## OPTIONAL: Empirical Risk Minimization

## Contents

- Learning as mathematical optimization
- Stochastic optimization, ERM, online regret minimization
- Offline/online/stochastic gradient descent
- Regularization
- AdaGrad and optimal regularization
- Gradient Descent++
- Frank-Wolfe, acceleration, variance reduction, second order methods, non-convex optimization


## Recap: Machine Learning as Optimization

$$
\begin{equation*}
\widehat{\mathbf{w}}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{L}(\mathbf{w})+\Omega(\mathbf{w}) \tag{100}
\end{equation*}
$$

where $\Omega(\mathbf{w})$ is the regularization term.

- 0-1 Loss:

$$
\begin{equation*}
\mathcal{L}(\mathbf{w})=\sum_{(\mathbf{x}, y)} \delta\left(y \neq \mathbf{w}^{\top} \phi(\mathbf{x})\right) \tag{101}
\end{equation*}
$$

Minimizing the 0-1 Loss is NP-hard. We therefore look for surrogates.

- Perceptron: A Non-convex Surrogate

$$
\begin{equation*}
\mathcal{L}(\mathbf{w})=-\sum_{(\mathbf{x}, \mathrm{y}) \in \mathcal{M}} y \mathrm{w}^{\top} \phi(\mathbf{x}) \tag{102}
\end{equation*}
$$

where $\mathcal{M} \subseteq \mathcal{D}$ is the set of misclassified examples.

Recap: Convex Surrogates for 0-1 Loss in ML

$$
\begin{equation*}
\widehat{\mathbf{w}}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}\left(\mathbf{x}^{(i)}, y^{(i)}, \mathbf{w}\right)+\Omega(\mathbf{w}) \tag{103}
\end{equation*}
$$

- Logistic Regression:

$$
\begin{equation*}
\mathcal{L}\left(\mathbf{x}^{(i)}, y^{(i)}, \mathbf{w}\right)=-\left[\left(y^{(i)} \mathbf{w}^{T} \phi\left(\mathbf{x}^{(i)}\right)-\log \left(1+\exp \left(\mathbf{w}^{T} \phi\left(\mathbf{x}^{(i)}\right)\right)\right)\right)\right] \tag{104}
\end{equation*}
$$

- Sigmoidal Neural Net:

$$
\begin{equation*}
\mathcal{L}(\mathbf{w})=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log \left(\sigma_{k}^{L}\left(\mathbf{x}^{(i)}\right)\right)+\left(1-y_{k}^{(i)}\right) \log \left(1-\sigma_{k}^{L}\left(\mathbf{x}^{(i)}\right)\right)\right] \tag{105}
\end{equation*}
$$

Recap: Convex Surrogates for 0-1 Loss in ML

$$
\begin{equation*}
\widehat{\mathbf{w}}^{*}=\underset{\mathbf{w}}{\operatorname{argmin}} \mathcal{L}(\mathbf{w})+\Omega(\mathbf{w}) \tag{106}
\end{equation*}
$$

- Logistic Regression:

$$
\begin{equation*}
\mathcal{L}(\mathbf{w})=-\left[\frac{1}{m} \sum_{i=1}^{m}\left(y^{(i)} \mathbf{w}^{T} \phi\left(\mathbf{x}^{(i)}\right)-\log \left(1+\exp \left(\mathbf{w}^{T} \phi\left(\mathbf{x}^{(i)}\right)\right)\right)\right]\right. \tag{107}
\end{equation*}
$$

- Sigmoidal Neural Net:

$$
\begin{equation*}
\mathcal{L}(\mathbf{w})=-\frac{1}{m}\left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_{k}^{(i)} \log \left(\sigma_{k}^{L}\left(\mathbf{x}^{(i)}\right)\right)+\left(1-y_{k}^{(i)}\right) \log \left(1-\sigma_{k}^{L}\left(\mathbf{x}^{(i)}\right)\right)\right] \tag{108}
\end{equation*}
$$

## Empirical Risk Minimization and Projected Gradient Descent

## Empirical Risk Minimization and Proj Grad Descent

- Gradient depends on all data
- What about generalization?
- Simultaneous optimization and generalization
- Faster optimization! (single example per iteration)


