
Demystifying the Projection Step
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Easy to Project Sets C (with closed form solutions)

Solution set of a linear system C = {x ∈ ℜn : ATx = b}
Affine images C = {Ax + b : x ∈ ℜn}
Nonnegative orthant C = {x ∈ ℜn : x ⪰ 0}. It may be hard to project on arbitrary
polyhedron.
Norm balls C = {x ∈ ℜn : ∥x∥p ≤ 1}, for p = 1, 2,∞
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Projected Gradient Descent for Affine Constraint Set C

Solution set of a linear system C = {x ∈ ℜn : ATx = b}

x(k+1)
p = PC(x(k+1)

u )= arg min
ATz=b

1

2




x(k+1)
u − z





2

2

For z,x ∈ ℜn, A as an n×m matrix, b is a vector of size m, consider the slightly more general
problem (58) with B as an n× n matrix:

min
z∈ℜn

1
2(z − x)TB(z − x)

subject to ATz = b
(58)

For projected gradient descent, B =
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Projected Gradient Descent for Affine Constraint Set C

Solution set of a linear system C = {x ∈ ℜn : ATx = b}

x(k+1)
p = PC(x(k+1)

u )= arg min
ATz=b

1

2




x(k+1)
u − z





2

2

For z,x ∈ ℜn, A as an n×m matrix, b is a vector of size m, consider the slightly more general
problem (58) with B as an n× n matrix:

min
z∈ℜn

1
2(z − x)TB(z − x)

subject to ATz = b
(58)

For projected gradient descent, B = I. Further, if n = 2 and m = 1, the minimization problem
(58) amounts to finding a point y∗ on a line a11z1 + a12z2 = b that is closest to x.
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Projected Gradient Descent for Affine Constraint Set C
Consider minimization of the modified objective function
L(z,λ) = 1

2(z − x)TB(z − x) + λT(ATz − b).

min
z∈ℜn,λ∈ℜm

1
2(z − x)TB(z − x) + λT(ATz − b) (59)

The function L(z,λ) is called the lagrangian and involves the lagrange multiplier λ ∈ ℜm.
A sufficient condition for optimality of L(z,λ) at a point L(z∗,λ∗) is that ∇L(z∗,λ∗) = 0
and ∇2L(z∗,λ∗) ≻ 0. For this specific problem:

∇L(z∗,λ∗) =

[
Bz∗ − 1

2(B+ BT)x + Aλ∗

ATz∗ − b

]
=

[
0
0

]

and

∇2L(z∗,λ∗) =

[
B A
AT 0

]
≻ 0
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Projected Gradient Descent for Affine Constraint Set C
The point (z∗,λ∗) must therefore satisfy, ATz∗ = b and Aλ∗ = −Bz∗ + 1

2(B+ BT)x.
Recap: If B is taken to be the identity matrix, n = 2 and m = 1, the minimization problem
(58) amounts to finding a point y∗ on a line a11z1 + a12z2 = b that is closest to x.
From geometry, the point on a line closest to x is the point of intersection p∗ of a
perpendicular (or least possible8 obtuse angle) from x to the line. However, the solution
for the minimum of (59), for these conditions coincides with p∗ and is given by:

z∗1 = x1 − a11(a11x1+a12x2−b
(a11)2+(a12)2 z∗2 = x2 − a12(a11x1+a12x2−b)

(a11)2+(a12)2

That is, for n = 2 and m = 1, the solution to (59) is the same as the solution to (58)
For general n and m,

z∗ = x(k+1)
p = PC(x(k+1)

u ) = arg min
ATz=b

1

2




x(k+1)
u − z





2

2
= x(k+1)

u − A(ATA)−1(ATx(k+1)
u − b)

8See following slides for some elaboration on geometry of the projection
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Projected Gradient Descent: Illustrated and Summarized

