continuous with
constant L > 0 AND c(x) is convex and proxt(z) can be solved exactly7 then
convergence result (and proof) is similar to that for gradient descent

f(xk)− f(x∗) ≤ 1

k

k∑

i=1

(
f(xi)− f(x∗)

)
≤

x(0) − x∗

2

2tk
7Else we just treat this as another minimization problem and obtain an approximate solution. Practical

convergence rate can be very slow. Exceptions are partial proximation minimization [Bertsekas and Tseng ’94]
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Just use a convenient step size t^k = 1/L



Convergence Rate: Generalized Gradient Descent vs. Subgradient Descent

Recap: For Subgraident Descent: The subgradient method has convergence rate
O(1/

√
k); to get f(x(k)

best)− f(x∗) ≤ ϵ, we need O(1/
√
ϵ2) iterations.

This is actually the best we can do; e.g., we can’t do better than O(1/
√
k).
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Convergence Rate: Generalized Gradient Descent vs. Subgradient Descent

Recap: For Subgraident Descent: The subgradient method has convergence rate
O(1/

√
k); to get f(x(k)

best)− f(x∗) ≤ ϵ, we need O(1/
√
ϵ2) iterations.

This is actually the best we can do; e.g., we can’t do better than O(1/
√
k).

For generalized Gradient Descent: If f(x) is convex, differentiable, and ∇f is Lipschitz
continuous with constant L > 0 AND c(x) is convex and proxt(x) can be solved exactly
then convergence result (and proof) is similar to that for gradient descent

f(xk)− f(x∗) ≤ 1

k

k∑

i=1

(
f(xi)− f(x∗)

)
≤

x(0) − x∗

2

2tk

Better convergence (O(1/k)) because of assuming (i) Differentiability of f(x) and
(ii) Lipschitz continuity of ∇f(x).
Can we do even better without strong convexity (which is not possible for c(x))?
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(Nesterov) Accelerated Generalized Gradient Descent
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(Nesterov) Accelerated Generalized Gradient Descent
The problem is:

min
x∈Rn

f(x) + c(x)

where f(x) is convex and differentiable, c(x) is convex and not necessarily differentiable.
Initialize x(0)

u ∈ Rn

repeat for k = 1, 2, 3, . . .

y = x(k−1) +
k− 2

k+ 1
(x(k−1) − x(k−2))

x(k) = proxtk(y − tk∇f(y))
Or Equivalently,

y = (1− θk)x(k−1) + θkx(k−1)
u

xk = proxtk(y − tk∇f(y))

x(k)
u = x(k−1) +

1

θk
(x(k) − x(k−1))

where θk = 2/(k+ 1).
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y has replaced
your gradient 
descent update

unrestricted iterate
at k-1

real iterate at k-1



Algorithm: (Nesterov) Accelerated Generalized Gradient Descent

Initialize x(0)
u ,x(0) ∈ ℜn

Initialize k = 1
repeat
1. θk = 2/(k+ 1)

2. y = (1− θk)x(k−1) + θkx(k−1)
u .

3. Choose a step size tk > 0 using exact or backtracking ray search.
4. xk = proxtk(y − tk∇f(y))
5. x(k)

u = x(k−1) + 1
θk
(x(k) − x(k−1))

6. Set k = k+ 1.
until stopping criterion (such as ||xk − xk−1|| ≤ ϵ or f(xk) > f(xk−1)) is satisfieda

aBetter criteria can be found using Lagrange duality theory, etc.

Figure 11: The gradient descent algorithm.
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often t^k = O(1/k)

Convergence of O(1/k^2)



(Nesterov) Accelerated Generalized Gradient Descent
1 First step k = 1 is just usual generalized gradient update: x(1) = proxt1(x(0)− t1∇f(x(0)))
2 Thereafter, the method carries some ”momentum” from previous iterations
3 c(x) = 0 gives accelerated gradient method
4 The method accelerates more towards the end of iterations
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initially no momentum



(Nesterov) Accelerated Generalized Gradient Descent
Examples showing the performance of accelerated gradient descent compared with usual
gradient descent.

Figure 13: Example 1: Performance of accelerated gradient descent compared with usual gradient
descent
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Initial behaviours are 
similar for the two

Momentum helps you
accelerate only after
some time



(Nesterov) Accelerated Generalized Gradient Descent: Convergence

Minimize f(x) = f(x) + c(x) assuming that:
f is convex, differentiable, ∇f is Lipschitz with constant L > 0, and
c is convex, the prox function can be evaluated.