## Statistical (PAC) learning

- $\mathcal{D}$ : i.i.d distribution over $\mathcal{X} \times \mathcal{Y}=\left\{\left(\mathrm{x}^{i}, y^{i}\right)\right\}$
- Goal: To learn Hypothesis $h$ from hypothesis class $\mathcal{H}$ that minimizes expected loss $\operatorname{err}(h)=\mathbf{E}\left[\mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}\right)\right]$.
- $\mathcal{H}$ is (PAC) learnable if $\forall \epsilon, \delta>0$, there exists algorithm s.t. after seeing $M$ examples, where $M=\mathcal{O}(\operatorname{poly}(\delta, \epsilon, \operatorname{dimension}(\mathcal{H})))$, the algorithm finds $h$ s.t. w.p. $1-\delta$,

$$
\operatorname{err}(h) \leq \min _{h^{*} \in \mathcal{H}} \operatorname{err}\left(h^{*}\right)+\epsilon
$$

## Online Learning and Regret Minimization

- For $k=1,2 \ldots K, h^{k} \in \mathcal{H}$, and an adversarial example $\left(\mathrm{x}^{k}, y^{k}\right)$, minimize expected regret:

$$
\frac{1}{K}\left[\sum_{k} \mathcal{L}\left(h^{k}, \mathrm{x}^{k}, y^{k}\right)-\min _{h^{*} \in \mathcal{H}} \sum_{k} \mathcal{L}\left(h^{*}, \mathrm{x}^{k}, y^{k}\right)\right] \xrightarrow{K \rightarrow \infty} 0
$$

- Generalization in PAC setting is achieved by regret vanishing


## Online Gradient Descent: Efficient Algorithm for Regret Minimization

- Let us denote by $\nabla_{k}$, the expression $\nabla_{w^{k}} \mathcal{L}\left(\mathrm{x}^{k}, y^{k}, \mathrm{w}^{k}\right)$
- Note that some adversarial example ( $\mathrm{x}^{k}, y^{k}$ ) could be the same as $\left(\mathrm{x}^{\prime}, y^{\prime}\right)$ for $I \neq k$
- The alternating steps are
- Stochastic gradient descent Step: $\mathbf{w}_{u}^{k+1}=\mathbf{w}_{p}^{k}-t \nabla_{k}$
- Projection Step: $\mathrm{w}_{p}^{k+1}=\underset{z \in \mathcal{C}}{\operatorname{argmin}}\left\|\mathrm{w}_{u}^{k}-z\right\|$
- Claim: Regret $=\sum_{k=1}^{K} \mathcal{L}\left(\mathrm{x}^{k}, y^{k}, \mathbf{w}^{k}\right)-\sum_{k=1}^{K} \mathcal{L}\left(\mathrm{x}^{k}, y^{k}, \mathbf{w}^{*}\right)=\mathcal{O}(K)$


## Online Gradient Descent: Analysis

- Online Gradient Descent: Efficient Algorithm for Regret Minimization - Zinkevich 2005
- As before, substituting for $\mathbf{w}_{u}^{k+1}$ and expanding squares

$$
\begin{equation*}
\left\|\mathbf{w}_{u}^{k+1}-\mathbf{w}^{*}\right\|^{2}=\left\|\mathbf{w}_{p}^{k}-\mathbf{w}^{*}\right\|^{2}-2 t \nabla_{k}\left(\mathbf{w}^{*}-\mathbf{w}_{p}^{k}\right)+t^{2}\left\|\nabla_{k}\right\|^{2} \tag{109}
\end{equation*}
$$

- Since $\mathrm{w}_{p}^{k+1}=\underset{z \in \mathcal{C}}{\operatorname{argmin}}\left\|\mathrm{w}_{u}^{k}-z\right\|$,

$$
\begin{equation*}
\left\|\mathbf{w}_{p}^{k+1}-\mathbf{w}^{*}\right\|^{2} \leq\left\|\mathbf{w}_{u}^{k+1}-\mathbf{w}^{*}\right\|^{2} \tag{110}
\end{equation*}
$$

- Substituting from equality (109) into the RHS of inequality (110):

$$
\begin{equation*}
\left\|\mathbf{w}_{p}^{k+1}-\mathbf{w}^{*}\right\|^{2} \leq\left\|\mathbf{w}_{p}^{k}-\mathbf{w}^{*}\right\|^{2}-2 t \nabla_{k}\left(\mathbf{w}_{p}^{k}-\mathbf{w}^{*}\right)+t^{2}\left\|\nabla_{k}\right\|^{2} \tag{111}
\end{equation*}
$$