Illustration of Projected Gradient Descent on
Quadratic Objective with bounded affine
(Polyhedral) constraint set
The line joining point of projection xkp = PC(xku) to
xku forms least possible obtuse anglea with line
joining xkp = PC(xku) to any point z ∈ C.

aSee following slides for some elaboration on geometry of the projection
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Elaboration on the Geometry of the Projected
Gradient Descent

Right angle FOR Affine Set/Unbounded sets
Least possible obtuse angle FOR
Polyhedron/Bounded Sets
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Claim: If PC(x) is a projection of x, then
(
z − PC(x)

)⊤ (x − PC(x)
)
≤ 0, ∀ z ∈ C

That is, the angle between
(
z− PC(x)

)
and

(
x− PC(x)

)
is obtuse (or right-angled for the

projected point), ∀z ∈ C
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At x we get a 
right angle
at projection At x' we make an obtuse angle at projection



Proof for
⟨
z − PC(x), x − PC(x)

⟩
≤ 0

To be more general, let us consider an inner product ⟨a, b⟩ instead of a⊤b
Let z∗ = (1− α)PC(x) + αz, for some α ∈ (0, 1), and z ∈ C
=⇒ z∗ = PC(x) + α(z− PC(x)), z∗ ∈ C

Since PC(x) = argminz∈C∥x− z∥22,

x− PC(x)


2 ≤∥x− z∗∥2
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∥x− z∗∥2

=



x−

(
PC(x) + α(z− PC(x))

)



2

=


x− PC(x)



2 + α2


z− PC(x)



2 − 2α
⟨
x− PC(x), z− PC(x)

⟩

≥


x− PC(x)



2

=⇒
⟨
x− PC(x), z− PC(x)

⟩
≤ α

2



z− PC(x)


2 , ∀α ∈ (0, 1)

Thus, the LHS can either be 0 or a negative value. Any positive value of the LHS will
lead to a contradiction for some small α → 0

Hence, we proved that
⟨
z− PC(x), x− PC(x)

⟩
≤ 0
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We can also prove that if ⟨x− x∗, z− x∗⟩ ≤ 0, ∀z ∈ C s.t. z ̸= x∗, and x∗ ∈ C, then

x∗ = PC(x) = argmin
z̄∈C

∥x− z̄∥22

Consider ∥x− z∥2 −∥x− x∗∥2
=


x− x∗ + (x∗ − z)



2 −∥x− x∗∥2
=∥x− x∗∥2 +∥z− x∗∥2 − 2 ⟨x− x∗, z− x∗⟩ −∥x− x∗∥2
=∥z− x∗∥2 − 2 ⟨x− x∗, z− x∗⟩
> 0

=⇒ ∥x− z∥2 >∥x− x∗∥2, ∀z ∈ C s.t. z ̸= x∗

This proves that x∗ = PC(x)
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If x* is in the set C, it itself must be the projection



Lagrange Function and KKT Conditions
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Lagrange Function and Necessary KKT Conditions

Can the Lagrange Multiplier construction be generalized to always find optimal solutions
to a minimization problem?
Instead of the iterative path again, assume everything can be computed analytically
Attributed to the mathematician Lagrange (born in 1736 in Turin). Largely worked on
mechanics, the calculus of variations probability, group theory, and number theory.
Attributed choice of base 10 for the metric system (rather than 12).
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Projected gradient descent is only one consumer for this analysis.
There are several other results and algorithms that make use of this analysis



Lagrange Function and Necessary KKT Conditions

Consider the equality constrained minimization
problem (with D ⊆ ℜn)

min
x∈D

f(x)
subject to gi(x) = 0 i = 1, 2, . . . ,m

(60)

The figure shows some level curves of the function f
and of a single constraint function g1 (dotted lines)
The gradient of the constraint ∇g1 is not parallel to
the gradient ∇f of the function at f = 10.4; it is
therefore possible to
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g1(x) = 0 (by moving
tangential to g1(x) = 0



