OPTIONAL: Primal Active-Set Algorithm
(Lazy Projection Methods)

Recall that Projected Gradient Descent tried to satisfy all the constraints
in the projection step

April 19, 2018 319 / 387

Quadratic Optimization: Primal Active-Set Algorithm

minimize fix) = ix"Qx+c'x+ 3
subjectto Ax>Db

where @ > 0. The KKT conditions are:

April 19, 2018

(88)

320 / 387

Quadratic Optimization: Primal Active-Set Algorithm

minimize fix) = ix"Qx+c'x+ 3
subjectto Ax>Db

where @ > 0. The KKT conditions are:
m
° Q§+C—Z}\\ia,’=0
i=1
° /)\\,-(a,-TSE —bj))=0fori=1.m
° ;\\;ZOfor i=1.m
e AX > b...

April 19, 2018

(88)

320 / 387

Quadratic Optimization: Primal Active-Set Algorithm

minimize fix) = ix"Qx+c'x+ 3
subjectto Ax>Db

where @ = 0. The KKT conditions are:
m
° Q§+C—Z}\\ia,’=0
i=1
° /)\\,-(a,-TSE —bj))=0fori=1..m

° ;\\;ZOfor i=1.m
@ AX > b... If X lies in interior of feasible region then

April 19, 2018

(88)

320 / 387

Quadratic Optimization: Primal Active-Set Algorithm

minimize fix) = ix"Qx+c'x+ 3
subjectto Ax>Db

where @ = 0. The KKT conditions are:
m
° Q§+C—Z}\\ia,’=0
i=1
/)\\(a X —bj)=0fori=1.m

° ;\\ >0fori=1.m
b... If X lies in interior of feasible region then

X >
Q=0
Qx=-

April 19, 2018

(88)

320 / 387

Quadratic Optimization: Primal Active-Set Algorithm

minimize fix) = +x'Qx +c’x + 3 (89)
subjectto Ax>Db

where @ > 0. The KKT conditions are:
m
) Qﬁ—l—c—zxia;:O

i=1
° /):,-(a,-TSE —bj))=0fori=1..m
° X,-ZOfor i=1.m
e AX > b... If some a/x* = b; for some i € I* (index set of active constraints) then

e Apil 19,2018 321 / 387

Quadratic Optimization: Primal Active-Set Algorithm

minimize fix) = +x'Qx +c’x + 3 (89)
subjectto Ax>Db

where @ > 0. The KKT conditions are:
m
) Qﬁ—l—c—zxia;:O
i=1
° /):,-(a,-TSE —bj)=0fori=1.m

° X,-ZOfor i=1.m
e AX > b... If some a/x* = b; for some i € I* (index set of active constraints) then , one

needs to iteratively solve x* and I,

e Apil 19,2018 321 / 387

Quadratic Optimization: Primal Active-Set Algorithm

minimize fix) = +x'Qx +c’x + 3 (89)
subjectto Ax>Db

where Q >~ 0. The KKT conditions are:
m
) Qﬁ—l—c—zxia;:O
i=1
° /):,-(a,-TSE —bj))=0fori=1..m
° X,-ZOfor i=1.m
e AX > b... If some a/x* = b; for some i € I* (index set of active constraints) then , one

needs to iteratively solve x* and I,
Q xM1 = xk+ q,d
@ Simplified objective: Find d* = argmdin fi(d)

e Apil 19,2018 321 / 387

Quadratic Optimization: Primal Active-Set Algorithm

dk = argmin fu(d) = 3d7Qd + g/d + c

subject to a;d =0 forall i€ I (90)
where g, = Qxk + cand ¢, = (xk)Tka + ¢"xk. The idea behind the active set algo is:
@ dF = 0 = xX satisfies first order necessary conditions:
» gk — Z Aia; = 0 which is the same as rank[A], g"] = rank[AITk}
i€l
We already know that a; Txk — b; > 0Vi¢ I, and a —bi=0Vi€ ly. Set \j=0Vi¢ Iy

@ If \; >0Viely by KKT sufficient conditions, xX W|II be point of global minimum.
@ If \; <0 for some i € I, then it can be shown that if /is dropped from I, the active set and
(90) is solved then d* will be a descent direction VTf{x¥)d¥ < 0 and reduce objective

@ d¥+# 0 = we need to further determine ay such that x*! = x¥ 4+ o, d* remains

feasible: ax = min< 1, min

April 19, 2018 322 / 387

Quadratic Optimization: Primal Active-Set Algorithm

Step 1

Input a feasible point, x°, identify the active set Z°, form matrix Ao, and set k = 0.
Step 2

Compute gk = Qx* + c.

