
OPTIONAL: Primal Active-Set Algorithm
(Lazy Projection Methods)
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Recall that Projected Gradient Descent tried to satisfy all the constraints
in the projection step



Quadratic Optimization: Primal Active-Set Algorithm

minimize f(x) = 1
2xTQx + cTx + β

subject to Ax ≥ b (88)

where Q ≻ 0. The KKT conditions are:
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2xTQx + cTx + β

subject to Ax ≥ b (89)

where Q ≻ 0. The KKT conditions are:

Qbx + c−
m∑

i=1

bλiai = 0

bλi(aTi bx− bi) = 0 for i = 1..m
bλi ≥ 0 for i = 1..m
Abx ≥ b... If some aTi x∗ = bi for some i ∈ I∗ (index set of active constraints) then , one
needs to iteratively solve xk and Ik

3 xk+1 = xk + αkdk

4 Simplified objective: Find dk = argmin
d

fk(d)
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Quadratic Optimization: Primal Active-Set Algorithm

dk = argmin fk(d) = 1
2dTQd + gTk d + ck

subject to aid = 0 for all i ∈ Ik
(90)

where gk = Qxk + c and ck = (xk)TQxk + cTxk. The idea behind the active set algo is:
1 dk = 0 ⇒ xk satisfies first order necessary conditions:

▶ gk −
∑

i∈Ik
λiai = 0 which is the same as rank[AT

Ik gk] = rank[AT
Ik ]

We already know that aTi xk − bi > 0 ∀i /∈ Ik and aTi xk − bi = 0 ∀i ∈ Ik. Set λi = 0 ∀i /∈ Ik
1 If λi ≥ 0∀i ∈ Ik, by KKT sufficient conditions, xk will be point of global minimum.
2 If λi < 0 for some i ∈ Ik, then it can be shown that if i is dropped from Ik, the active set and

(90) is solved then dk will be a descent direction ∇Tf(xk)dk < 0 and reduce objective
2 dk ̸= 0 ⇒ we need to further determine αk such that xk+1 = xk + αkdk remains

feasible: αk = min




1, min

j/∈Ik
aTj dk<0

aTj xk−bj
−aTj dk




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Quadratic Optimization: Primal Active-Set Algorithm
Step 1
Input a feasible point, x0, identify the active set I0, form matrix AI0 , and set k = 0.
Step 2
Compute gk = Qxk + c.
Check the rank condition rank[ATIk gk] = rank[ATIk ]. If it does not hold, go to Step 4.
Step 3
Solve the system ATIkbλ = gk. If bλ ≥ 0, output xk as the solution and stop; otherwise,
remove the index that is associated with the most negative Lagrange multiplier (some bλt)
from Ik.
Step 4
Compute the value of dk:

dk = argmin
d

1
2dTQd + (gk)Td

subject to aTi d = 0 for i ∈ Ik
(91)
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Quadratic Optimization: Primal Active-Set Algorithm
Step 5

αk = min




1, min

j/∈Ik
aTj dk<0

aTj xk − bj
−aTj dk





(92)

Set xk+1 = xk + αkdk.
Step 6
If αk < 1, construct Ik+1 by adding the index that yields the minimum value of αk in (92).
Otherwise, let Ik+1 = Ik.
Step 7
Set k = k+ 1 and repeat from Step 2.

Figure 30: Optimization for the quadratic problem in (89) using Primal Active-set Method.
April 19, 2018 324 / 387



OPTIONAL: Empirical Risk Minimization
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Contents

Learning as mathematical optimization
▶ Stochastic optimization, ERM, online regret minimization
▶ Offline/online/stochastic gradient descent

Regularization
▶ AdaGrad and optimal regularization

Gradient Descent++
▶ Frank-Wolfe, acceleration, variance reduction, second order methods, non-convex

optimization
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Recap: Machine Learning as Optimization

bw∗ = argmin
w

L (w) + Ω(w) (93)

where Ω(w) is the regularization term.
0-1 Loss:

L (w) =
∑

(x,y) δ
(
y ̸= wTϕ(x)

)
(94)

Minimizing the 0-1 Loss is NP-hard. We therefore look for surrogates.
Perceptron: A Non-convex Surrogate