Lagrange Function and Necessary KKT Conditions

Consider the equality constrained minimization
problem (with D ⊆ ℜn)

min
x∈D

f(x)
subject to gi(x) = 0 i = 1, 2, . . . ,m

(60)

The figure shows some level curves of the function f
and of a single constraint function g1 (dotted lines)
The gradient of the constraint ∇g1 is not parallel to
the gradient ∇f of the function at f = 10.4; it is
therefore possible to move along the constraint
surface so as to further reduce f.
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Lagrange Function and Necessary KKT Conditions

However, ∇g1 and ∇f are parallel at f = 10.3, and
any motion along g1(x) = 0 will
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not change the value of f(x) since gradient 
of f has no component perpendicular to the
gradient of g1(x) = 0

At x s.t f(x) = 10.3, 
gradient of f = \lambda gradient of g1
sign of \lambda does not matter



Lagrange Function and Necessary KKT Conditions

However, ∇g1 and ∇f are parallel at f = 10.3, and
any motion along g1(x) = 0 will increase f, or leave
it unchanged.
Hence, at the solution x∗,
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Lagrange Function and Necessary KKT Conditions

However, ∇g1 and ∇f are parallel at f = 10.3, and
any motion along g1(x) = 0 will increase f, or leave
it unchanged.
Hence, at the solution x∗, ∇f(x∗) must be
proportional to −∇g1(x∗), yielding,
∇f(x∗) = −λ∇g1(x∗), for some constant λ ∈ ℜ; λ
is called a Lagrange multiplier.
Often λ itself need never be computed and
therefore often qualified as the undetermined
lagrange multiplier.
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Lagrange Function and Necessary KKT Conditions

The necessary condition for an optimum at x∗ for the optimization problem in (60) with
m = 1 can be stated as in (61); the gradient is now in
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Lagrange Function and Necessary KKT Conditions

The necessary condition for an optimum at x∗ for the optimization problem in (60) with
m = 1 can be stated as in (61); the gradient is now in ℜn+1 with its last component
being a partial derivative with respect to λ.

∇L(x∗,λ∗) = ∇f(x∗) + λ∗∇g1(x∗) = 0 (61)

The solutions to (61) are the stationary points of the lagrangian L; they are not
necessarily local extrema of L. L is unbounded: given a point x that doesn’t lie on the
constraint, letting λ → ±∞ makes L arbitrarily large or small. However, under certain
stronger assumptions, if the strong Lagrangian principle holds, the minima of f minimize
the Lagrangian globally.
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Lagrange Function and Necessary KKT Conditions

Let us extend the necessary condition for optimality of a minimization problem with single
constraint to minimization problems with multiple equality constraints (i.e., m > 1. in
(60)).
Let S be the subspace spanned by ∇gi(x) at any point x and let S⊥ be its orthogonal
complement. Let (∇f)⊥ be the component of ∇f in the subspace S⊥.
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There is no component of gradient f perpendiculat to S
SAME AS

gradient of f lies in S



Lagrange Function and Necessary KKT Conditions

Let us extend the necessary condition for optimality of a minimization problem with single
constraint to minimization problems with multiple equality constraints (i.e., m > 1. in
(60)).
Let S be the subspace spanned by ∇gi(x) at any point x and let S⊥ be its orthogonal
complement. Let (∇f)⊥ be the component of ∇f in the subspace S⊥.
At any solution x∗, it must be true that the gradient of f has (∇f)⊥ = 0 (i.e., no
components that are perpendicular to all of the ∇gi), because otherwise you could move
x∗ a little in that direction (or in the opposite direction) to increase (decrease) f without
changing any of the gi, i.e. without violating any constraints.
Hence for multiple equality constraints, it must be true that at the solution x∗, the space
S contains the vector ∇f, i.e., there are some constants λi such that ∇f(x∗) = λi∇gi(x∗).
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Lagrange Multipliers with Inequality Constraints

