Critical Point and Local Extreme Value

Given a critical point ¢, the following test helps determine if f(c) is a
local extreme value:

Procedure
[Local Extreme Value]: Let ¢ be an isolated critical point of f
Q f(c) is a local minimum if f(x) is decreasing in an
interval [c — €1, c| and increasing in an interval
[C, C—+ 62] with €1,€2 > 0.
@ f(¢) is a local maximum if f(x) is increasing in an
interval [c — €1, c| and decreasing in an interval
[c, c+ €3] with €1, €3 > 0.
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Given a critical point ¢, first derivative test (sufficient condition)
helps determine if f{c) is a local extreme value:

Procedure
[First derivative test|: Let c be an isolated critical point of f

Q f(¢) is a local minimum if the sign of f(x) changes
from negative in [c — €1, ¢| to positive in [c, c + €]
with €1,€2 > 0.

@ f(¢) is a local maximum if f(x) the sign of f(x)
changes from positive in [c — €1, c] to negative in
[c, ¢+ €3] with €1,€e5 > 0.

@ Iff(x) is positive in an interval [c — €1, c| and also
positive in an interval [c, c — €], or f(x) is negative
in an interval [c — €1, c| and also negative in an
interval [c, c — €] with €1,€5 > 0, then f(c) is not a
local extremum.
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First Derivative Test: Critical Point and Local

Extreme Value
As an example, the function f{x) = 3x> — 5x has

] January 11,2018 25 / 52



First Derivative Test: Critical Point and Local
Extreme Value

As an example, the function f{x) = 3x> — 5x has the derivative
f(x) = 15x*(x+ 1)(x — 1). The critical points are 0, 1 and —1. Of
the three, the sign of f(x) changes at 1 and —1, which are local

minimum and maximum respectively. The sign does not change at 0,
which is therefore not a local supremum.
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First Derivative Test: Critical Point and Local
Extreme Value

As another example, consider the function

%) :{ —1x if x<0

if x>0

Then,

-1 ifx<O
f(x) :{ 0 ifx>0

Note that f(x) is discontinuous at x = 0, and therefore f(x) is not
defined at x = 0. All numbers x > 0 are critical numbers. f0) =0 is

a local minimum, whereas f(x) = 1 is a local minimum as well as a
local maximum Vx > 0.
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Strict Convexity and Extremum

o A differentiable function fis said to be strictly convex (or strictly
concave up) on an open interval Z, iff, f(x) is increasing on Z.

@ Recall from theorem 7, the graphical interpretation of the first
derivative f(x); f(x) > 0 implies that f(x) is increasing at x.

e Similarly, f(x) is increasing when f’(x) > 0. This gives us a
sufficient condition for the strict convexity of a function:

Claim

If at all points in an open interval Z, f(x) is doubly differentiable and
if f'(x) > 0, Vx € Z, then the slope of the function is always
increasing with x and the graph is strictly convex. This is illustrated
in Figure 8.

@ On the other hand, if the function is strictly convex and doubly
differentiable in Z, then f'(x) > 0, Vx € T.
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Strict Convexity and Extremum (lllustrated)
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Figure 8:
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Strict Convexity and Extremum: Slopeless
interpretation (SI)

Claim

A function f is strictly convex on an open interval I, iff

flaxy + (1 — a)x) < af(x1) + (1 — a)f(xz) (1)

whenver x1,xo € L, X1 # x3 and 0 < a < 1.
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SI: Necessity when fis differentiable

First we will prove the necessity.

2For the case xo < x1, the proof is very similar.
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SI: Necessity when fis differentiable

First we will prove the necessity. Suppose f is increasing on Z. Let
0<a<l, x,x €T and x; # xo. Without loss of generality assume
that? x; < x;. Then, x; < ax; + (1 — a)xy < xo and therefore

ax; + (1 — a)xo € Z. By the mean value theorem, there exist s and t
with x; < s < ax; + (1 — a)xp < t < xg, such that

flaxy + (1 — a)xx) — f(x1) = f(s)(xo — x1)(1 — a) and

fixe) — flaxy + (1 — a)xo) = f(t)(xo — x1)a. Therefore,

2For the case x3 < x1, the proof is very similar.
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SI: Necessity when fis differentiable

