Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if $f(c)$ is a local extreme value:

Procedure

[Local Extreme Value]: Let c be an isolated critical point of f
(1) $f(c)$ is a local minimum if $f(x)$ is decreasing in an interval $\left[c-\epsilon_{1}, c\right]$ and increasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(2) $f(c)$ is a local maximum if $f(x)$ is increasing in an interval $\left[c-\epsilon_{1}, c\right]$ and decreasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.

Given a critical point c, first derivative test (sufficient condition) helps determine if $f(c)$ is a local extreme value:

Procedure

[First derivative test]: Let c be an isolated critical point of f
(1) $f(c)$ is a local minimum if the sign of $f(x)$ changes from negative in $\left[c-\epsilon_{1}, c\right]$ to positive in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(2) $f(c)$ is a local maximum if $f(x)$ the sign of $f(x)$ changes from positive in $\left[c-\epsilon_{1}, c\right]$ to negative in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(3) If $f(x)$ is positive in an interval $\left[c-\epsilon_{1}, c\right]$ and also positive in an interval $\left[c, c-\epsilon_{2}\right]$, or $f(x)$ is negative in an interval $\left[c-\epsilon_{1}, c\right]$ and also negative in an interval $\left[c, c-\epsilon_{2}\right.$] with $\epsilon_{1}, \epsilon_{2}>0$, then $f(c)$ is not a local extremum.

First Derivative Test: Critical Point and Local Extreme Value

As an example, the function $f(x)=3 x^{5}-5 x^{3}$ has

First Derivative Test: Critical Point and Local

Extreme Value

As an example, the function $f(x)=3 x^{5}-5 x^{3}$ has the derivative $f(x)=15 x^{2}(x+1)(x-1)$. The critical points are 0,1 and -1 . Of the three, the sign of $f(x)$ changes at 1 and -1 , which are local minimum and maximum respectively. The sign does not change at 0 , which is therefore not a local supremum.

First Derivative Test: Critical Point and Local
 Extreme Value

As another example, consider the function

$$
f(x)=\left\{\begin{array}{cl}
-x & \text { if } x \leq 0 \\
1 & \text { if } x>0
\end{array}\right.
$$

Then,

$$
f(x)=\left\{\begin{array}{cl}
-1 & \text { if } x<0 \\
0 & \text { if } x>0
\end{array}\right.
$$

Note that $f(x)$ is discontinuous at $x=0$, and therefore $f(x)$ is not defined at $x=0$. All numbers $x \geq 0$ are critical numbers. $f(0)=0$ is a local minimum, whereas $f(x)=1$ is a local minimum as well as a local maximum $\forall x>0$.

Strict Convexity and Extremum

- A differentiable function f is said to be strictly convex (or strictly concave up) on an open interval \mathcal{I}, iff, $f(x)$ is increasing on \mathcal{I}.
- Recall from theorem 7, the graphical interpretation of the first derivative $f(x) ; f(x)>0$ implies that $f(x)$ is increasing at x.
- Similarly, $f(x)$ is increasing when $f^{\prime}(x)>0$. This gives us a sufficient condition for the strict convexity of a function:

Claim

If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime}(x)>0, \forall x \in \mathcal{I}$, then the slope of the function is always increasing with x and the graph is strictly convex. This is illustrated in Figure 8.

- On the other hand, if the function is strictly convex and doubly differentiable in \mathcal{I}, then $f^{\prime}(x) \geq 0, \forall x \in \mathcal{I}$.

Strict Convexity and Extremum (Illustrated)

Figure 8:

Strict Convexity and Extremum: Slopeless interpretation (SI)

Claim
A function f is strictly convex on an open interval \mathcal{I}, iff

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{1}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.

SI: Necessity when f is differentiable

 First we will prove the necessity.${ }^{2}$ For the case $x_{2}<x_{1}$, the proof is very similar.

SI: Necessity when f is differentiable

First we will prove the necessity. Suppose f is increasing on \mathcal{I}. Let $0<a<1, x_{1}, x_{2} \in \mathcal{I}$ and $x_{1} \neq x_{2}$. Without loss of generality assume that ${ }^{2} x_{1}<x_{2}$. Then, $x_{1}<a x_{1}+(1-a) x_{2}<x_{2}$ and therefore $a x_{1}+(1-a) x_{2} \in \mathcal{I}$. By the mean value theorem, there exist s and t with $x_{1}<s<a x_{1}+(1-a) x_{2}<t<x_{2}$, such that $f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)=f(s)\left(x_{2}-x_{1}\right)(1-a)$ and $f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)=f(t)\left(x_{2}-x_{1}\right) a$. Therefore,
${ }^{2}$ For the case $x_{2}<x_{1}$, the proof is very similar.