- By convexity,

$$
\begin{equation*}
\sum_{k=1}^{K} \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}_{p}^{k}\right)-\mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{*}\right) \leq \sum_{k=1}^{K} \nabla_{k}\left(\mathbf{w}^{*}-\mathbf{w}_{p}^{k}\right) \tag{112}
\end{equation*}
$$

## Online Gradient Descent: Analysis (contd)

- Substituting from (111) into (112)

$$
\begin{equation*}
\sum_{k=1}^{K} \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}_{\rho}^{k}\right)-\mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{*}\right) \leq \sum_{k=1}^{K} \frac{1}{2 t}\left(\left\|\mathbf{w}_{\rho}^{k}-\mathbf{w}^{*}\right\|^{2}-\left\|\mathbf{w}_{\rho}^{k+1}-\mathbf{w}^{*}\right\|^{2}+t^{2}\left\|\nabla_{k}\right\|^{2}\right) \tag{113}
\end{equation*}
$$

- As before, if: $\mathbf{g}$ is upper bound on norm of gradients, i.e., $\|\nabla f(x)\|^{2} \leq \mathbf{g}^{2}$
- Using the above upper bound and expanding the summation over $\left\|\mathbf{w}^{*}-\mathbf{w}^{k}\right\|^{2}$, all terms get canceled except for the first and last:

$$
\begin{equation*}
\sum_{k=1}^{K} \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}_{\rho}^{k}\right)-\mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{*}\right) \leq \frac{1}{2 t}\left(\left\|\mathbf{w}_{\rho}^{1}-\mathbf{w}^{*}\right\|^{2}-\left\|\mathbf{w}_{\rho}^{K+1}-\mathbf{w}^{*}\right\|^{2}\right)+\frac{t}{2} K \mathbf{g}^{2} \tag{114}
\end{equation*}
$$

- Using the fact that negative of norm is always negative

$$
\begin{equation*}
\sum_{k=1}^{K} \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}_{p}^{k}\right)-\mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{*}\right) \leq \frac{1}{2 t}\left(\left\|\mathbf{w}_{\rho}^{1}-\mathbf{w}^{*}\right\|^{2}\right)+\frac{t}{2} K \mathbf{g}^{2} \tag{115}
\end{equation*}
$$

## Online Gradient Descent: Analysis (contd)

- Again recall that $\mathbf{d}$ is diameter of $\mathcal{C}$, i.e., $\mathbf{w} \in \mathcal{C},\left\|\mathbf{w}_{p}^{1}-\mathbf{w}^{*}\right\|^{2} \leq \mathbf{d}^{2}$, thus, (115) becomes (116)

$$
\begin{equation*}
\sum_{k=1}^{K} \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}_{p}^{k}\right)-\mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{*}\right) \leq \frac{\mathbf{d}^{2}}{2 t}+\frac{t}{2} K \mathbf{g}^{2} \tag{116}
\end{equation*}
$$

- Since $\frac{\mathbf{d}^{2}}{2 t}+\frac{t}{2} K \mathbf{g}^{2}=\frac{\mathbf{d}^{2}}{2 t}+\frac{t}{2} K \mathbf{g}^{2}-\operatorname{gd} \sqrt{K}+\operatorname{gd} \sqrt{K}=\left(\frac{\mathrm{d}}{\sqrt{2 t}}-\sqrt{\frac{K t}{2}} \mathbf{g}\right)^{2}+\operatorname{gd} \sqrt{K} \geq \operatorname{gd} \sqrt{K}$ and therefore,

$$
\begin{equation*}
\sum_{k=1}^{K} \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}_{p}^{k}\right)-\mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{*}\right) \leq \mathbf{g d} \sqrt{K}=\Omega(\sqrt{K}) \tag{117}
\end{equation*}
$$

- Thus, Regret $=\Omega(\sqrt{K})$
- Based on the derivations starting from (112) that culminate in (117), we now know that

$$
\begin{equation*}
\sum_{k=1}^{K} \nabla_{k}\left(\mathbf{w}_{p}^{k}-\mathbf{w}^{*}\right) \leq \operatorname{gd} \sqrt{K} \tag{118}
\end{equation*}
$$