Theorem
Accelerated generalized gradient method with fixed step size t ≤ 1/L satisfies:

f(x(k))− f(x∗) ≤ 2||x(0) − x∗||2
t(k+ 1)2

Accelerated generalized gradient method can achieve the optimal O(1/k2) rate for first-order
method, or equivalently, if we want to get f(x(k))− f(x∗) ≤ ϵ, we only need O(1/√ϵ)
iterations. Now we prove this theorem.
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(Nesterov) Accelerated Generalized Gradient Descent: Proof
Proof:
First we bound both the convex functions f(xk) and c(xk).

Since t ≤ 1/L and ∇f is Lipschitz with constant L > 0, we have

f(xk) ≤ f(y)+∇Tf(y)(xk−y)+ L
2
||xk−y||2 ≤ f(y)+∇f(y)T(xk−y)+ 1

2t ||x
k−y||2 (48)

In xk = proxt(y − t∇f(y)), let h = xk and w = y − t∇f(y). Then

h = proxt(w) = argmin
h

1

2t ||w − h||2 + c(h)

For this, we must have

0 ∈ ∂(
1

2t ||w − h||2 + c(h)) = −1

t (w − h) + ∂c(h) ⇒ −1

t (w − h) ∈ ∂c(h)

According to the definition of subgradient, we have for all z,
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(Nesterov) Accelerated Generalized Gradient Descent: Proof
Proof:
First we bound both the convex functions f(xk) and c(xk).

Since t ≤ 1/L and ∇f is Lipschitz with constant L > 0, we have

f(xk) ≤ f(y)+∇Tf(y)(xk−y)+ L
2
||xk−y||2 ≤ f(y)+∇f(y)T(xk−y)+ 1

2t ||x
k−y||2 (48)

In xk = proxt(y − t∇f(y)), let h = xk and w = y − t∇f(y). Then

h = proxt(w) = argmin
h

1

2t ||w − h||2 + c(h)

For this, we must have

0 ∈ ∂(
1

2t ||w − h||2 + c(h)) = −1

t (w − h) + ∂c(h) ⇒ −1

t (w − h) ∈ ∂c(h)

According to the definition of subgradient, we have for all z,

c(z) ≥ c(h)− 1

t (h − w)T(z − h) ⇒ c(h) ≤ c(z) + 1

t (h − w)T(z − h)

for all z,w and h = proxt(w).
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(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)
Substituting back for both h and w in the above inequality we get for all z,

c(xk) ≤ c(z)+ 1

t (x
k−y+t∇f(y))T(z−xk) = c(z)+ 1

t (x
k−y)T(z−xk)+∇f(y)T(z−xk) (49)

Adding inequalities (48) and (49) we get for all z,

f(xk) ≤ f(y) + c(z) + 1

t (x
k − y)T(z − xk) + 1

2t ||x
k − y||2 +∇f(y)T(z − y)

Since f is convex,
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(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)
Substituting back for both h and w in the above inequality we get for all z,

c(xk) ≤ c(z)+ 1

t (x
k−y+t∇f(y))T(z−xk) = c(z)+ 1

t (x
k−y)T(z−xk)+∇f(y)T(z−xk) (49)

Adding inequalities (48) and (49) we get for all z,

f(xk) ≤ f(y) + c(z) + 1

t (x
k − y)T(z − xk) + 1

2t ||x
k − y||2 +∇f(y)T(z − y)

Since f is convex, using f(z) ≥ f(y) +∇f(y)T(z − y), we further get

f(xk) ≤ f(z) + 1

t (x
k − y)T(z − xk) + 1

2t ||x
k − y||2

Now take z = x(k−1), multiply both sides by (1− θ) and for z = x∗ multiply both sides by θ,

(1− θ)f(xk) ≤ (1− θ)f(x(k−1)) +
1− θ

t (xk − y)T(x(k−1) − xk) + 1− θ

2t ||xk − y||2

θf(xk) ≤ θf(x∗) +
θ

t (x
k − y)T(x∗ − xk) + θ

2t ||x
k − y||2
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(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)
Adding these two inequalities together, we get

f(xk)−f(x∗)−(1−θ)(f(x(k−1))−f(x∗)) ≤ 1

t (x
k − y)T((1− θ)x(k−1) + θx∗ − xk)+ 1

2t ||x
k − y||2

(50)

