
Log Barrier Method (contd.)
Our objective becomes

min
x

f(x) +
∑

i

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b

At different values of t, we get different x∗(t)
Let λ∗

i (t) =
First-order necessary conditions for optimality (and strong duality)13 at x∗(t),λ∗

i (t):
1 ..
2 ..
3 ..
4 ..

⋆ ..

13of original problem
April 19, 2018 297 / 387

value that leads to satisfaction of necessary condition of original problem (assuming necessary
condition of barrier problem is satisfied)

Satisfying complementary slackness is the challenge
- Addressed by iteratively solving

Our objective becomes
min
x

f(x) +
∑

i

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b

At different values of t, we get different x∗
Let λ∗

i (t) = −1
t gi(x∗(t))

First-order necessary conditions for optimality (and strong duality)14 at x∗(t),λ∗
i (t):

1 gi
(
x∗(t)

)
≤ 0

2 Ax∗(t) = b
3 ∇f

(
x∗(t)

)
+
∑m

i=1 λ
∗
i (t)∇gi

(
x∗(t)

)
+ ν∗(t)⊤A = 0

4 λ∗
i (t) ≥ 0
⋆ Since gi

(
x∗(t)

)
≤ 0 and t ≥ 0

All above conditions hold at optimal solution x(t), ν(t), of barrier problem ⇒(
λ∗
i (t), ν∗(t)

)
are dual feasible.

14of original problem
April 19, 2018 298 / 387

Feasibility is ensured. But since complementary
slackness might be violated, can't yet talk of optimality

Log Barrier Method & Duality Gap
If necessary conditions are satisfied and if f and gi’s are convex, and gi’s strictly
feasible, the conditions are also sufficient. Thus,

(
x∗(t),λ∗

i (t), ν∗(t)
)
form a critical point

for the Lagrangian

L(x,λ, ν) = f(x) +
m∑

i=1

λigi(x) + ν⊤(Ax− b)

Lagrange dual function
L∗(λ, ν) = min

x
L(x,λ, ν)

L∗
(
λ∗(t), ν∗(t)

)
= f

(
x∗(t)

)
+

m∑

i=1

λ∗
i (t)gi

(
x∗(t)

)
+ ν∗(t)⊤

(
Ax∗(t)− b

)

=

▶ is the duality gap
▶ As t→∞, duality gap→ . . .

April 19, 2018 299 / 387

f(x*(t)) - m/t <= p*

m/t
zero

Log Barrier Method & Duality Gap
If necessary conditions are satisfied and if f and gi’s are convex, and gi’s strictly
feasible, the conditions are also sufficient. Thus,

(
x∗(t),λ∗

i (t), ν∗(t)
)
form a critical point

for the Lagrangian

L(x,λ, ν) = f(x) +
m∑

i=1

λigi(x) + ν⊤(Ax− b)

Lagrange dual function
L∗(λ, ν) = min

x
L(x,λ, ν)

L∗
(
λ∗(t), ν∗(t)

)
= f

(
x∗(t)

)
+

m∑

i=1

λ∗
i (t)gi

(
x∗(t)

)
+ ν∗(t)⊤

(
Ax∗(t)− b

)

= f
(
x∗(t)

)
− m

t

▶ m
t here is called the duality gap

▶ As t→∞, duality gap→ 0, but computing optimal solution x(t) to barrier problem will be
that harder

April 19, 2018 300 / 387

Log Barrier Method & Duality Gap

At optimality, primal optimal = dual optimal
i.e. p∗ = d∗

From weak duality,
f
(
x∗(t)

)
− m

t ≤ p∗

=⇒ f
(
x∗(t)

)
− p∗ ≤ m

t

▶ The duality gap is always ≤ m
t

▶ The more we increase t, the smaller will be the duality gap

April 19, 2018 301 / 387

Iterative algorithm

1 Start with t = t(0), µ > 1, and consider ϵ tolerance
2 Repeat

1 Solve

x∗(t) = argmin
x

f(x) +
m∑

i=1

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b
2 If m

t < ϵ, Quit
else, set t = µt

April 19, 2018 302 / 387

t is multiplicatively scaled up by \mu in every iteration

A little later
we discuss
issues/techniques
effective for
solving this

In the process, we can also obtain λ∗(t) and ν∗(t)
Convergence of outer iterations:
We get ϵ accuracy after log