L (w) = −∑
(x,y)∈M ywTϕ(x) (95)

where M ⊆ D is the set of misclassified examples.
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Recap: Convex Surrogates for 0-1 Loss in ML

bw∗ = argmin
w

1

m

m∑

i=1

L
(

x(i), y(i),w
)
+ Ω(w) (96)

Logistic Regression:

L
(

x(i), y(i),w
)

= −





y(i)wTϕ(x(i))− log

(
1 + exp

(
wTϕ

(
x(i)

)))




 (97)

Sigmoidal Neural Net:

L (w) = − 1

m




m∑

i=1

K∑

k=1

y(i)k log
(
σLk

(
x(i)

))
+
(
1− y(i)k

)
log

(
1− σLk

(
x(i)

))

 (98)
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
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m
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i=1


y(i)wTϕ(x(i))− log

(
1 + exp

(
wTϕ

(
x(i)

)))




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Sigmoidal Neural Net:

L (w) = − 1

m




m∑

i=1

K∑

k=1

y(i)k log
(
σLk

(
x(i)

))
+
(
1− y(i)k

)
log

(
1− σLk

(
x(i)

))

 (101)
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Empirical Risk Minimization and Projected Gradient
Descent
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Empirical Risk Minimization and Proj Grad Descent

Gradient depends on all data
What about generalization?
Simultaneous optimization and generalization

▶ Faster optimization! (single example per iteration)
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Statistical (PAC) learning

D: i.i.d distribution over X × Y = {(xi, yi)}
Goal: To learn Hypothesis h from hypothesis class H that minimizes expected loss
err(h) = E

[
L(xi, yi,w)

]
.

H is (PAC) learnable if ∀ϵ, δ > 0, there exists algorithm s.t. after seeing M examples,
where M = O

(
poly(δ, ϵ, dimension(H))

)
, the algorithm finds h s.t. w.p. 1− δ,

err(h) ≤ min
h∗∈H

err(h∗) + ϵ

April 19, 2018 332 / 387



Online Learning and Regret Minimization

For k = 1, 2 . . .K, hk ∈ H, and an adversarial example (xk, yk), minimize expected regret:

1

K


∑

k
L(hk,xk, yk)− min

h∗∈H

∑

k
L(h∗,xk, yk)


 K→∞−→ 0

Generalization in PAC setting is achieved by regret vanishing
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Online Gradient Descent: Efficient Algorithm for Regret Minimization

Let us denote by ∇k, the expression ∇wkL
(

xk, yk,wk
)

Note that some adversarial example (xk, yk) could be the same as (xl, yl) for l ̸= k
The alternating steps are

▶ Stochastic gradient descent Step: wk+1
u = wk

p − t∇k
▶ Projection Step: wk+1

p = argmin
z∈C

∥wk
u − z∥

Claim: Regret =
K∑

k=1

L(xk, yk,wk)−
K∑

k=1

L(xk, yk,w∗) = O(K)
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Online Gradient Descent: Analysis
Online Gradient Descent: Efficient Algorithm for Regret Minimization - Zinkevich 2005
As before, substituting for wk+1

u and expanding squares

∥wk+1
u −w∗∥2 = ∥wk

p −w∗∥2 − 2t∇k(w∗ −wk
p) + t2∥∇k∥2 (102)

Since wk+1
p = argmin

z∈C
∥wk

u − z∥ ,

∥wk+1
p −w∗∥2 ≤ ∥wk+1

u −w∗∥2 (103)

Substituting from equality (102) into the RHS of inequality (103):

∥wk+1
p −w∗∥2 ≤ ∥wk

p −w∗∥2 − 2t∇k(wk
p −w∗) + t2∥∇k∥2 (104)

By convexity,
K∑

k=1

L(xk, yk,wk
p)− L(xk, yk,w∗) ≤

K∑

k=1

∇k(w∗ − wk
p) (105)
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Online Gradient Descent: Analysis (contd)
Substituting from (104) into (105)

K∑

k=1

L(xk, yk,wk
p)− L(xk, yk,w∗) ≤

K∑

k=1

1

2t

(
∥wk

p − w∗∥2 − ∥wk+1
p − w∗∥2 + t2∥∇k∥2

)
(106)