We also need to impose that the solution is on the correct constraint surface (i.e.,
gi = 0, ∀i). In the same manner as in the case of m = 1, this can be encapsulated by

introducing the Lagrangian L(x,λ) = f(x)−
m∑

i=1

λigi(x), whose gradient with respect to

both x, and λ vanishes at the solution.
This gives us the following necessary condition for optimality of (60):

∇L(x∗,λ∗) = ∇


f(x)−

m∑

i=1

λigi(x)


 = 0 (62)
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Lagrange Multipliers with Inequality Constraints
Single equality constraint g1(x) = 0, replaced with
a single inequality constraint g1(x) ≤ 0. The entire
region labeled g1(x) ≤ 0 in the Figure becomes
feasible.
At the solution x∗, if g1(x∗) = 0, i.e., if the
constraint is active, we must have
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gradient of f(x*) has no component
perpendicular to gradient g1(x*)

AND

- gradient of f(x*) is not along direction
of - gradient of g1(x*)

THAT IS, the two gradients MUST be in 
opposite directions



Lagrange Multipliers with Inequality Constraints
Single equality constraint g1(x) = 0, replaced with
a single inequality constraint g1(x) ≤ 0. The entire
region labeled g1(x) ≤ 0 in the Figure becomes
feasible.
At the solution x∗, if g1(x∗) = 0, i.e., if the
constraint is active, we must have (as in the case of
a single equality constraint) that ∇f is parallel to
∇g1, by the same argument as before.
Additionally, necessary for the two gradients to
point in
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Lagrange Multipliers with Inequality Constraints
Single equality constraint g1(x) = 0, replaced with
a single inequality constraint g1(x) ≤ 0. The entire
region labeled g1(x) ≤ 0 in the Figure becomes
feasible.
At the solution x∗, if g1(x∗) = 0, i.e., if the
constraint is active, we must have (as in the case of
a single equality constraint) that ∇f is parallel to
∇g1, by the same argument as before.
Additionally, necessary for the two gradients to
point in opposite directions; else a move away from
the surface g1 = 0 and into the feasible region
would further reduce f.
With Lagrangian L = f+ λg1, an additional
constraint is that
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Lagrange Multipliers with Inequality Constraints
Single equality constraint g1(x) = 0, replaced with
a single inequality constraint g1(x) ≤ 0. The entire
region labeled g1(x) ≤ 0 in the Figure becomes
feasible.
At the solution x∗, if g1(x∗) = 0, i.e., if the
constraint is active, we must have (as in the case of
a single equality constraint) that ∇f is parallel to
∇g1, by the same argument as before.
Additionally, necessary for the two gradients to
point in opposite directions; else a move away from
the surface g1 = 0 and into the feasible region
would further reduce f.
With Lagrangian L = f+ λg1, an additional
constraint is that λ ≥ 0
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Lagrange Multipliers with Inequality Constraints

If the constraint is not active at the solution
∇f(x∗) = 0, then removing g1
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Lagrange Multipliers with Inequality Constraints

If the constraint is not active at the solution
∇f(x∗) = 0, then removing g1 makes no difference
and we can drop it from L = f+ λg1,
This is equivalent to setting
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Lagrange Multipliers with Inequality Constraints

If the constraint is not active at the solution
∇f(x∗) = 0, then removing g1 makes no difference
and we can drop it from L = f+ λg1,
This is equivalent to setting λ = 0.
Thus, whether or not the constraints g1 = 0 are
active, we can find the solution by requiring that

1 the gradients of the Lagrangian vanish, and
2 λg1(x∗) = 0.