(
(m/ϵt(0))
log(µ)

)
updates of t

April 19, 2018 303 / 387

Log Barrier Method & Strictly Feasible Starting Point

The inner optimization in the iterative algorithm using a barrier method,

x∗(t) = argmin
x

f(x) +
∑

i

(
−1

t

)
log

(
−gi(x)

)

s.t. Ax = b

can be solved using (sub)gradient descent starting from older value of x from previous
iteration
We must start with a strictly feasible x, otherwise
− log

(
−gi(x)

)
→∞

April 19, 2018 304 / 387

Issue 1) Initially feasible solution
Issue 2) Solving efficiently

How to find a strictly feasible x(0)?

April 19, 2018 305 / 387

HINT: The same Barrier algorithm, applied on a suitable
modification of the original optimization problem can be
employed to find the initial strictly feasible x

How to find a strictly feasible x(0)?

Basic Phase I method
x(0) = argmin

x
Γ

s.t. gi(x) ≤ Γ

We solve this using the barrier method, and thus will also need a strictly feasible starting
x̂(0)

Here,
Γ = max

i=1...m
gi(x̂(0)) + δ

where, δ > 0
▶ i.e. Γ is slightly larger than the largest gi(x̂(0))

April 19, 2018 306 / 387

On solving this optimization for finding x(0),
▶ If Γ∗ < 0, x(0) is strictly feasible
▶ If Γ∗ = 0, x(0) is feasible (but not strictly)
▶ If Γ∗ > 0, x(0) is not feasible

A slightly ‘richer’ problem can consider different Γi for each gi, to improve numerical
precision

x(0) = argmin
x

Γi

s.t. gi(x) ≤ Γi

April 19, 2018 307 / 387

Deadend-problem is infeasible

Choice of a good x̂(0) or x(0) depends on the nature/class of the problem, use domain
knowledge to decide it

April 19, 2018 308 / 387

Log Barrier Method & Strictly Feasible Starting Point

We need not obtain x∗(t) exactly from each outer iteration

If not solving for x∗(t) exactly, we will get ϵ accuracy after more than log
(
(m/ϵt(0))
log(µ)

)

updates of t
▶ However, solving the inner iteration exactly may take too much time
▶ Fewer inner loop iterations correspond to more outer loop iterations

April 19, 2018 309 / 387

Issue 2: Tradeoff between GOOD and SLOW inner solvers (for barrier problem)
vs. FAST and SLOPPY inner solvers

Can descent algorithms (that use Hessian) exploiting curvature information
let us compute x(\mu t) from x(t) more efficiently

It turns out the curvature based algos work well for this kind of relatedness
between successive subproblems

Log Barrier Method & Strictly Feasible Starting Point

We need not obtain x∗(t) exactly from each outer iteration

If not solving for x∗(t) exactly, we will get ϵ accuracy after more than log
(
(m/ϵt(0))
log(µ)

)

updates of t
▶ However, solving the inner iteration exactly may take too much time
▶ Fewer inner loop iterations correspond to more outer loop iterations

Second order descent algorithms (such as Newton Descent) found effective in such
settings for following reasons:

April 19, 2018 309 / 387

Log Barrier Method & Strictly Feasible Starting Point

We need not obtain x∗(t) exactly from each outer iteration

If not solving for x∗(t) exactly, we will get ϵ accuracy after more than log
(
(m/ϵt(0))
log(µ)

)

updates of t
▶ However, solving the inner iteration exactly may take too much time
▶ Fewer inner loop iterations correspond to more outer loop iterations

Second order descent algorithms (such as Newton Descent) found effective in such
settings for following reasons:

▶ Accounts for curvature of the function; useful to converge to x(µt) quickly from x(t).
▶ Quadratic convergence when close to x∗(t)

April 19, 2018 309 / 387

Second Order Descent and Approximations
Sections 4.5.2 - 4.5.6 of

BasicsOfConvexOptimization.pdf

April 19, 2018 310 / 387

April 19, 2018 311 / 387

gradient descent

Newton's
algo

Newton’s Algorithm as a Steepest Descent Method
This choice of ∆xk+1 corresponds to the direction of steepest descent under the matrix
norm15 induced by the Hessian ∇2f(xk):
∆x(k) = argmin

{
∇Tf(x(k))v | ||v||∇2f(xk) = 1

}
.

Equivalently, based on approximating a function around the current iterate x(k) using a
second degree Taylor expansion.

Q(x) ≈ef(x) = f(x(k)) +∇Tf(x(k))(x− x(k)) +
1

2
(x− x(k))T∇2f(x(k))(x− x(k))

Convex f ⇒

15
(

vT∇2f(xk)v
) 1

2

April 19, 2018 311 / 387

Recall: Gradient descent had an IDENTITY
matrix in the quadratic part

Hessian is positive semi-definite
==> Quadratic approx Q(x) is convex

April 19, 2018 311 / 387

Local quadratic
approximation to surface

Newton’s Algorithm as a Steepest Descent Method
This choice of ∆xk+1 corresponds to the direction of steepest descent under the matrix
norm15 induced by the Hessian ∇2f(xk):
∆x(k) = argmin

{
∇Tf(x(k))v | ||v||∇2f(xk) = 1

}
.

Equivalently, based on approximating a function around the current iterate x(k) using a
second degree Taylor expansion.

Q(x) ≈ef(x) = f(x(k)) +∇Tf(x(k))(x− x(k)) +
1

2
(x− x(k))T∇2f(x(k))(x− x(k))

Convex f ⇒ convex quadratic approximation. Newton’s method is based on solving the
approximation exactly
Setting gradient of quadratic approximation (with respect to x) to 0 gives

∇Tf(x(k)) +∇2f(x(k))(x(k+1) − x(k)) = 0

Assuming ∇2f(xk) is invertible, next iterate is x(k+1) = x(k) −
(
∇2f(x(k))

)−1
∇f(x(k))

15
(

vT∇2f(xk)v
) 1

2

April 19, 2018 311 / 387

Newton’s Algorithm as a Steepest Descent Method

Find a starting point x(0) ∈ D.
Select an appropriate tolerance ϵ > 0.
repeat
1. Set ∆x(k) = −

(
∇2f(x(k))

)−1
∇f(x).

2. Let λ2 = ∇Tf(x(k))
(
∇2f(x(k))

)−1
∇f(x(k)) ⇔ Directional derivative in the Newton Direction

3. If λ2

2 ≤ ϵ, quit.
4. Set step size t(k) = 1. Obtain x(k+1) = x(k) + t(k)∆x(k).
5. Set k = k+ 1.

until

Figure 28: The Newton’s method which typically uses a step size of 1. ∆x(k) can be shown to be
always a Descent Direction (Theorem 83 of notes). For x ∈ ℜn, each Newton’s step takes O(n3) time
(without using any fast matrix multiplication methods).

April 19, 2018 312 / 387

Newton decrement

No line search!!

Tend to converge in few iterations
However, each iteration itself

might be expensive

Quasi-newton algorithms
Problem specific methods
try to speed up each iteration

Variants of Newtons’s Method

Special Cases: When Objective function is a composition of two functions (such as Loss
l over some Prediction function m): Gauss Newton Approximation (Section 4.5.4 of
BasicsOfConvexOptimization.pdf) and Levenberg-Marquardt (Section 4.5.5)

Quasi-Newton Algorithms: When Hessian inverse
(
∇2f(xk+1)

)−1
is approximated by a

matrix Bk+1 such that
▶ gradient of quadratic approximation Q(xk) agrees at xk and xk+1

▶ Bk+1 is as close as possible to Bk in some norm (such as the Frobenius norm)
See BFGS (Section 4.5.6), LBFGS etc.

