
Duality Theory for Constrained Optimization
A tricky thing in duality theory is to decide what we call the domain or ground set D and what

we call the constraints gi’s or hj’s. Based on whether constraints are explicitly stated or
implicitly stated in the form of the ground set, the dual problem could be very different. Thus,

many duals are possible for the given primal.
For the rest of the discussion D will mostly mean ℜn
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Formally: The Dual Theory for Constrained Optimization
Consider the general constrained minimization problem

min
x∈D

f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . ,m
subject to hj(x) = 0, j = 1, 2, . . . , n

(71)

Consider forming the lagrange function by associating prices (called lagrange multipliers)
λi and µj , with constraints involving gi and hj respectively.

L(x,λ, µ) = f(x) +
n∑

i=1

λigi(x) +
n∑

j=1

µjhj(x) = f(x) + λTg(x) + µTh(x)

At each feasible x, for fixed λi ≥ 0 ∀i ∈ {1..m},
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Formally: The Dual Theory for Constrained Optimization
Consider the general constrained minimization problem

min
x∈D

f(x)
subject to gi(x) ≤ 0, i = 1, 2, . . . ,m
subject to hj(x) = 0, j = 1, 2, . . . , n

(71)

Consider forming the lagrange function by associating prices (called lagrange multipliers)
λi and µj , with constraints involving gi and hj respectively.

L(x,λ, µ) = f(x) +
n∑

i=1

λigi(x) +
n∑

j=1

µjhj(x) = f(x) + λTg(x) + µTh(x)

At each feasible x, for fixed λi ≥ 0 ∀i ∈ {1..m},

f(x) ≥ L(x,λ, µ) if gi(x) ≤ 0 & hj(x) = 0 (72)
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Formally: The Dual Theory for Constrained Optimization
For λi ≥ 0 ∀i ∈ {1..m} and µj, minimizing the right hand side of (72) over all feasible x

f(x) ≥ min
x s.t gi(x)≤0,hj(x)=0

L(x,λ, µ) ∆
= L∗(λ, µ) (73)

L∗(λ, µ) is a pointwise (w.r.t x ∈ gi(x) ≤ 0, hj(x) = 0) minimum of linear functions
(L(x,λ, µ)) and is therefore always a
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Formally: The Dual Theory for Constrained Optimization
For λi ≥ 0 ∀i ∈ {1..m} and µj, minimizing the right hand side of (72) over all feasible x

f(x) ≥ min
x s.t gi(x)≤0,hj(x)=0

L(x,λ, µ) ∆
= L∗(λ, µ) (73)

L∗(λ, µ) is a pointwise (w.r.t x ∈ gi(x) ≤ 0, hj(x) = 0) minimum of linear functions
(L(x,λ, µ)) and is therefore always a concave function.
Since f(x) ≥ L∗(λ, µ) for all primal feasible x and dual feasible i.e., λi ≥ 0 and µj, , we
can maximize the lower bound L∗(λ, µ) to give the following Dual Problem

max
λ∈ℜm,µ∈ℜp

L∗(λ, µ)
subject to λ ≥ 0

(74)

Theorem
(i) The dual function L∗(λ, µ) is always concave. (ii) If p∗ is solution of (71) and d∗ of (74)
then p∗ ≥ d∗
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Dual opt is always a convex
optimization problem and
always gives you a lower
bound to the primal



Formally: The Dual Theory for Constrained Optimization (contd.)

Formal Proof for Part (i): Consider two values of the dual variables, viz., λ1 ≥ 0 and λ2 ≥ 0
as well as µ1 and µ2 (with no constraints). Let λ = θλ1 + (1− θ)λ2 and µ = θµ1 + (1− θ)µ2

for any θ ∈ [0, 1]. Then,

L∗(λ, µ) = min
x∈D

f(x) + λTg(x) + µTh(x)

= min
x∈D

θ
[
f(x) + λT1 g(x) + µT1 h(x)

]
+ (1− θ)

[
f(x) + λT2 g(x + µT2 h(x))

]

≥ min
x∈D

θ
[
f(x) + λT1 g(x) + µT1 h(x)

]
+ min

x∈D
(1− θ)

[
f(x) + λT2 g(x) + µT2 h(x)

]

= θL∗(λ1,λ1) + (1− θ)L∗(λ2,λ2)

This proves that L∗(λ) is a concave function.
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Proof by first principles:

min of sum >= sum of mins



Formally: The Dual Theory for Constrained Optimization (contd.)