- Thus,

$$
\begin{equation*}
\frac{1}{K} \sum_{k=1}^{K} \nabla_{k}\left(\mathbf{w}_{p}^{k}\right)=\frac{1}{K} \sum_{k=1}^{K} \nabla_{k}\left(\mathbf{w}_{p}^{k}\right)+\frac{\mathbf{g d}}{\sqrt{K}} \tag{119}
\end{equation*}
$$

- Treating each $\left(\mathrm{x}^{k}, y^{k}\right)$ to be a random example and taking expectations over such samples ( $\mathrm{x}^{k}, y^{k}$ ) while combining (118) and (113)

$$
\begin{equation*}
\mathbf{E}\left[\frac{1}{K} \sum_{k=1}^{K} \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}_{p}^{k}\right)-\mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{*}\right)\right] \leq \mathbf{E}\left[\frac{1}{K} \sum_{k=1}^{K} \nabla_{k}\left(\mathbf{w}_{p}^{k}-\mathbf{w}^{*}\right)\right] \leq \mathbf{E}\left[\frac{\mathbf{g d}}{\sqrt{K}}\right] \tag{120}
\end{equation*}
$$

## Summarizing Analysis for Stochastic Gradient Descent

- One example per step, same convergence properties as projected gradient descent and additional provides direct generalization! (All this formally needs martingales)

$$
\mathbf{E}\left[\frac{1}{K} \sum_{k=1}^{K} \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}_{p}^{k}\right)-\mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{*}\right)\right] \leq \mathbf{E}\left[\frac{1}{K} \sum_{k=1}^{K} \nabla_{k}\left(\mathbf{w}_{p}^{k}-\mathbf{w}^{*}\right)\right] \leq \mathbf{E}\left[\frac{\mathbf{g d}}{\sqrt{K}}\right]
$$

- To get solution that is $\epsilon$ approximate with $\epsilon=\frac{\mathrm{dg}}{\sqrt{K}}$, you need number of gradient iterations that is $K=\left(\frac{\mathrm{d} g}{\epsilon}\right)^{2}=O\left(\frac{1}{\epsilon}\right)^{2}$
- Recall that $\mathcal{H}$ is (PAC) learnable if $\forall \epsilon, \delta>0$, there exists algorithm s.t. after seeing $M$ examples, where $M=\mathcal{O}(\operatorname{poly}(\delta, \epsilon, \operatorname{dimension}(\mathcal{H})))$, the algorithm finds $h$ s.t. w.p. $1-\delta$,

$$
\operatorname{err}(h) \leq \min _{h^{*} \in \mathcal{H}} \operatorname{err}\left(h^{*}\right)+\epsilon
$$

- Thus, the number of iterations for $\epsilon$ approximation is $K=M\left(\frac{\mathrm{~d} g}{\epsilon}\right)^{2}=O\left(\frac{M}{\epsilon}\right)^{2}$


## Follow the Leader

- Recap (slightly different) definition of regret:

$$
\begin{equation*}
\sum_{k=1}^{K} \mathcal{L}\left(\mathrm{x}^{k}, y^{k}, \mathbf{w}_{p}^{k}\right)-\min _{\mathbf{w} \in \mathcal{C}} \sum_{k=1}^{K} \mathcal{L}\left(\mathrm{x}^{k}, y^{k}, \mathbf{w}\right) \tag{121}
\end{equation*}
$$

- Minimizing regret might still not show stability wrt $\left|\mathbf{w}^{k+1}-\mathbf{w}^{k}\right|$. Eg: When +1 and -1 are alternating!
- Consider Follow-The-Leader (FTL or best-in-hindsight) that minimizes a linear approximation of the loss function:

$$
\mathbf{w}^{k}=\underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmin}} \sum_{i=1}^{k-1} \mathbf{w}^{T} \nabla \mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}^{i}\right)
$$

## Regularizing Follow the Leader

- Given Follow-The-Leader (FTL)....

$$
\mathbf{w}^{k}=\underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmin}} \sum_{i=1}^{k-1} \mathbf{w}^{T} \nabla \mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}^{i}\right)
$$

- ....Follow-The-Regularized-Leader (FTRL) additionally regularizes this loss function

$$
\mathbf{w}^{k}=\underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmin}} \sum_{i=1}^{k-1} \mathbf{w}^{T} \nabla \mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}^{i}\right)+\frac{1}{t} \Omega(\mathbf{w})
$$