This latter condition is one of the important
Karush-Kuhn-Tucker conditions of convex
optimization theory that can facilitate the search
for the solution and will be more formally discussed
subsequently.
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Lagrange Multipliers with Inequality Constraints
Now consider the general inequality constrained
minimization problem

min
x∈D

f(x)
subject to gi(x) ≤ 0 i = 1, 2, . . . ,m

(63)

With multiple inequality constraints, for constraints
that are active, (as in the case of multiple equality
constraints),

1 ∇f must lie in the space spanned by the ∇gi’s,

2 if the Lagrangian is L = f+
m∑

i=1

λigi, then we must

also have λi ≥ 0, ∀i (since otherwise f could be
reduced by moving into the feasible region).
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Lagrange Multipliers with Inequality Constraints
As for an inactive constraint gj (gj < 0), removing
gj from L makes no difference and we can drop ∇gj

from ∇f = −
m∑

i=1

λi∇gi or equivalently set λj = 0.

Thus, the foregoing KKT condition generalizes to
λigi(x∗) = 0, ∀i.
The necessary condition for optimality of (67) is
summarized as:

∇L(x∗,λ∗) = ∇


f(x)−

m∑

i=1

λigi(x)


 = 0

∀i λigi(x) = 0 (64)

A simple and often useful trick called the freeApril 5, 2018 229 / 303



Some Algebraic Justification: Lagrange Multipliers
with Inequality Constraints
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Algebraic Justification: Lagrange Multipliers with Inequality Constraints
For the constrained optimization problem

min
x∈D

f(x)
subject to x ∈ C

(65)

x∗ = argmin
x∈C

f(x) ⇐⇒ argmin
x

f(x)+IC(x), where IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

NC(x) = ∂IC(x) =
{

h ∈ ℜn
���hTx ≥ hTz for any z ∈ C

}
=
{

h ∈ ℜn
���hT(x − z) ≥ 0 for any

Necessary condition for optimality at x∗: 0 ∈
{

x∗ ��∇f(x∗) + NC(x∗)
}
, that is,

∇f(x∗) = −NC(x∗) = 0 and therefore

∇Tf(x∗)(z − x∗) ≥ 0 for any z ∈ C (66)

April 5, 2018 231 / 303

zero belongs to the subdifferential
Negative of gradient of f at x*
must lie in normal cone



Algebraic Justification: Lagrange Multipliers with Inequality
Constraints(contd.)

Specifically, let C =
{

x ∈ ℜn ��gi(x) ≤ 0 ∀ i = 1, 2, . . . ,m
}

min
x∈D

f(x)
subject to gi(x) ≤ 0 i = 1, 2, . . . ,m

(67)

Assume that each gi is convex and is differentiable. Then, we must have, for each i,

∇Tgi(x∗)(z − x∗) + gi(x∗) ≤ gi(z) for any z ∈ C (68)

Since gi(z) ≤ 0 whenever z ∈ C,
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First order condition for convexity
of gi



Algebraic Justification: Lagrange Multipliers with Inequality
Constraints(contd.)

Specifically, let C =
{

x ∈ ℜn ��gi(x) ≤ 0 ∀ i = 1, 2, . . . ,m
}

min
x∈D

f(x)
subject to gi(x) ≤ 0 i = 1, 2, . . . ,m

(67)

Assume that each gi is convex and is differentiable. Then, we must have, for each i,

∇Tgi(x∗)(z − x∗) + gi(x∗) ≤ gi(z) for any z ∈ C (68)

Since gi(z) ≤ 0 whenever z ∈ C,

∇Tgi(x∗)(z − x∗) + gi(x∗) ≤ 0 for any z ∈ C
⇒ −∇Tgi(x∗)(z − x∗)− gi(x∗) ≥ 0 for any z ∈ C (69)
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Algebraic Justification: Lagrange Multipliers with Inequality
Constraints(contd.)