SI: Necessity when f is differentiable

First we will prove the necessity. Suppose f is increasing on \mathcal{I}. Let $0<a<1, x_{1}, x_{2} \in \mathcal{I}$ and $x_{1} \neq x_{2}$. Without loss of generality assume that ${ }^{2} x_{1}<x_{2}$. Then, $x_{1}<a x_{1}+(1-a) x_{2}<x_{2}$ and therefore $a x_{1}+(1-a) x_{2} \in \mathcal{I}$. By the mean value theorem, there exist s and t with $x_{1}<s<a x_{1}+(1-a) x_{2}<t<x_{2}$, such that $f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)=f(s)\left(x_{2}-x_{1}\right)(1-a)$ and $f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)=f(t)\left(x_{2}-x_{1}\right) a$. Therefore,

$$
\begin{aligned}
&(1-a) f\left(x_{1}\right)-f\left(a x_{1}+(1-a) x_{2}\right)+a f\left(x_{2}\right)= \\
& a\left[f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)\right]-(1-a)\left[f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)\right]= \\
& a(1-a)\left(x_{2}-x_{1}\right)\left[f^{\prime}(t)-f^{\prime}(s)\right]
\end{aligned}
$$

Since $f(x)$ is strictly convex on $\mathcal{I}, f(x)$ is increasing on \mathcal{I} and therefore, $f(t)-f(s)>0$. Moreover, $x_{2}-x_{1}>0$ and $0<a<1$. Thus, $(1-a) f\left(x_{1}\right)-f\left(a x_{1}+(1-a) x_{2}\right)+a f\left(x_{2}\right)>0$, or equivalently, $f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right)$, which is what we wanted to prove in inequality (1).
${ }^{2}$ For the case $x_{2}<x_{1}$, the proof is very similar.

SI: Sufficiency when f is differentiable

Suppose the inequality in inqeuality (1) holds. Then, taking limits,

SI: Sufficiency when f is differentiable

Suppose the inequality in inqeuality (1) holds. Then, taking limits, $\lim _{a \rightarrow 0} \frac{f\left(x_{2}+a\left(x_{1}-x_{2}\right)\right)-f\left(x_{2}\right)}{a} \leq f\left(x_{1}\right)-f\left(x_{2}\right)$. That is,

SI: Sufficiency when f is differentiable

Suppose the inequality in inqeuality (1) holds. Then, taking limits, $\lim _{a \rightarrow 0} \frac{f\left(x_{2}+a\left(x_{1}-x_{2}\right)\right)-f\left(x_{2}\right)}{a} \leq f\left(x_{1}\right)-f\left(x_{2}\right)$. That is,

$$
\begin{equation*}
f\left(x_{2}\right)\left(x_{1}-x_{2}\right) \leq f\left(x_{1}\right)-f\left(x_{2}\right) \tag{2}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{3}
\end{equation*}
$$

Adding the left and right hand sides of inequalities in (2) and (3), and multiplying the resultant inequality by -1 gives us

SI: Sufficiency when f is differentiable

Suppose the inequality in inqeuality (1) holds. Then, taking limits, $\lim _{a \rightarrow 0} \frac{f\left(x_{2}+a\left(x_{1}-x_{2}\right)\right)-f\left(x_{2}\right)}{a} \leq f\left(x_{1}\right)-f\left(x_{2}\right)$. That is,

$$
\begin{equation*}
f\left(x_{2}\right)\left(x_{1}-x_{2}\right) \leq f\left(x_{1}\right)-f\left(x_{2}\right) \tag{2}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{3}
\end{equation*}
$$

Adding the left and right hand sides of inequalities in (2) and (3), and multiplying the resultant inequality by -1 gives us

$$
\begin{equation*}
\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right) \geq 0 \tag{4}
\end{equation*}
$$

We now need to prove that the inequality in (4) is strict.

SI: Sufficiency when f is differentiable (contd)

 Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such thatSI: Sufficiency when f is differentiable (contd) Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such that

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f(z)\left(x_{2}-x_{1}\right) \tag{5}
\end{equation*}
$$

Since (4) holds for any $x_{1}, x_{2} \in \mathcal{I}$, it also hold for $x_{2}=z$. Therefore,

SI: Sufficiency when f is differentiable (contd) Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such that

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f(z)\left(x_{2}-x_{1}\right) \tag{5}
\end{equation*}
$$

Since (4) holds for any $x_{1}, x_{2} \in \mathcal{I}$, it also hold for $x_{2}=z$. Therefore,

$$
\left(f(z)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)=\frac{1}{t}\left(f(z)-f\left(x_{1}\right)\right)\left(z-x_{1}\right) \geq 0
$$

Additionally using (5), we get

SI: Sufficiency when f is differentiable (contd) Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such that