- $\Omega(\mathbf{w})$ is often chosen to be a strongly convex function in order to ensure stability (Kalai Vempala observation):

$$
\nabla \mathcal{L}\left(\mathrm{x}^{i}, y^{i}, \mathbf{w}^{k}\right)=\mathcal{O}(t)
$$

- Perspectives for regularization
(1) PAC theory: Reduce complexity
(2) Regret Minimization: Improve Stability


## FTRL i.e., Mirror Descent

- Follow-The-Regularized-Leader (FTRL):

$$
\mathbf{w}^{k}=\underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmin}} \sum_{i=1}^{k-1} \mathbf{w}^{T} \nabla \mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}^{i}\right)+\frac{1}{t} \Omega(\mathbf{w})
$$

- Bregman Divergence, another perspective that gives you generalized regret bounds:

$$
B_{\Omega}\left(\mathbf{w}_{p} \| \mathbf{w}_{u}\right)=\Omega\left(\mathbf{w}_{p}\right)-\Omega\left(\mathbf{w}_{u}\right)-\left(\mathbf{w}_{p}-\mathbf{w}_{u}\right)^{t} \nabla \Omega\left(\mathbf{w}_{u}\right)
$$

- Consider the Bregman Projection:

$$
P_{\mathcal{C}}^{\Omega}\left(\mathbf{w}_{u}\right)=\arg \min _{\mathbf{w}_{p} \in \mathcal{C}} B_{\Omega}\left(\mathbf{w}_{p} \| \mathbf{w}_{u}\right)
$$

- The Online Mirror Descent Algorithm with following steps is equivalent to FTRL:
(1) $\mathrm{w}^{k} \equiv \mathrm{w}_{p}^{k}=P_{\mathcal{C}}^{\Omega}\left(\mathrm{w}_{u}^{k}\right)$
(2) $\mathrm{w}_{u}^{k+1}=(\nabla \Omega)^{-1}\left(\nabla \Omega\left(\mathrm{w}_{u}^{k}\right)-t \nabla \mathcal{L}\left(\mathrm{x}^{i}, y^{i}, \mathrm{w}_{p}^{k}\right)\right.$

Eg: $\Omega(w)=\|w\|^{2}$

- Follow-The-Regularized-Leader (FTRL):

$$
\mathbf{w}^{k}=P_{\mathcal{C}}\left(-t \sum_{i=1}^{k-1} \nabla \mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}\right)\right)
$$

- Bregman Divergence:

$$
B_{\Omega}\left(\mathbf{w}_{p} \| \mathbf{w}_{u}\right)=\left\|\mathbf{w}_{p}\right\|^{2}-\left\|\mathbf{w}_{u}\right\|^{2}-2\left(\mathbf{w}_{p}-\mathbf{w}_{u}\right)^{t} \mathbf{w}_{u}=\left\|\mathbf{w}_{p}-\mathbf{w}_{u}\right\|^{2}
$$

- The Online Mirror Descent Algorithm:
(1) $\mathrm{w}_{p}^{k}=\operatorname{argmin} \mathrm{w}_{p} \in \mathcal{C} \quad\left\|\mathrm{w}_{p}-\mathrm{w}_{u}^{k}\right\|^{2}$
(2) $\mathbf{w}_{u}^{k+1}=(\nabla \Omega)^{-1}\left(2 \mathbf{w}_{u}^{k}-t \nabla \mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}_{p}^{k}\right)\right)$
- Thus turns out to be ordinary projected gradient descent!

Eg: $\Omega(\mathbf{w})=\sum_{j} w_{j} \log w_{j}$

- Additionally require a loss linear in $\mathbf{w}: \mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}\right)=\mathbf{w}^{T} \mathbf{c}^{i}$ where $\mathbf{c}^{i}$ is a vector of losses.
- Follow-The-Regularized-Leader (FTRL) with the normalization factor $Z_{k}$ being a function of $\mathcal{C}$ :

$$
\mathbf{w}^{k}=\frac{\exp \left(-t \sum_{i=1}^{k-1}\right)}{Z_{k}}
$$

- Bregman Divergence:

$$
\begin{gather*}
\mathrm{B}_{\Omega}\left(\mathbf{w}_{p}| | \mathbf{w}_{u}\right)=\sum_{j}\left[\left(\mathbf{w}_{p}\right)_{j} \log \left(\mathbf{w}_{p}\right)_{j}-\left(\mathbf{w}_{u}\right)_{j} \log \left(\mathbf{w}_{u}\right)_{j}-\left(\left(\mathbf{w}_{p}\right)_{j}-\left(\mathbf{w}_{u}\right)_{j}\right)\left(\log \left(\mathbf{w}_{u}\right)_{j}+1\right)\right]  \tag{122}\\
=\sum_{j}\left[\left(\mathbf{w}_{p}\right)_{j} \log \left(\mathbf{w}_{p}\right)_{j}-\left(\mathbf{w}_{p}\right)_{j} \log \left(\mathbf{w}_{u}\right)_{j}-\left(\left(\mathbf{w}_{p}\right)_{j}-\left(\mathbf{w}_{u}\right)_{j}\right)\right] \tag{123}
\end{gather*}
$$

- The Online Mirror Descent Algorithm:
(1) $\mathbf{w}_{p}^{k}=\operatorname{argmin} \mathbf{w}_{p} \in \mathcal{C} \sum_{j}\left[\left(\mathbf{w}_{p}^{k}\right)_{j} \log \frac{\left(\mathbf{w}_{p}^{k}\right)_{j}}{e \times\left(\mathbf{w}_{u}^{k}\right)_{j}}\right]$
(2) $\mathbf{w}_{u}^{k}+1=(\nabla \Omega)^{-1}\left(\log \mathbf{w}_{u}^{k}-t \nabla \mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}_{p}^{k}\right)\right)$


## Adaptive Regularization: Adagrad

- The general regularized follow the leader (RFTL):

$$
\mathbf{w}^{k}=\underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmin}} \sum_{i=1}^{k-1} \mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}^{i}\right)+\frac{1}{t} \Omega(\mathbf{w})
$$

- A natural question is, which $\Omega(\mathbf{w})$ to pick? Solution: Learn!!
- Adagrad: Learn to pick from a family of regularizers

$$
\Omega(\mathbf{w})=|\mathbf{w}|_{R}^{2} \text { s.t. } R \geq 0, \operatorname{Trace}(R)=\omega
$$

## Adaptive Regularization: Adagrad (contd.)

- Set $\mathbf{w}^{1}$ arbitrarily
- For $k=1,2, \ldots$
(1) Compute $\mathcal{L}\left(\mathrm{x}^{k}, y^{k}, \mathrm{w}^{k}\right)$
(2) Compute $\mathbf{w}^{(k+1)}=\mathbf{w}_{p}^{(k+1)}$ as follows:

$$
\begin{aligned}
& \star H_{k}=\operatorname{diag}\left(\sum_{i=1}^{k} \nabla \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{k}\right) \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{k}\right)^{T}\right) \\
& \star \mathbf{w}_{u}^{(k+1)}=\mathbf{w}^{k}-t H_{k}^{\frac{-1}{2}} \nabla \mathcal{L}\left(\mathbf{x}^{k}, y^{k}, \mathbf{w}^{k}\right) \\
& \star \mathbf{w}_{\rho}^{(k+1)}=\underset{\mathbf{w} \in \mathcal{C}}{\operatorname{argmin}}\left(\mathbf{w}_{u}^{(k+1)}-\mathbf{w}\right)^{T} H_{k}\left(\mathbf{x}_{u}^{k+1}-\mathbf{w}\right)
\end{aligned}
$$

- Regret Bound: $\mathcal{O}\left(\sum_{i} \sqrt{\sum_{k} \nabla \mathcal{L}\left(\mathbf{x}^{i}, y^{i}, \mathbf{w}^{k}\right)}\right)$ can be $\sqrt{d}$ better than Stochastic Gradient Descent
- Infrequently occurring, or small-scale, features have small influence on regret (and therefore, convergence to optimal parameter)


## Accelerating Gradient Descent: Variance Reduction

- Uses the special structure of Empirical Risk Minimization
- Very effective for Lipschitz continuous (smooth) \& convex functions
- Recap: Condition number of Convex Functions $=\frac{L}{\alpha}=$ Ratio of Lipschitz constant (L) and strong convexity factor $(\alpha)$

$$
0 \prec \alpha I \preceq \nabla^{2} f(\mathbf{x}) \preceq L I
$$