Using xku = x(k−1) + 1
θ (xk − x(k−1)) and y = (1− θ)x(k−1) + θx(k−1)

u , we have
(1− θ)x(k−1) + θx∗ − xk = θ(x∗ − xku) and using this again in the second equation,
xk − y = θ(xku − x(k−1)

u )

Substituting these equations into the RHS of inequality (50) we have

f(xk)− f(x∗)− (1− θ)(f(x(k−1))− f(x∗)) ≤ θ

2t(x
k
u − x(k−1)

u )
T
[2θ(x∗ − xku) + θ(xku − x(k−1)

u )]
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(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)
Adding these two inequalities together, we get

f(xk)−f(x∗)−(1−θ)(f(x(k−1))−f(x∗)) ≤ 1

t (x
k − y)T((1− θ)x(k−1) + θx∗ − xk)+ 1

2t ||x
k − y||2

(50)

Using xku = x(k−1) + 1
θ (xk − x(k−1)) and y = (1− θ)x(k−1) + θx(k−1)

u , we have
(1− θ)x(k−1) + θx∗ − xk = θ(x∗ − xku) and using this again in the second equation,
xk − y = θ(xku − x(k−1)

u )

Substituting these equations into the RHS of inequality (50) we have

f(xk)− f(x∗)− (1− θ)(f(x(k−1))− f(x∗)) ≤ θ

2t(x
k
u − x(k−1)

u )
T
[2θ(x∗ − xku) + θ(xku − x(k−1)

u )]

=
θ2

2t (x
∗ − x(k−1)

u )− (x∗ − x(k−1)
u )]

T
[(x∗ − xku) + (x∗ − x(k−1)

u )]

= dfracθ22t(||x(k−1)
u − x∗||2 − ||xku − x∗||2)

April 3, 2018 196 / 280



(Nesterov) Accelerated Generalized Gradient Descent: Proof (contd.)

t
θ2k

(f(x(k))− f(x∗)) +
1

2
||x(k)

u − x∗||2 ≤ t(1− θk)

θ2k
(f(x(k−1))− f(x∗)) +

1

2
||x(k−1)

u − x∗||2

Since θ = 2/(k+ 1), using 1−θk
θ2k

≤ 1
θ2k−1

, we have

t
θ2k

(f(x(k))− f(x∗)) +
1

2
||x(k)

u − x∗||2 ≤ t
θ2k−1

(f(x(k−1))− f(x∗)) +
1

2
||x(k−1)

u − x∗||2

Iterating this inequality and using θ1 = 1 we get
t
θ2k

(f(x(k))−f(x∗))+
1

2
||x(k)

u −x∗||2 ≤ t(1− θ1)

θ21
(f(x(0))−f(x∗))+

1

2
||x(0)

u −x∗||2 ≤ 1

2
||x(0)−x∗||2

Hence we conclude

f(x(k))− f(x∗) ≤θ2k
2t ||x

(0) − x∗||2 = 2||x(0) − x∗||2
t(k+ 1)2
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Homework:
Understand and appreciate importance of choices on \theta_k etc



Generalized Gradient Descent and its Special Cases

Recall
proxt(z) = argmin

x
1

2t ||x − z||2 + c(x)

It’s special cases are:
1 Gradient Descent: c(x) = 0

2 Projected Gradient Descent: c(x) = IC(x) (Example:

April 3, 2018 198 / 280
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constraints g_i(x) <= 0)



Generalized Gradient Descent and its Special Cases

Recall
proxt(z) = argmin

x
1

2t ||x − z||2 + c(x)

It’s special cases are:
1 Gradient Descent: c(x) = 0

2 Projected Gradient Descent: c(x) = IC(x) (Example: =
∑

i Igi(x))
3 Alternating Projection/Proximal Minimization: f(x) = 0

4 Alternating Direction Method of Multipliers
5 Special Cases for Specific Objectives

▶ LASSO: (Fast) Iterative Shrinkage Thresholding Algorithm (ISTA/FISTA)
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Accelerated ISTA ==> FISTA



Case 1: Projection Methods
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Case 1: Projected (Gradient) Descent