Check the rank condition rank[AITk ghl = rank[AITk]. If it does not hold, go to Step 4.
Step 3

Solve the system AITkX =gk If 2 >0, output x¥ as the solution and stop; otherwise,
remove the index that is associated with the most negative Lagrange multiplier (some Xt)
from Z*.

Step 4

Compute the value of d*:

dk = argmin 3d7Qd + (g")7d o1)
d 91
subject to a/d =0 for j € Z*

. 2 April 10, 2018 323 / 387

Quadratic Optimization: Primal Active-Set Algorithm

Step 5

ax=minq 1, min (92)

jgre —aldk
aJTdk<0

Set xKt1 = xK 4+ aydk.

Step 6

If e < 1, construct Z¥*1 by adding the index that yields the minimum value of v in (92).
Otherwise, let ZKt1 = Tk,

Step 7

Set k= k+ 1 and repeat from Step 2.

Figure 30: Optimization for the quadratic problem in (89) using Primal Active-set Method.
EEEEE— April 19,2018 324/ 387

OPTIONAL: Empirical Risk Minimization

Contents

@ Learning as mathematical optimization
» Stochastic optimization, ERM, online regret minimization
» Offline/online/stochastic gradient descent

@ Regularization
» AdaGrad and optimal regularization

o Gradient Descent++

» Frank-Wolfe, acceleration, variance reduction, second order methods, non-convex
optimization

e April 19,2018 326 / 387

Recap: Machine Learning as Optimization

who= argmin L (w) + Q(w) (93)

where Q(w) is the regularization term.
o 0-1 Loss:
L(w) = Z(x7y) 0 (y # WT¢(X)) (94)

Minimizing the 0-1 Loss is NP-hard. We therefore look for surrogates.
o Perceptron: A Non-convex Surrogate

L(w) =- E(x,y)eM yw (%) (95)

where M C D is the set of misclassified examples.

e Apil 19,2018 327 / 387

Recap: Convex Surrogates for 0-1 Loss in ML
w* = argmin iiﬁ (x(i)) W) + Q(w) (96)
- g W m P 7_y ’

o Logistic Regression:
L (x(i),y(i),w) =— (y(’)wT¢(x(’)) — log (1 + exp (WT¢ (x(’)))>) (97)

o Sigmoidal Neural Net:
K

L(w)= _rln [Zm:Zyg) log (a,f (X(i)>> + (1 - yf(i)) log (1 — ok (X(i)))] (98)

i=1 k=1

e April 19,2018 328 / 387

Recap: Convex Surrogates for 0-1 Loss in ML

W= argmin L(w)+ Q(w) (99)

o Logistic Regression:

L(w) =—

% ST (y(i)qus(x(")) — log <1 + exp (WT¢ (x(i))>>)] (100)

o Sigmoidal Neural Net:

m=g [zzw o (o (x7)) = (1o (1o (x(")))] (o1

i=1 k=1

e Apil 19,2018 320 / 387

Empirical Risk Minimization and Projected Gradient
Descent

o (= J ® ® E DAl

Empirical Risk Minimization and Proj Grad Descent

@ Gradient depends on all data
@ What about generalization?

e Simultaneous optimization and generalization
» Faster optimization! (single example per iteration)

e Apil 19,2018 331 / 387

Statistical (PAC) learning

e D: i.i.d distribution over X x) = {(x',y)}

@ Goal: To learn Hypothesis h from hypothesis class H that minimizes expected loss
err(h) = E [L(x,y/,w)].

o M is (PAC) learnable if Ye,d > 0, there exists algorithm s.t. after seeing M examples,
where M = O (poly(6, €, dimension(H))), the algorithm finds hs.t. w.p. 1,

h) < mi h*
err(h) < min err(h™) + €

e Apil 19,2018 332 / 387

Online Learning and Regret Minimization

@ For k=1,2...K, h* € H, and an adversarial example (x¥, yX), minimize expected regret:

ST L(hk xk v — min ST Lkt x5 9| S0
k

h*eH
€ k

@ Generalization in PAC setting is achieved by regret vanishing

e Apil 19,2018 333 / 387

Online Gradient Descent: Efficient Algorithm for Regret Minimization

@ Let us denote by V, the expression V L (xk,yk,wk>

Note that some adversarial example (x*, y¥) could be the same as (x/,y/) for I # k