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f(z)\left(x_{2}-x_{1}\right) \tag{5}
\end{equation*}
$$

Since (4) holds for any $x_{1}, x_{2} \in \mathcal{I}$, it also hold for $x_{2}=z$. Therefore,

$$
\left(f(z)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)=\frac{1}{t}\left(f(z)-f\left(x_{1}\right)\right)\left(z-x_{1}\right) \geq 0
$$

Additionally using (5), we get

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=\left(f(z)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)+f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \geq f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{6}
\end{equation*}
$$

SI: Sufficiency when f is differentiable (contd)

 Suppose equality holds in (4) for some $x_{1} \neq x_{2}$. Then it holds in (6) for the same x_{1} and x_{2}. That is,
SI: Sufficiency when f is differentiable (contd)

 Suppose equality holds in (4) for some $x_{1} \neq x_{2}$. Then it holds in (6) for the same x_{1} and x_{2}. That is,$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{7}
\end{equation*}
$$

Substituting x_{2} with $x_{1}+a\left(x_{2}-x_{1}\right)$ and applying (6), we get

SI: Sufficiency when f is differentiable (contd) Suppose equality holds in (4) for some $x_{1} \neq x_{2}$. Then it holds in (6) for the same x_{1} and x_{2}. That is,

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{7}
\end{equation*}
$$

Substituting x_{2} with $x_{1}+a\left(x_{2}-x_{1}\right)$ and applying (6), we get

$$
\begin{equation*}
f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right) \tag{8}
\end{equation*}
$$

Further using (1) and 7, we can derive that

SI: Sufficiency when f is differentiable (contd) Suppose equality holds in (4) for some $x_{1} \neq x_{2}$. Then it holds in (6) for the same x_{1} and x_{2}. That is,

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{7}
\end{equation*}
$$

Substituting x_{2} with $x_{1}+a\left(x_{2}-x_{1}\right)$ and applying (6), we get

$$
\begin{equation*}
f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right) \tag{8}
\end{equation*}
$$

Further using (1) and 7, we can derive that

$$
\begin{equation*}
f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right)<(1-a) f\left(x_{1}\right)+a f\left(x_{2}\right)=f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{9}
\end{equation*}
$$

Contradiction between (8) and (9)!

SI: Sufficiency when f is differentiable (contd)

Thus, equations 8 and 9 contradict each other.

$$
\begin{gathered}
f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right) \\
f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right)<(1-a) f\left(x_{1}\right)+a f\left(x_{2}\right)=f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right)
\end{gathered}
$$

Therefore, equality in 4 cannot hold for any $x_{1} \neq x_{2}$, implying that

$$
\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)>0
$$

that is, $f(x)$ is increasing and therefore f is convex on \mathcal{I}.

Strict Concavity

- A differentiable function f is said to be strictly concave on an open interval \mathcal{I}, iff, $f(x)$ is decreasing on \mathcal{I}.
- Recall from theorem 7, the graphical interpretation of the first derivative $f(x) ; f(x)<0$ implies that $f(x)$ is decreasing at x.
- Similarly, $f(x)$ is (strictly) monotonically decreasing when

Strict Concavity

- A differentiable function f is said to be strictly concave on an open interval \mathcal{I}, iff, $f(x)$ is decreasing on \mathcal{I}.
- Recall from theorem 7, the graphical interpretation of the first derivative $f(x) ; f(x)<0$ implies that $f(x)$ is decreasing at x.
- Similarly, $f(x)$ is (strictly) monotonically decreasing when $f^{\prime}(x)>0$. This gives us a sufficient condition for the concavity of a function:

Claim

If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime}(x)<0, \forall x \in \mathcal{I}$, then the slope of the function is always decreasing with x and the graph is strictly concave.

Strict Concavity

On the other hand, if the function is strictly concave and doubly differentiable in \mathcal{I}, then $f^{\prime}(x) \leq 0, \forall x \in \mathcal{I}$. This is illustrated in Figure 9.

Figure 9:

Strict Concavity (slopeless interpretation)

There is also a slopeless interpretation of concavity as stated in the following theorem:

Claim

A differentiable function f is strictly concave on an open interval \mathcal{I}, iff

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right)>a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{10}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.
The proof is similar to that for theorem 12.

Convex \& Concave Regions and Inflection Point

 Study the function $f(x)=x^{3}-x+2$.
Convex \& Concave Regions and Inflection Point

 Study the function $f(x)=x^{3}-x+2$. It's slope decreases as x increases to $0\left(f^{\prime}(x)<0\right)$ and then the slope increases beyond $x=0$ $\left(f^{\prime}(x)>0\right)$. The point 0 , where the $f^{\prime}(x)$ changes sign is called the inflection point; the graph is strictly concave for $x<0$ and strictly convex for $x>0$. See Figure 10.