Formal Proof for Part (ii):
If bx is a feasible solution to the primal problem (71) and bλ is a feasible solution to the dual
problem (74), then

f(bx) ≥ f(bx) + bλTg(bx) ≥ min
Feasible �x∈D

f(bx) + bλTg(bx) = L∗(bλ)

That is,
f(bx) ≥ L∗(bλ)

A direct consequence of this is that

p∗ = min
x∈D

f(x) ≥ max
λ≥0

L∗(λ) = d∗

This proves the second part of the theorem.
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(since the min over x and max over \lambda
are over disjoint sets of variables)



The Dual Theory for Constrained Optimization: Examples and Graphical
Interpretation

The dual is concave (or the negative of the dual is convex) irrespective of the primal.
Solving the dual is therefore always a convex programming problem.
In some sense, the dual is better structured than the primal. However, the dual cannot be
drastically simpler than the primal.
For example, if the primal is not a Linear Program, the dual cannot be an LP.
Similarly, the dual can be quadratic only if the primal is quadratic.
We will look at two examples to give a flavour of how the duality theory works.
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Useful in (a) sometimes simplified parametrization of dual problem
              (b) algorithms that explicitly invoke dual (eg: primal - dual interior

point)
(c) Characterizing convergence by estimating duality gap



Example Derivations of Dual
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Example Derivations of the Dual: Linear Programs

min
x∈ℜn

cTx
subject to −Ax + b ≤ 0

The lagrangian for this problem is:
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Example Derivations of the Dual: Linear Programs

min
x∈ℜn

cTx
subject to −Ax + b ≤ 0

The lagrangian for this problem is:

L(x,λ) = cTx + λTb − λTAx = bTλ+ xT
(

c − ATλ
)

The next step is to get L∗, which we obtain using the first derivative test:

April 9, 2018 241 / 318



Example Derivations of the Dual: Linear Programs

min
x∈ℜn

cTx
subject to −Ax + b ≤ 0

The lagrangian for this problem is:

L(x,λ) = cTx + λTb − λTAx = bTλ+ xT
(

c − ATλ
)

The next step is to get L∗, which we obtain using the first derivative test:

L∗(λ) = min
x∈ℜn

bTλ+ xT
(

c − ATλ
)
=

{
bTλ if ATλ = c
−∞ if ATλ ̸= c
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Example Derivations of the Dual: Linear Programs (contd.)
The function L∗ can be thought of as the extended value extension of the same function
restricted to the domain

{
λ|ATλ = c

}
. Therefore, the dual problem can be formulated as:
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Example Derivations of the Dual: Linear Programs (contd.)
The function L∗ can be thought of as the extended value extension of the same function
restricted to the domain

{
λ|ATλ = c

}
. Therefore, the dual problem can be formulated as:

max
λ∈ℜm

bTλ

subject to ATλ = c
λ ≥ 0

(75)

This is the dual of the standard LP. What if the original LP was the following?

min
x∈ℜn

cTx
subject to −Ax + b ≤ 0 x ≥ 0

Now we have a variety of options based on what constraints are introduced into the ground set
(or domain) and what are explicitly treated as constraints. Some working out will convince us
that treating x ∈ ℜn as the constraint and the explicit constraints as part of the ground set is
a very bad idea. One dual for this problem can be derived similarly as (75).
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You can refer to the generalization of LPs to conic linear programs (with constraint that Ax + b belongs to cone) and their conic dual linear programs 
discussed at length in previous (pre-midsem part of) offerings of this course at https://www.cse.iitb.ac.in/~cs709/calendar2015.html

(***)



Example Derivations of the Dual: Variant of LP (contd.)

Let us look at a modified version of the problem in (76).

min
x∈ℜn

cTx −∑n
i=1 ln xi

subject to −Ax + b = 0
x > 0

We first formulate the lagrangian for this problem.
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(possibly underdetermined)

We can choose to have x > 0 as part of the domain since ln(xi) already
kind of discourages xi from getting close to 0 [Spirit of Barrier methods]



Example Derivations of the Dual: Variant of LP (contd.)

Let us look at a modified version of the problem in (76).

min
x∈ℜn

cTx −∑n
i=1 ln xi

subject to −Ax + b = 0
x > 0

We first formulate the lagrangian for this problem.

L(x,λ) = cTx −
n∑

i=1

ln xi + λTb − λTAx = bTλ+ xT
(

c − ATλ
)
−

n∑

i=1

ln xi

The domain (or ground set) for this problem is x > 0, which is open.
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Example Derivations of the Dual: Variant of LP

The expression for L∗ can be obtained using the first derivative test, while keeping in
mind that L can be made arbitrarily small (tending to −∞) unless (c − ATλ) > 0.
This is because, even if one component of c − ATλ is less than or equal to zero, the value
of L can be made arbitrarily small by decreasing the value of the corresponding
component of x in the

∑n
i=1 ln xi part.

Further, the sum bTλ+ xT
(

c − ATλ
)
−∑n

i=1 ln xi can be separated out into the
individual components of λi, and this can be exploited while determining the critical point
of L.