The alternating steps are
» Stochastic gradient descent Step: Wi = wk — tV,

- , _ - k
> Projection Step: wi™! = argmin [wi — 2|
K K
o Claim: Regret = Zﬁ(x’ﬁyk, wh) — Zﬁ(xk,yk,w*) = 0O(K)
k=1 k=1

I 4 a4 April 19, 2018 334 / 387

Online Gradient Descent: Analysis

@ Online Gradient Descent: Efficient Algorithm for Regret Minimization - Zinkevich 2005

o As before, substituting for wA*! and expanding squares
Wit = w*|)? = [[lwg — w*||? = 2tVi(w* — wy) +]| Vi® (102)
o Since wit! = argrzneig [wk — 2|,

lwp™ = w|* < [[wytt — w|? (103)

@ Substituting from equality (102) into the RHS of inequality (103):

[wistt = w*|? < [Jws — w¥[|* = 26V (wps — w*) + £[| V4| (104)
@ By convexity,
K K
Zﬁ(xk7}/<7wg) - E(Xk,_}/(7w*) < ka(W* - W:;) (105)
k=1 k=1

e Apil 19,2018 335 / 387

Online Gradient Descent: Analysis (contd)
@ Substituting from (104) into (105)

K K 1

> L6k K wh) = L6 K w) <37 = (flwh = w12 = [[wh T — w4 2 V%) (106)

k=1 k=1 2t
e As before, if: g is upper bound on norm of gradients, i.e., |[VAxX)||? < g?

o Using the above upper bound and expanding the summation over ||w* — w*||2, all terms
get canceled except for the first and last:

K
1
D L(xK, o wh) = L(xK, Y w) < o (IIW,ﬁ = w2 = [lwptt - W*Hz) + éng (107)
k=1
@ Using the fact that negative of norm is always negative
a Y k}/*<i 1 e2) o b2
D LKy wh) = LK, Y w)_2t lwp —w™| +5kKe (108)
k=1

e April 19,2018 336 / 387

Online Gradient Descent: Analysis (contd)

o Again recall that d is diameter of C, i.e., w € C, |[wp — w*||* < d?, thus, (108) becomes
(109)

2
S L0k A wh) — Lek K w) < S 4 Dke? (109)

2
o Since &= + tKg? = & + fKg? — gdVK + gdVK = (7(121 - %tg> +gdVK > gdvVK
and therefore,
STL(xk, K wh) = Ly w*) < gdVK = Q(VK) (110)
k=1

o Thus, Regret = Q(VK)

April 19, 2018 337 / 387

@ Based on the derivations starting from (105) that culminate in (110), we now know that
K
> Vi(wh—w*) < gdVK (111)

@ Thus,

K
2> Vuwh) szk \g/‘% (112)
k=1

o Treating each (x¥, y¥) to be a random example and taking expectations over such
samples (xX, y¥) while combining (111) and (106)

(113)

xI=

K
Zﬁ(x — L£(xF y5, w*):| §E|: ka(wz—w*)] <E

e Apil 19,2018 338 / 387

Summarizing Analysis for Stochastic Gradient Descent

@ One example per step, same convergence properties as projected gradient descent and
additional provides direct generalization! (All this formally needs martingales)

&1
VK
@ To get solution that is € approximate with € = %;5-(, you need number of gradient
2 2
iterations that is K = (d?g) =0 (%)

@ Recall that H is (PAC) learnable if Ve,d > 0, there exists algorithm s.t. after seeing M
examples, where M = O (poly(d, €, dimension(#))), the algorithm finds hs.t. w.p. 1 -,

K

1K
E |:}—<Z£(xk,yk,wé) — E(xk,yk,w*):| <E |:!_< ;V;{(wg — w*):| <E

k=1

h) < mi h*
err(h) < Jmin err(h*) + ¢

2 2
@ Thus, the number of iterations for € approximation is K= M (%) =0 ("—E”)

e April 10,2018 339 / 387

Follow the Leader

@ Recap (slightly different) definition of regret:

K K
k Ky _ o k
DLy wg) = min Y L(xE Y w) (114)
k=1 k=1
e Minimizing regret might still not show stability wrt |[w**! — w*|. Eg: When +1 and -1
are alternating!

