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Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if f(c) is a
local extreme value:
Procedure
[Local Extreme Value]: Let c be an isolated critical point of f

1 f(c) is a local minimum if f(x) is decreasing in an
interval [c − ϵ1, c] and increasing in an interval
[c, c + ϵ2] with ϵ1, ϵ2 > 0.

2 f(c) is a local maximum if f(x) is increasing in an
interval [c − ϵ1, c] and decreasing in an interval
[c, c + ϵ2] with ϵ1, ϵ2 > 0.
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Given a critical point c, first derivative test (sufficient condition)
helps determine if f(c) is a local extreme value:

Procedure
[First derivative test]: Let c be an isolated critical point of f

1 f(c) is a local minimum if the sign of f′(x) changes
from negative in [c − ϵ1, c] to positive in [c, c + ϵ2]
with ϵ1, ϵ2 > 0.

2 f(c) is a local maximum if f(x) the sign of f′(x)
changes from positive in [c − ϵ1, c] to negative in
[c, c + ϵ2] with ϵ1, ϵ2 > 0.

3 If f′(x) is positive in an interval [c − ϵ1, c] and also
positive in an interval [c, c − ϵ2], or f′(x) is negative
in an interval [c − ϵ1, c] and also negative in an
interval [c, c − ϵ2] with ϵ1, ϵ2 > 0, then f(c) is not a
local extremum.
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First Derivative Test: Critical Point and Local
Extreme Value
As an example, the function f(x) = 3x5 − 5x3 has

the derivative
f′(x) = 15x2(x + 1)(x − 1). The critical points are 0, 1 and −1. Of
the three, the sign of f′(x) changes at 1 and −1, which are local
minimum and maximum respectively. The sign does not change at 0,
which is therefore not a local supremum.

Figure 7:
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First Derivative Test: Critical Point and Local
Extreme Value
As another example, consider the function

f(x) =

{
−x if x ≤ 0
1 if x > 0

Then,

f′(x) =

{
−1 if x < 0
0 if x > 0

Note that f(x) is discontinuous at x = 0, and therefore f′(x) is not
defined at x = 0. All numbers x ≥ 0 are critical numbers. f(0) = 0 is
a local minimum, whereas f(x) = 1 is a local minimum as well as a
local maximum ∀x > 0.
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Strict Convexity and Extremum
A differentiable function f is said to be strictly convex (or strictly
concave up) on an open interval I, iff, f′(x) is increasing on I.
Recall from theorem 7, the graphical interpretation of the first
derivative f′(x); f′(x) > 0 implies that f(x) is increasing at x.
Similarly, f′(x) is increasing when f′′(x) > 0. This gives us a
sufficient condition for the strict convexity of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and
if f′′(x) > 0, ∀x ∈ I, then the slope of the function is always
increasing with x and the graph is strictly convex. This is illustrated
in Figure 8.

On the other hand, if the function is strictly convex and doubly
differentiable in I, then f′′(x) ≥ 0, ∀x ∈ I.
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Strict Convexity and Extremum (Illustrated)

Figure 8:
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Strict Convexity and Extremum: Slopeless
interpretation (SI)

Claim
A function f is strictly convex on an open interval I, iff

f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2) (1)

whenver x1, x2 ∈ I, x1 ̸= x2 and 0 < a < 1.
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SI: Necessity when f is differentiable
First we will prove the necessity.

Suppose f′ is increasing on I. Let
0 < a < 1, x1, x2 ∈ I and x1 ̸= x2. Without loss of generality assume
that2 x1 < x2. Then, x1 < ax1 + (1− a)x2 < x2 and therefore
ax1 + (1− a)x2 ∈ I. By the mean value theorem, there exist s and t
with x1 < s < ax1 + (1− a)x2 < t < x2, such that
f(ax1 + (1− a)x2)− f(x1) = f′(s)(x2 − x1)(1− a) and
f(x2)− f(ax1 + (1− a)x2) = f′(t)(x2 − x1)a. Therefore,

(1 − a)f(x1) − f(ax1 + (1 − a)x2) + af(x2) =

a
[
f(x2) − f(ax1 + (1 − a)x2)

]
− (1 − a)

[
f(ax1 + (1 − a)x2) − f(x1)

]
=

a(1 − a)(x2 − x1)
[
f′(t) − f′(s)

]

Since f(x) is strictly convex on I, f′(x) is increasing on I and
therefore, f′(t)− f′(s) > 0. Moreover, x2 − x1 > 0 and 0 < a < 1.
Thus, (1− a)f(x1)− f(ax1 + (1− a)x2) + af(x2) > 0, or equivalently,
f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2), which is what we wanted
to prove in inequality (1).

2For the case x2 < x1, the proof is very similar.
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SI: Necessity when f is differentiable
First we will prove the necessity. Suppose f′ is increasing on I. Let
0 < a < 1, x1, x2 ∈ I and x1 ̸= x2. Without loss of generality assume
that2 x1 < x2. Then, x1 < ax1 + (1− a)x2 < x2 and therefore
ax1 + (1− a)x2 ∈ I. By the mean value theorem, there exist s and t
with x1 < s < ax1 + (1− a)x2 < t < x2, such that
f(ax1 + (1− a)x2)− f(x1) = f′(s)(x2 − x1)(1− a) and
f(x2)− f(ax1 + (1− a)x2) = f′(t)(x2 − x1)a. Therefore,
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a
[
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]
− (1 − a)

[
f(ax1 + (1 − a)x2) − f(x1)

]
=

a(1 − a)(x2 − x1)
[
f′(t) − f′(s)

]

Since f(x) is strictly convex on I, f′(x) is increasing on I and
therefore, f′(t)− f′(s) > 0. Moreover, x2 − x1 > 0 and 0 < a < 1.
Thus, (1− a)f(x1)− f(ax1 + (1− a)x2) + af(x2) > 0, or equivalently,
f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2), which is what we wanted
to prove in inequality (1).