Since any non-negative scalar (such as in (66)) is a linear combination of non-negative
scalars (such as in (69)) with non-negative weights, there exists scalar (vector) λ ∈ ℜm

+

such that

∇Tf(x∗)(z − x∗) =
m∑

i=1

−λi∇Tgi(x∗)(z − x∗)− λigi(x∗) for any z ∈ C (70)

Since (70) must hold for any z ∈ C and since x∗ ∈ C, we should have λigi(x∗) = 0. Since
the equality (70) should also continuously hold on the convex set C, we must also have

∇f(x∗) =
m∑

i=1

−λi∇gi(x∗), that is ∇f(x∗) +
m∑

i=1

λi∇gi(x∗) = 0

Since any equality constraint hj(x) = 0 can be expressed as two inequality constraints:
hj(x) ≥ 0 and −hj(x) ≥ 0, the corresponding lagrange multiplier µj will have no sign
constraints.
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Duality Theory for Constrained Optimization
A tricky thing in duality theory is to decide what we call the domain or ground set D and what

we call the constraints gi’s or hj’s. Based on whether constraints are explicitly stated or
implicitly stated in the form of the ground set, the dual problem could be very different. Thus,

many duals are possible for the given primal.
For the rest of the discussion D will mostly mean ℜn
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Formally: The Dual Theory for Constrained Optimization
Consider the general constrained minimization problem

min
x∈D

f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . ,m
subject to hj(x) = 0, j = 1, 2, . . . , n

(71)

Consider forming the lagrange function by associating prices (called lagrange multipliers)
λi and µj , with constraints involving gi and hj respectively.

L(x,λ, µ) = f(x) +
n∑

i=1

λigi(x) +
n∑

j=1

µjhj(x) = f(x) + λTg(x) + µTh(x)

At each feasible x, for fixed λi ≥ 0 ∀i ∈ {1..m},
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f(x) is lower bounded by the value of the Lagrange function
for all primal feasible x and dual feasible \lambda



Formally: The Dual Theory for Constrained Optimization
Consider the general constrained minimization problem

min
x∈D

f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . ,m
subject to hj(x) = 0, j = 1, 2, . . . , n

(71)

Consider forming the lagrange function by associating prices (called lagrange multipliers)
λi and µj , with constraints involving gi and hj respectively.

L(x,λ, µ) = f(x) +
n∑

i=1

λigi(x) +
n∑

j=1

µjhj(x) = f(x) + λTg(x) + µTh(x)

At each feasible x, for fixed λi ≥ 0 ∀i ∈ {1..m},

f(x) ≥ L(x,λ, µ) if gi(x) ≤ 0 & hj(x) = 0 (72)
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Formally: The Dual Theory for Constrained Optimization
For λi ≥ 0 ∀i ∈ {1..m} and µj, minimizing the right hand side of (72) over all feasible x

f(x) ≥ min
x s.t gi(x)≤0,hj(x)=0

L(x,λ, µ) ∆
= L∗(λ, µ) (73)

L∗(λ, µ) is a pointwise (w.r.t x ∈ gi(x) ≤ 0, hj(x) = 0) minimum of linear functions
(L(x,λ, µ)) and is therefore always a
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RECAP: Pointwise max/supremum of affine functions is always convex

L(...) for a fixed x is affine function of lambda and mu

concave



Formally: The Dual Theory for Constrained Optimization
For λi ≥ 0 ∀i ∈ {1..m} and µj, minimizing the right hand side of (72) over all feasible x

f(x) ≥ min
x s.t gi(x)≤0,hj(x)=0

L(x,λ, µ) ∆
= L∗(λ, µ) (73)

L∗(λ, µ) is a pointwise (w.r.t x ∈ gi(x) ≤ 0, hj(x) = 0) minimum of linear functions
(L(x,λ, µ)) and is therefore always a concave function.
Since f(x) ≥ L∗(λ, µ) for all primal feasible x and dual feasible i.e., λi ≥ 0 and µj, , we
can maximize the lower bound L∗(λ, µ) to give the following Dual Problem

max
λ∈ℜm,µ∈ℜp

L∗(λ, µ)
subject to λ ≥ 0

(74)

Theorem
(i) The dual function L∗(λ, µ) is always concave. (ii) If p∗ is solution of (71) and d∗ of (74)
then p∗ ≥ d∗
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