L∗(λ) = min
x>0

L(x,λ) =
{

bTλ+ n−∑n
i=1 ln 1

(c−ATλ)i
if (c − ATλ) > 0

−∞ otherwise
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Example Derivations of the Dual: Variant of LP (contd.)

Finally, the dual will be

max
λ∈ℜm

bTλ+ n+
∑n

i=1 ln 1

(c−ATλ)i
subject to −ATλ+ c > 0
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Geometry of Duality
It turns out that all the intuitions we need are in two dimensions, which makes it fairly

convenient to understand the idea.
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Geometry of Duality

Figure 16: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

We will study the geometry of the dual in the
column space ℜm+1. Define I ⊆ ℜm+1 as

I = {(s, z)} s.t
{

s ∈ ℜm ∃x ∈ D s.t gi(x) ≤ si ∀i
z ∈ ℜ f(x) ≤ z

▶ Recap: Any (linear) equality constraint h(x) = 0
can be expressed using
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two inequality constraints
h(x) <=0 
-h(x) <= 0



Geometry of Duality

Figure 16: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

We will study the geometry of the dual in the
column space ℜm+1. Define I ⊆ ℜm+1 as

I = {(s, z)} s.t
{

s ∈ ℜm ∃x ∈ D s.t gi(x) ≤ si ∀i
z ∈ ℜ f(x) ≤ z

▶ Recap: Any (linear) equality constraint h(x) = 0
can be expressed using two (convex) inequality
constraints, viz., h(x) ≤ 0 and −h(x) ≤ 0.

Figure 16 illustrates in ℜ2 for n = 1, with s1 along
the x−axis and z along the y−axis.
For x ∈ D, identify all points (s1, z) for s1 ≥ g1(x)
and z ≥ f(x).

▶ These are points that lie to the right and above the
point

(
g1(x), f(x)

)
.
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Geometry of Duality: What is the Primal?

Figure 17: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Feasible region for the primal problem (67) is the
region in I with s ≤ 0.
Since all points above and to the right of a point in
I also belong to I, the solution to the primal
problem corresponds to the point in I with s = 0
and least possible value of z.
In Figure 17, the solution to the primal corresponds
to (0, δ1).
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Geometry of Duality: What is the Primal?

Figure 18: Example of the convex set I
and hyperplane Hλ,α for a single
constrained well-behaved convex
program.

Straightforward to prove that if f(x) and each of
the constraints gi(x), 1 ≤ i ≤ n are convex
functions, then I must be a convex set.
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Prove this simply by definition of I



Geometry of Duality: What is the Primal?

Figure 18: Example of the convex set I
and hyperplane Hλ,α for a single
constrained well-behaved convex
program.

Straightforward to prove that if f(x) and each of
the constraints gi(x), 1 ≤ i ≤ n are convex
functions, then I must be a convex set.
Recap: I ⊆ ℜm+1 as

I = {(s, z)} s.t
{

s ∈ ℜm ∃x ∈ D s.t gi(x) ≤ si ∀i
z ∈ ℜ f(x) ≤ z
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The point corresponding to the convex
combination of s1 and s2 will be the
convex combinations of corresponding
x1 and x2

H/W



Geometry of Duality: What is the Dual?

Figure 19: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Define a hyerplane Hλ,α, parametrized by λ ∈ ℜm

and α ∈ ℜ as

Hλ,α =
{
(s, z)

���λT.s + z = α
}

Consider all Hλ,α that lie below I. For example, in
the Figure 19, both hyperplanes Hλ1,α1 and Hλ2,α2

lie below the set I.
Of all Hλ,α that lie below I, consider the
hyperplane whose intersection with the line s = 0,
corresponds to as high a value of z as possible.
This hyperplane must be a
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supporting hyperplane to I



Geometry of Duality: What is the Dual?

Figure 19: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Define a hyerplane Hλ,α, parametrized by λ ∈ ℜm

and α ∈ ℜ as

Hλ,α =
{
(s, z)

���λT.s + z = α
}

Consider all Hλ,α that lie below I. For example, in
the Figure 19, both hyperplanes Hλ1,α1 and Hλ2,α2

lie below the set I.
Of all Hλ,α that lie below I, consider the
hyperplane whose intersection with the line s = 0,
corresponds to as high a value of z as possible.
This hyperplane must be a supporting hyperplane.
Hλ1,α1 happens to be such a supporting hyperplane.
Its point of intersection (0,α1) precisely
corresponds to the solution to the dual problem.
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Geometry of Duality: The Dual - A bit more formally

Figure 20: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Define two half-spaces corresponding to Hλ,α as

H+
λ,α =

{
(s, z)

���λT.s + z ≥ α
}

H−
λ,α =

{
(s, z)