e Consider Follow-The-Leader (FTL or best-in-hindsight) that minimizes a linear
approximation of the loss function:

e April 10,2018 340 / 387

Regularizing Follow the Leader
e Given Follow-The-Leader (FTL)....

k—1
wh = argmin ZWTVE(Xi, v, w')
wel P}

o ...Follow-The-Regularized-Leader (FTRL) additionally regularizes this loss function

k—1
|
k : T i i
= E VL -0
w' = argmin ,-:1W (x',y,w') + ; (w)

e Q(w) is often chosen to be a strongly convex function in order to ensure stability (Kalai
Vempala observation):

@ Perspectives for regularization
@ PAC theory: Reduce complexity
© Regret Minimization: Improve Stability

e April 10,2018 341 / 387

FTRL /.e., Mirror Descent
o Follow-The-Regularized-Leader (FTRL):

k—1 o
wh = argvryeiré ;WTVE(X’,}/, w') + ?Q(w)
@ Bregman Divergence, another perspective that gives you generalized regret bounds:
Ba(wp|[wy) = Q(wp) — Qwy) — (Wp — Wu)'VQ(Wy)
o Consider the Bregman Projection:

Pg(wu) = argmin Bq(w,||lwy,)
wpeC

@ The Online Mirror Descent Algorithm with following steps is equivalent to FTRL:
0 w=wi— P(w})

Q witl = (VQ) H(VQ(WE) — tVL(X, y, wk)
I 4 a4 April 19, 2018 342 / 387

Eg: Q(w) = [|w]?

o Follow-The-Regularized-Leader (FTRL):
k—1 o
wk = Pe —tz VL' y, w)
i=1

@ Bregman Divergence:
Ba(wpllwu) = [lwp]|* — [[Wall* — 2(wp — W)Wy = [[wp — wa®

@ The Online Mirror Descent Algorithm:
k ; k|2
(1] Wy = argming,cc lwp, — wil

@ Wil = (V)™ (2w — tVL(x, ¥, wp))

@ Thus turns out to be ordinary projected gradient descent!

e Apil 19,2018 343 / 387

Eg: Q(w) =), wjlogw;

o Additionally require a loss linear in w: L£(x',y/, w) = w'c’ where ¢’ is a vector of losses.
e Follow-The-Regularized-Leader (FTRL) with the normalization factor Zj being a function

of C:
k—1
exp —tz
i=1

k
W =
Zy
@ Bregman Divergence:
Bo(wpllwa) =3 [(wp);log (wp); — (wa);log (wu); — (wp); — (wu);)(log (), + 1)] (115)
J
=5 [(wp);log (wp)j — (wp)jlog (wa); — (wp); — (wu)))] (116)

@ The Online Mirror Descent Algorithm:
Ky
O wk= argming,cc ZJ- {(wf,)jlog ei_v(vv%]

u

P
QO wh+1=(vQ)! (|ogw5 VLX), wg))
e Apil 10,2018 344 / 387

Adaptive Regularization: Adagrad

@ The general regularized follow the leader (RFTL):
k—1 1
k - -
= L -Q
W =gy 3 £ W)+ 610w

@ A natural question is, which (w) to pick? Solution: Learn!!

@ Adagrad: Learn to pick from a family of regularizers

Q(w) = |[w|x s.t. R>0, Trace(R) = w

e April 10, 2018

345 / 387

Adaptive Regularization: Adagrad (contd.)

e Set w! arbitrarily
e For k=1,2,...
@ Compute L(xK, y*, wk)
@ Compute wiktl) = wf,k'H) as follows:
* Hy = diag(3SL, VLG v WL, v wh)T)
x with = wk — tHk_TlVE(xk,)/(, w)

* wit = argvrveiré (Wi — W) TH(xE™ — w)

@ Regret Bound: O Z \/Z VL(x,y), wk) | can be v/d better than Stochastic
i K

Gradient Descent
e Infrequently occurring, or small-scale, features have small influence on regret (and
therefore, convergence to optimal parameter)

e April 10, 2018

346 / 387

Accelerating Gradient Descent: Variance Reduction

@ Uses the special structure of Empirical Risk Minimization

o Very effective for Lipschitz continuous (smooth) & convex functions

@ Recap: Condition number of Convex Functions = = = Ratio of Lipschitz constant (L)
and strong convexity factor ()

0 < al<V*x) =< LI

v}

April 19, 2018 347 / 387