We can find ∆x as the change in x along some steepest descent direction of f without
constraints
Thus, let xk+1

u = xk +∆x be the working set that reduces f(x) without constraints
(unbounded)
To find the constrained working set, we project xk+1

u onto C to get the projected point
xk+1
p by solving:
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Case 1: Projected (Gradient) Descent

We can find ∆x as the change in x along some steepest descent direction of f without
constraints
Thus, let xk+1

u = xk +∆x be the working set that reduces f(x) without constraints
(unbounded)
To find the constrained working set, we project xk+1

u onto C to get the projected point
xk+1
p by solving:

x(k+1)
p = PC(x(k+1)

u ) = argmin
x(k+1)

u − z

2

2
+ IC(z) = argmin

z∈C

x(k+1)
u − z


2

2

Thus, the projected point x(k+1)
p is the point in C that is the closest to the unbounded

optimal point x(k+1)
u if C is a non-empty closed convex set
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Recall: Descent direction for a convex function

For a descent in a convex function f, we must have
f(xk+1) ≥ Value at xk+1 obtained by linear interpolation from xk

ie. f(xk+1) ≥ f(xk) +∇Tf(xk)(xk+1 − xk)
Thus, for ∆xk to be a descent direction, it is necessary that
∇Tf(xk)∆xk ≤ 0
(where ∆xk = xk+1 − xk)
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Question: Descent Direction and Projected Gradient Descent

We want that the point obtained after the projection of xk+1
u be a descent from xkp for

the function f
∇f(xk) ·∆xp ≤ 0

(where ∆x(k+1)
p = PC(xk+1

u )− xkp = x(k+1)
p − xkp)

Are we guaranteed this? [Leaving it as homework]
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Recall: For subgradient descent, we could give no such guarantee!



Algorithm: Projected Gradient Descent

Find a starting point x0
p ∈ C.

Set k = 1
repeat
1. Choose a step size tk ∝ 1/

√
k.

2. Set xku = xk−1
p − tk∇f(xk−1

p ).
3. Set xkp = argmin

z∈C

xku − z

2

2
.

4. Set k = k+ 1.
until stopping criterion (such as ||xkp − xk−1

p || ≤ ϵ or f(xkp) > f(xk−1
p )) is satisfieda

aBetter criteria can be found using Lagrange duality theory, etc.

Figure 15: The projected gradient descent algorithm.
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Use your unconstrained update

Project the unconstrained update onto the
constraints

successive iterates are almost
coinciding

Next

(more stringent is) that function value 
is consistently increasing over several 
projection iterations



Convergence of Projected Gradient Descent: Weaker assumptions
Recall: Assuming Lipschitz continuity on gradient ∇f and convexity of f and assuming
bounded iterates and assuming convexity of C (and therefore of IC) we obtained O(1/k)
convergence rate for (Generalized and hence for) Projected Gradient Descent
Assuming upper bound on norm of gradient ∇f (that is, Lipschitz continuitu of f), we get
weaker O(1/

√
k) convergence rate for Projected Gradient Descent
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Convergence of Projected Gradient Descent: Weaker assumptions
Recall: Assuming Lipschitz continuity on gradient ∇f and convexity of f and assuming
bounded iterates and assuming convexity of C (and therefore of IC) we obtained O(1/k)
convergence rate for (Generalized and hence for) Projected Gradient Descent
Assuming upper bound on norm of gradient ∇f (that is, Lipschitz continuitu of f), we get
weaker O(1/

√
k) convergence rate for Projected Gradient Descent

Proof: To project xk+1
u = xk − t∇f(xk) onto the non-empty closed convex set C to get

the projected point xk+1
p , we solve:xk+1

p = PC(xk+1
u ) = argminz∈C

xk+1
u − z


2

2

∥x∗ − xk+1
u ∥2 = ∥x∗ − xk∥2 − 2t∇f(xk)(xk − x∗) + t2|∇f(xk)|2 (51)

If: (i) d is diameter of C, i.e., ∀x,y ∈ C, ∥x − y∥ ≤ d (ii) l is upper bound on norm of
gradients, i.e., ∥∇f(x)∥ ≤ l and (iv) step size t = d

l
√
K , then substituting for l into (51)

∥x∗ − xk+1
u ∥2 ≤ ∥x∗ − xk∥2 − 2t∇f(xk)(xk − x∗) + t2l2 (52)
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Homework