���λT.s + z ≤ α
}

Define another set L as

L =
{
(s, z) |s = 0

}

Note that L is essentially
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the z axis



Geometry of Duality: The Dual - A bit more formally

Figure 20: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Define two half-spaces corresponding to Hλ,α as

H+
λ,α =

{
(s, z)

���λT.s + z ≥ α
}

H−
λ,α =

{
(s, z)

���λT.s + z ≤ α
}

Define another set L as

L =
{
(s, z) |s = 0

}

Note that L is essentially the z or function axis.
The intersection of Hλ,α with L is
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Geometry of Duality: The Dual - A bit more formally

Figure 20: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Define two half-spaces corresponding to Hλ,α as

H+
λ,α =

{
(s, z)

���λT.s + z ≥ α
}

H−
λ,α =

{
(s, z)

���λT.s + z ≤ α
}

Define another set L as

L =
{
(s, z) |s = 0

}

Note that L is essentially the z or function axis.
The intersection of Hλ,α with L is the point (0,α).
That is, (0,α) = L∩Hλ,α

Dual: Manipulate λ and α so that I lies in the
half-space H+

λ,α as tightly as possible.
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Geometry of Duality: The Dual - A bit more formally

Figure 21: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Mathematically, we are interested in the problem of
maximizing the height of the point of
intersection of L with Hλ,α above the s plane,
while ensuring that I remains a subset of H+

λ,α.

max α
subject to H+

λ,α ⊇ I

By definitions of I, H+
λ,α and the subset relation,

this problem is equivalent to
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Geometry of Duality: The Dual - A bit more formally

Figure 21: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Mathematically, we are interested in the problem of
maximizing the height of the point of
intersection of L with Hλ,α above the s plane,
while ensuring that I remains a subset of H+

λ,α.

max α
subject to H+

λ,α ⊇ I

By definitions of I, H+
λ,α and the subset relation,

this problem is equivalent to

max α
subject to λT.s + z ≥ α ∀(s, z) ∈ I
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Geometry of Duality: The Dual - A bit more formally

Figure 22: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Note: If (s, z) ∈ I, then (s′, z) ∈ I for all s′ ≥ s
(as illustrated in Figure 22). Thus, we cannot
afford to have any component of λ negative; if any
of the λi’s were negative,
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then the upper half space
constraint will be violated by cranking
up s (while still remaining in I)



Geometry of Duality: The Dual - A bit more formally

Figure 22: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Note: If (s, z) ∈ I, then (s′, z) ∈ I for all s′ ≥ s
(as illustrated in Figure 22). Thus, we cannot
afford to have any component of λ negative; if any
of the λi’s were negative, we could cranck up si
arbitrarily to violate the inequality λT.s + z ≥ α.
Consequently, we can add the constraint λ ≥ 0 to
the forgoing problem without changing the solution.

max α
subject to λT.s + z ≥ α ∀(s, z) ∈ I

λ ≥ 0

Expect every point on ∂I to be of the form
(g1(x), g2(x), . . . , gm(x), f(x)) for some x ∈ D.
Therefore ......
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Geometry of Duality: The Dual - A bit more formally

Figure 23: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Foregoing problem is equivalent to

max α
subject to λT.g(x) + f(x) ≥ α ∀x ∈ D

λ ≥ 0

Recall that L(x,λ) = λT.g(x) + f(x). The
geometric problem is therefore the same as

max α
subject to L(x,λ) ≥ α ∀x ∈ D

λ ≥ 0
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Geometry of Duality: The Dual - A bit more formally

Figure 24: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Since, L∗(λ) = min
x∈D

L(x,λ), we can deal with the
equivalent problem

max α
subject to L∗(λ) ≥ α

λ ≥ 0

The geometric problem can be restated as
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Geometry of Duality: The Dual - A bit more formally

Figure 24: Example of the set I and
hyperplanes Hλ,α for a single constraint
(i.e., for n = 1).

Since, L∗(λ) = min
x∈D

L(x,λ), we can deal with the
equivalent problem

max α
subject to L∗(λ) ≥ α

λ ≥ 0

The geometric problem can be restated as

max L∗(λ)
subject to λ ≥ 0

This is precisely the dual problem. We thus get a
geometric interpretation of the dual.
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Geometry of Duality: Duality Gap and Convexity
With reference to Figure 16, if the set I is not
convex, there could be a gap between the
z−intercept (0,α1) of the best supporting
hyperplane Hλ1,α1 and the closest point (0, δ1) of I
on the z−axis (solution to the primal).
For non-convex I, we can never prove in zero
duality gap in general.
Homework (Quiz 1, Problem 1): Write dual for
constrained problem minx f(x) = 5x2 + 6x3 − x4 on
the closed interval [−2, 10]. Does it have a duality
gap?
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