As before, if: g is upper bound on norm of gradients, i.e., ∥∇f(x)∥2 ≤ g2

Using the above upper bound and expanding the summation over ∥w∗ −wk∥2, all terms
get canceled except for the first and last:

K∑

k=1

L(xk, yk,wk
p)− L(xk, yk,w∗) ≤ 1

2t

(
∥w1

p − w∗∥2 − ∥wK+1
p − w∗∥2

)
+

t
2
Kg2 (107)

Using the fact that negative of norm is always negative
K∑

k=1

L(xk, yk,wk
p)− L(xk, yk,w∗) ≤ 1

2t

(
∥w1

p − w∗∥2
)
+

t
2
Kg2 (108)
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Online Gradient Descent: Analysis (contd)

Again recall that d is diameter of C, i.e., w ∈ C, ∥w1
p −w∗∥2 ≤ d2, thus, (108) becomes

(109)
K∑

k=1

L(xk, yk,wk
p)− L(xk, yk,w∗) ≤ d2

2t
+

t
2
Kg2 (109)

Since d2

2t +
t
2Kg2 = d2

2t +
t
2Kg2 − gd

√
K+ gd

√
K =

(
d√
2t −

√
Kt
2 g

)2

+ gd
√
K ≥ gd

√
K

and therefore,
K∑

k=1

L(xk, yk,wk
p)− L(xk, yk,w∗) ≤ gd

√
K = Ω(

√
K) (110)

Thus, Regret = Ω(
√
K)
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Based on the derivations starting from (105) that culminate in (110), we now know that

K∑

k=1

∇k(wk
p −w∗) ≤ gd

√
K (111)

Thus,
1

K

K∑

k=1

∇k(wk
p) =

1

K

K∑

k=1

∇k(wk
p) +

gd√
K

(112)

Treating each (xk, yk) to be a random example and taking expectations over such
samples (xk, yk) while combining (111) and (106)

E


 1

K

K∑

k=1

L(xk, yk,wk
p)− L(xk, yk,w∗)


 ≤ E


 1

K

K∑

k=1

∇k(wk
p − w∗)


 ≤ E

[
gd√
K

]
(113)
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Summarizing Analysis for Stochastic Gradient Descent
One example per step, same convergence properties as projected gradient descent and
additional provides direct generalization! (All this formally needs martingales)

E


 1

K

K∑

k=1

L(xk, yk,wk
p)− L(xk, yk,w∗)


 ≤ E


 1

K

K∑

k=1

∇k(wk
p − w∗)


 ≤ E

[
gd√
K

]

To get solution that is ϵ approximate with ϵ = dg√
K , you need number of gradient

iterations that is K =
(

dg
ϵ

)2
= O

(
1
ϵ

)2

Recall that H is (PAC) learnable if ∀ϵ, δ > 0, there exists algorithm s.t. after seeing M
examples, where M = O

(
poly(δ, ϵ, dimension(H))

)
, the algorithm finds h s.t. w.p. 1− δ,

err(h) ≤ min
h∗∈H

err(h∗) + ϵ

Thus, the number of iterations for ϵ approximation is K = M
(

dg
ϵ

)2
= O

(
M
ϵ

)2
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Follow the Leader

Recap (slightly different) definition of regret:

K∑

k=1

L(xk, yk,wk
p)− min

w∈C

K∑

k=1

L(xk, yk,w) (114)

Minimizing regret might still not show stability wrt |wk+1 −wk|. Eg: When +1 and -1
are alternating!
Consider Follow-The-Leader (FTL or best-in-hindsight) that minimizes a linear
approximation of the loss function:

wk = argmin
w∈C

k−1∑

i=1

wT∇L(xi, yi,wi)
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Regularizing Follow the Leader
Given Follow-The-Leader (FTL)....

wk = argmin
w∈C

k−1∑

i=1

wT∇L(xi, yi,wi)

....Follow-The-Regularized-Leader (FTRL) additionally regularizes this loss function

wk = argmin
w∈C

k−1∑

i=1

wT∇L(xi, yi,wi) +
1

tΩ(w)

Ω(w) is often chosen to be a strongly convex function in order to ensure stability (Kalai
Vempala observation):