Convergence of Proj. Grad. Descent: Weaker assumptions (contd.)
Further, based on (52)

2t∇f(xk)(xk − x∗) ≤ ∥x∗ − xk∥2 − ∥x∗ − xk+1
u ∥2 + t2l2 (53)

As per definition of convexity:

f


 1

K

K∑

k=1

xk

− f(x∗) ≤ 1

K

K∑

k=1

(
f(xk)− f(x∗)

)
≤ 1

K

K∑

k=1

∇f(xk)(xk − x∗) (54)

Substituting for ∇f(xk)(xk − x∗) from (53) into (54), we get (55):

f


 1

K

K∑

k=1

xk

− f(x∗) ≤ 1

2tK

K∑

k=1

(
∥x∗ − xk∥2 − ∥x∗ − xk+1

u ∥2 + t2l2
)

(55)
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Convergence of Proj. Grad. Descent: Weaker assumptions (contd.)

Expanding the summation over ∥x∗ − xk∥2, all terms get canceled except for the first and
last:

f


 1

K

K∑

k=1

xk

− f(x∗) ≤ 1

2tK
(
∥x∗ − x0∥2 − ∥x∗ − xK+1

u ∥2
)
+

tl2
2

(56)

Since d is diameter of C, i.e., ∥x∗ − x0∥2 ≤ d2 and since −∥x∗ − xK+1
u ∥2 ≤ 0,

f


 1

K

K∑

k=1

xk

− f(x∗) ≤ 1

2tK
(
d2
)
+

tl2
2

≤ dl√
K

(57)

Therefore, if t = d
l
√
K , f


 1

K

K∑

k=1

xk

 ≤ min

x∈C
f(x) + dl√

K
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Convergence of Proj. Grad. Descent: Weaker assumptions (contd.)

To get solution that is ϵ approximate with ϵ = dg√
K , you need number of gradient

iterations that is K =
(

dg
ϵ

)2
= O

(
1
ϵ

)2
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Demystifying the Projection Step

x(k+1)
p = PC(x(k+1)

u ) = argmin
z

x(k+1)
u − z


2

2
+ IC(z)

= argmin
z∈C

x(k+1)
u − z


2

2
= argmin

z∈C
1

2

x(k+1)
u − z


2

2
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Easy to Project Sets C (with closed form solutions)

Solution set of a linear system C = {x ∈ ℜn : ATx = b}
Affine images C = {Ax + b : x ∈ ℜn}
Nonnegative orthant C = {x ∈ ℜn : x ⪰ 0}. It may be hard to project on arbitrary
polyhedron.
Norm balls C = {x ∈ ℜn : ∥x∥p ≤ 1}, for p = 1, 2,∞
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Your assignment 1 is primarily the first constraint 
(and possibly also third)

Needs more tools (Lagrange)



Projected Gradient Descent for Affine Constraint Set C

Solution set of a linear system C = {x ∈ ℜn : ATx = b}

x(k+1)
p = PC(x(k+1)

u )= arg min
ATz=b

1

2

x(k+1)
u − z


2

2

For z,x ∈ ℜn, A as an n×m matrix, b is a vector of size m, consider the slightly more general
problem (58) with B as an n× n matrix:

min
z∈ℜn

1
2(z − x)TB(z − x)

subject to ATz = b
(58)

For projected gradient descent, B =
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I (identity matrix)



Projected Gradient Descent for Affine Constraint Set C

Solution set of a linear system C = {x ∈ ℜn : ATx = b}

x(k+1)
p = PC(x(k+1)

u )= arg min
ATz=b

1

2

x(k+1)
u − z


2

2

For z,x ∈ ℜn, A as an n×m matrix, b is a vector of size m, consider the slightly more general
problem (58) with B as an n× n matrix:

min
z∈ℜn

1
2(z − x)TB(z − x)

subject to ATz = b
(58)

For projected gradient descent, B = I. Further, if n = 2 and m = 1, the minimization problem
(58) amounts to finding a point y∗ on a line a11z1 + a12z2 = b that is closest to x.
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Expect y* to lie on the line/plane such x--y* is perpendicular to the line/plane



Projected Gradient Descent for Affine Constraint Set C
Consider minimization of the modified objective function
L(z,λ) = 1

2(z − x)TB(z − x) + λT(ATz − b).