April 19, 2018 313 / 387

problem
specific

Cutting Plane Algorithm
(Invoking Linear Programs for Non-linear constraints)

April 19, 2018 314 / 387

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems16:

minimize cTx
subject to gi(x) ≤ 0 for i = 1, 2, . . . ,m (85)

where gi(x) are convex functions.
How can every convex optimization problem be presented in this form?

16All convex optimization problems of the form discussed so far can be cast in this form.
April 19, 2018 315 / 387

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems16:

minimize cTx
subject to gi(x) ≤ 0 for i = 1, 2, . . . ,m (85)

where gi(x) are convex functions.
How can every convex optimization problem be presented in this form? For objective
function f(x), translate it into a constraint f(x)− c ≤ 0 and minimize c
Let sj(xi) be a subgradient for gj at xi. By definition of subgradient

16All convex optimization problems of the form discussed so far can be cast in this form.
April 19, 2018 315 / 387

Cutting Plane Algorithm

Consider amother general formulation of convex optimization problems16:

minimize cTx
subject to gi(x) ≤ 0 for i = 1, 2, . . . ,m (85)

where gi(x) are convex functions.
How can every convex optimization problem be presented in this form? For objective
function f(x), translate it into a constraint f(x)− c ≤ 0 and minimize c
Let sj(xi) be a subgradient for gj at xi. By definition of subgradient
gj(x) ≥ gj(xi) + sTj (xi)(x− xi) for all x ∈ dom(gj). [Eg: sj(xi) could be ∇gj(xi)]

16All convex optimization problems of the form discussed so far can be cast in this form.
April 19, 2018 315 / 387

Use subgradient based linear lower bound function as a necessary linear inequality

Cutting Plane Algorithm (contd.)

If point xi is feasible, i.e., gj(xi) ≤ 0 then

April 19, 2018 316 / 387

Cutting Plane Algorithm (contd.)

If point xi is feasible, i.e., gj(xi) ≤ 0 then 0 ≥ gj(xi) + sTj (xi)(x− xi) for all x ∈ dom(gj)
When the last inequality is enumerated for all values of i and j, we get several linear
constraints:
sTj (xi)x ≤ sTj (xi)xi − gj(xi) for fixed i and all j and x ∈ dom(gj) ≡ Aix ≤ Aixi − gi

Ai =




s1(xi)
s2(xi)
.
.
sm(xi)




gi =




g1(xi)
g2(xi)
.
.
gm(xi)




(86)

April 19, 2018 316 / 387

All are for a fixed point x^i

Cutting Plane Algorithm (contd.)
Stacking all the Ai’s and gi’s together

Ak =




A0

A1

.

.
Ak




bk =




A0x0 − g0

A1x1 − g1

.

.
Akxk − gk




(87)

With this, the necessary feasible conditions are: Akx ≤ bk.
Idea: Solve the following LP iteratively, until all original constraints are respected:

xk∗ = argmin
x

cTx
subject to Akx ≤ bk

April 19, 2018 317 / 387

Stack for different
points xi

Need to solve iteratively
because linear inequality
was only necessary
Original constraints may still be violated

Kelly’s Cutting Plane Algorithm (contd.)

Step 1
Input an initial feasible point, x0 and set k = 0.
Step 2: Evaluate Ak and bk

Step 3
Solve the LP problem

xk∗ = argmin
x

cTx
subject to Akx ≤ bk

Step 4
If max{gj(xk∗), 1 ≤ j ≤ m} (ϵ output x∗ = xk∗ as the point of optimality and stop. Other-
wise, set k = k + 1, xk+1 = xk∗, update Ak and bk from (87) using (86) and repeat from
Step 3.

Figure 29: Optimization for the convex problem in (85) using Kelly’s cutting plane algorithm.

April 19, 2018 318 / 387

Look for violations
of original constraints