∇L(xi, yi,wk) = O(t)
Perspectives for regularization

1 PAC theory: Reduce complexity
2 Regret Minimization: Improve Stability
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FTRL i.e., Mirror Descent
Follow-The-Regularized-Leader (FTRL):

wk = argmin
w∈C

k−1∑

i=1

wT∇L(xi, yi,wi) +
1

tΩ(w)

Bregman Divergence, another perspective that gives you generalized regret bounds:

BΩ(wp||wu) = Ω(wp)− Ω(wu)− (wp −wu)
t∇Ω(wu)

Consider the Bregman Projection:

PΩ
C (wu) = arg min

wp∈C
BΩ(wp||wu)

The Online Mirror Descent Algorithm with following steps is equivalent to FTRL:
1 wk ≡ wk

p = PΩ
C (wk

u)
2 wk+1

u = (∇Ω)−1(∇Ω(wk
u)− t∇L(xi, yi,wk

p)
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Eg: Ω(w) = ∥w∥2

Follow-The-Regularized-Leader (FTRL):

wk = PC


−t

k−1∑

i=1

∇L(xi, yi,w)




Bregman Divergence:

BΩ(wp||wu) = ∥wp∥2 − ∥wu∥2 − 2(wp −wu)
twu = ∥wp −wu∥2

The Online Mirror Descent Algorithm:
1 wk

p = argminwp∈C ∥wp −wk
u∥2

2 wk+1
u = (∇Ω)−1

(
2wk

u − t∇L(xi, yi,wk
p)
)

Thus turns out to be ordinary projected gradient descent!
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Eg: Ω(w) =
∑

j wj logwj
Additionally require a loss linear in w: L(xi, yi,w) = wTci where ci is a vector of losses.
Follow-The-Regularized-Leader (FTRL) with the normalization factor Zk being a function
of C:

wk =

exp


−t

k−1∑

i=1




Zk
Bregman Divergence:

BΩ(wp||wu) =
∑

j

[
(wp)j log (wp)j − (wu)j log (wu)j − ((wp)j − (wu)j)(log (wu)j + 1)

]
(115)

=
∑

j
[
(wp)j log (wp)j − (wp)j log (wu)j − ((wp)j − (wu)j)

]
(116)

The Online Mirror Descent Algorithm:
1 wk

p = argminwp∈C
∑

j

[
(wk

p)j log
(wk

p)j
e×(wk

u)j

]

2 wk
u + 1 = (∇Ω)−1

(
logwk

u − t∇L(xi, yi,wk
p)
)
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Adaptive Regularization: Adagrad

The general regularized follow the leader (RFTL):

wk = argmin
w∈C

k−1∑

i=1

L(xi, yi,wi) +
1

tΩ(w)

A natural question is, which Ω(w) to pick? Solution: Learn!!
Adagrad: Learn to pick from a family of regularizers

Ω(w) = |w|2R s.t. R ≥ 0, Trace(R) = ω
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Adaptive Regularization: Adagrad (contd.)

Set w1 arbitrarily
For k = 1, 2, . . .

1 Compute L(xk, yk,wk)
2 Compute w(k+1) = w(k+1)

p as follows:
⋆ Hk = diag(

∑k
i=1 ∇L(xk, yk,wk)L(xk, yk,wk)T)

⋆ w(k+1)
u = wk − tH

−1
2

k ∇L(xk, yk,wk)
⋆ w(k+1)

p = argmin
w∈C

(w(k+1)
u − w)THk(xk+1

u − w)

Regret Bound: O


∑

i

√∑

k
∇L(xi, yi,wk)


 can be

√
d better than Stochastic

Gradient Descent
Infrequently occurring, or small-scale, features have small influence on regret (and
therefore, convergence to optimal parameter)
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Accelerating Gradient Descent: Variance Reduction
Uses the special structure of Empirical Risk Minimization
Very effective for Lipschitz continuous (smooth) & convex functions
Recap: Condition number of Convex Functions = L

α = Ratio of Lipschitz constant (L)
and strong convexity factor (α)

0 ≺ αI ⪯ ∇2f(x) ⪯ LI

Well conditioned functions exhibit much faster optimization. April 19, 2018 347 / 387