min
z∈ℜn,λ∈ℜm

1
2(z − x)TB(z − x) + λT(ATz − b) (59)

The function L(z,λ) is called the lagrangian and involves the lagrange multiplier λ ∈ ℜm.
A sufficient condition for optimality of L(z,λ) at a point L(z∗,λ∗) is that ∇L(z∗,λ∗) = 0
and ∇2L(z∗,λ∗) ≻ 0. For this specific problem:

∇L(z∗,λ∗) =

[
Bz∗ − 1

2(B+ BT)x + Aλ∗

ATz∗ − b

]
=

[
0
0

]

and

∇2L(z∗,λ∗) =

[
B A
AT 0

]
≻ 0
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Constraint that should disappear
is multiplied with a penalty lambda



Projected Gradient Descent for Affine Constraint Set C
The point (z∗,λ∗) must therefore satisfy, ATz∗ = b and Aλ∗ = −Bz∗ + 1

2(B+ BT)x.
Recap: If B is taken to be the identity matrix, n = 2 and m = 1, the minimization problem
(58) amounts to finding a point y∗ on a line a11z1 + a12z2 = b that is closest to x.
From geometry, the point on a line closest to x is the point of intersection p∗ of a
perpendicular (or least possible8 obtuse angle) from the origin to the line. However, the
solution for the minimum of (59), for these conditions coincides with p∗ and is given by:

z∗1 = x1 − a11(a11x1+a12x2−b
(a11)2+(a12)2 z∗2 = x2 − a12(a11x1+a12x2−b)

(a11)2+(a12)2

That is, for n = 2 and m = 1, the solution to (59) is the same as the solution to (58)
For general n and m,

z∗ = x(k+1)
p = PC(x(k+1)

u ) = arg min
ATz=b

1

2

x(k+1)
u − z


2

2
= x(k+1)

u − A(ATA)−1(ATx(k+1)
u − b)

8See following slides for some elaboration on geometry of the projection
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Elaboration on the Geometry of the Project
Right angle FOR Affine Set/Unbounded sets

Least possible obtuse angle FOR
Polyhedron/Bounded Sets
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Claim: If PC(x) is a projection of x, then
(
z − PC(x)

)⊤ (x − PC(x)
)
≤ 0, ∀ z ∈ C

That is, the angle between
(
z− PC(x)

)
and

(
x− PC(x)

)
is obtuse (or right-angled for the

projected point), ∀z ∈ C
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Proof for
⟨
z − PC(x), x − PC(x)

⟩
≤ 0

To be more general, let us consider an inner product ⟨a, b⟩ instead of a⊤b
Let z∗ = (1− α)PC(x) + αz, for some α ∈ (0, 1), and z ∈ C
=⇒ z∗ = PC(x) + α(z− PC(x)), z∗ ∈ C

Since PC(x) = argminz∈C∥x− z∥22,x− PC(x)
2 ≤∥x− z∗∥2
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∥x− z∗∥2

=
x−

(
PC(x) + α(z− PC(x))

)
2

=
x− PC(x)

2 + α2
z− PC(x)

2 − 2α
⟨
x− PC(x), z− PC(x)

⟩

≥
x− PC(x)

2

=⇒
⟨
x− PC(x), z− PC(x)

⟩
≤ α

2

z− PC(x)
2 , ∀α ∈ (0, 1)

Thus, the LHS can either be 0 or a negative value. Any positive value of the LHS will
lead to a contradiction for some small α → 0

Hence, we proved that
⟨
z− PC(x), x− PC(x)

⟩
≤ 0
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We can also prove that if ⟨x− x∗, z− x∗⟩ ≤ 0, ∀z ∈ C s.t. z ̸= x∗, and x∗ ∈ C, then

x∗ = PC(x) = argmin
z̄∈C

∥x− z̄∥22

Consider ∥x− z∥2 −∥x− x∗∥2
=
x− x∗ + (x∗ − z)

2 −∥x− x∗∥2
=∥x− x∗∥2 +∥z− x∗∥2 − 2 ⟨x− x∗, z− x∗⟩ −∥x− x∗∥2
=∥z− x∗∥2 − 2 ⟨x− x∗, z− x∗⟩
> 0

=⇒ ∥x− z∥2 >∥x− x∗∥2, ∀z ∈ C s.t. z ̸= x∗

This proves that x∗ = PC(x)
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