2For the case x2 < x1, the proof is very similar.
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SI: Sufficiency when f is differentiable
Suppose the inequality in inqeuality (1) holds. Then, taking limits,

lim
a→0

f(x2+a(x1−x2))−f(x2)
a ≤ f(x1)− f(x2). That is,

f′(x2)(x1 − x2) ≤ f(x1)− f(x2) (2)
Similarly, we can show that

f′(x1)(x2 − x1) ≤ f(x2)− f(x1) (3)
Adding the left and right hand sides of inequalities in (2) and (3),
and multiplying the resultant inequality by −1 gives us

(
f′(x2)− f′(x1)

)
(x2 − x1) ≥ 0 (4)

We now need to prove that the inequality in (4) is strict.
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SI: Sufficiency when f is differentiable (contd)
Using the mean value theorem, ∃z = x1 + t(x2 − x1) for t ∈ (0, 1)
such that

f(x2)− f(x1) = f′(z)(x2 − x1) (5)

Since (4) holds for any x1, x2 ∈ I, it also hold for x2 = z. Therefore,

(f′(z)− f′(x1))(x2 − x1) =
1

t (f
′(z)− f′(x1))(z − x1) ≥ 0

Additionally using (5), we get

f(x2)−f(x1) = (f′(z)−f′(x1))(x2−x1)+f′(x1)(x2−x1) ≥ f′(x1)(x2−x1)
(6)
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SI: Sufficiency when f is differentiable (contd)
Suppose equality holds in (4) for some x1 ̸= x2. Then it holds in (6)
for the same x1 and x2. That is,

f(x2)− f(x1) = f′(x1)(x2 − x1) (7)

Substituting x2 with x1 + a(x2 − x1) and applying (6), we get

f(x1) + af′(x1)(x2 − x1) ≤ f(x1 + a(x2 − x1)) (8)

Further using (1) and 7, we can derive that

f(x1+a(x2−x1)) < (1−a)f(x1)+af(x2) = f(x1)+af′(x1)(x2−x1) (9)

Contradiction between (8) and (9)!
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SI: Sufficiency when f is differentiable (contd)

Thus, equations 8 and 9 contradict each other.

f(x1) + af′(x1)(x2 − x1) ≤ f(x1 + a(x2 − x1))

f(x1 + a(x2 − x1)) < (1− a)f(x1) + af(x2) = f(x1) + af′(x1)(x2 − x1)
Therefore, equality in 4 cannot hold for any x1 ̸= x2, implying that(

f′(x2)− f′(x1)
)
(x2 − x1) > 0

that is, f′(x) is increasing and therefore f is convex on I.
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Strict Concavity

A differentiable function f is said to be strictly concave on an
open interval I, iff, f′(x) is decreasing on I.
Recall from theorem 7, the graphical interpretation of the first
derivative f′(x); f′(x) < 0 implies that f(x) is decreasing at x.
Similarly, f′(x) is (strictly) monotonically decreasing when

f′′(x) > 0. This gives us a sufficient condition for the concavity
of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and
if f′′(x) < 0, ∀x ∈ I, then the slope of the function is always
decreasing with x and the graph is strictly concave.
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Strict Concavity

A differentiable function f is said to be strictly concave on an
open interval I, iff, f′(x) is decreasing on I.
Recall from theorem 7, the graphical interpretation of the first
derivative f′(x); f′(x) < 0 implies that f(x) is decreasing at x.
Similarly, f′(x) is (strictly) monotonically decreasing when
f′′(x) > 0. This gives us a sufficient condition for the concavity
of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and
if f′′(x) < 0, ∀x ∈ I, then the slope of the function is always
decreasing with x and the graph is strictly concave.
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Strict Concavity
On the other hand, if the function is strictly concave and doubly
differentiable in I, then f′′(x) ≤ 0, ∀x ∈ I. This is illustrated in
Figure 9.

Figure 9:
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Strict Concavity (slopeless interpretation)

There is also a slopeless interpretation of concavity as stated in the
following theorem:

Claim
A differentiable function f is strictly concave on an open interval I, iff

f(ax1 + (1− a)x2) > af(x1) + (1− a)f(x2) (10)

whenver x1, x2 ∈ I, x1 ̸= x2 and 0 < a < 1.

The proof is similar to that for theorem 12.
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Convex & Concave Regions and Inflection Point
Study the function f(x) = x3 − x + 2.

It’s slope decreases as x
increases to 0 (f′′(x) < 0) and then the slope increases beyond x = 0
(f′′(x) > 0). The point 0, where the f′′(x) changes sign is called the
inflection point; the graph is strictly concave for x < 0 and strictly
convex for x > 0. See Figure 10.

Figure 10:
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Convex & Concave Regions and Inflection Point
Study the function f(x) = x3 − x + 2. It’s slope decreases as x
increases to 0 (f′′(x) < 0) and then the slope increases beyond x = 0
(f′′(x) > 0). The point 0, where the f′′(x) changes sign is called the
inflection point; the graph is strictly concave for x < 0 and strictly
convex for x > 0. See Figure 10.
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