First we will prove the necessity. Suppose f is increasing on Z. Let
0<a<l, x,x €T and x; # xo. Without loss of generality assume
that? x; < x;. Then, x; < ax; + (1 — a)xy < xo and therefore

ax; + (1 — a)xo € Z. By the mean value theorem, there exist s and t
with x; < s < ax; + (1 — a)xp < t < xg, such that

flaxy + (1 — a)xx) — f(x1) = f(s)(xo — x1)(1 — a) and

fixe) — flaxy + (1 — a)xo) = f(t)(xo — x1)a. Therefore,

(I —a)f(x1) — flaxy + (1 — a)xz) + af(xz)
a[fxe) — flax1 + (1 — a)x2)] — (1 — a) [flax1 + (1 — a)x2) — f(x1)]

a(l—a)(e —x) [f(5 ()

Since f(x) is strictly convex on Z, f(x) is increasing on Z and
therefore, f(t) — f(s) > 0. Moreover, x, —x; >0 and 0 < a < 1.
Thus, (1 — a)f(x;) — flax; + (1 — a)x2) + af(x2) > 0, or equivalently,
flax; + (1 — a)x2) < af(x1) + (1 — a)f(xy), which is what we wanted

°For the case x3 < x1, the proof is very similar.
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SlI: Sufficiency when fis differentiable
Suppose the inequality in inqeuality (1) holds. Then, taking limits,
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SlI: Sufficiency when fis differentiable
Suppose the inequality in inqeuality (1) holds. Then, taking limits,
lim fetaba—e))=le) < fiy,) — flx,). That s,

a—0
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SI: Sufficiency when fis differentiable
Suppose the inequality in inqeuality (1) holds. Then, taking limits,
lim fetaba—x))=fa) < fiy) — fxy). That is,

a—0

) — x2) < flxi) — fx) (2)

Similarly, we can show that

f(x) (e —x1) < fixg) — flx) (3)

Adding the left and right hand sides of inequalities in (2) and (3),
and multiplying the resultant inequality by —1 gives us
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SI: Sufficiency when fis differentiable
Suppose the inequality in inqeuality (1) holds. Then, taking limits,
lim fetaba—x))=fa) < fiy) — fxy). That is,

a—0

) — x2) < flxi) — fx) (2)

Similarly, we can show that

f(x) (e —x1) < fixg) — flx) (3)

Adding the left and right hand sides of inequalities in (2) and (3),
and multiplying the resultant inequality by —1 gives us

(f() — f(x1)) (o —x1) >0 (4)

We now need to prove that the inequality in (4) is strict.
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SI: Sufficiency when fis differentiable (contd)

Using the mean value theorem, 3z = x; + t(xo — x1) for t € (0,1)
such that
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SI: Sufficiency when fis differentiable (contd)

Using the mean value theorem, 3z = x; + t(xo — x1) for t € (0,1)
such that

fixe) — fixa) = f(2) (2 — x1) (5)

Since (4) holds for any x1, x; € Z, it also hold for x, = z. Therefore,
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SI: Sufficiency when fis differentiable (contd)

Using the mean value theorem, 3z = x; + t(xo — x1) for t € (0,1)
such that

fixe) — fix1) = f(2) (e — x1) (5)
Since (4) holds for any x1, x; € Z, it also hold for x, = z. Therefore,

(F(2) ~ () (o — x2) = (#(2) — F(x))(z = ) > 0

Additionally using (5), we get
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SI: Sufficiency when fis differentiable (contd)

Using the mean value theorem, 3z = x; + t(xo — x1) for t € (0,1)
such that

fixe) — fix1) = f(2) (e — x1) (5)
Since (4) holds for any x1, x; € Z, it also hold for x, = z. Therefore,

(F(2) ~ () (o — x2) = (#(2) — F(x))(z = ) > 0

Additionally using (5), we get

fia) = fxa) = (£(2) =1 () be —x1) +1 () (e —x1) > "’(Xl)(Xr?é;
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SI: Sufficiency when fis differentiable (contd)

Suppose equality holds in (4) for some x; # xo. Then it holds in (6)
for the same x; and x». That is,
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SI: Sufficiency when fis differentiable (contd)

Suppose equality holds in (4) for some x; # xo. Then it holds in (6)
for the same x; and x». That is,

fixe) — fix1) = f(x1) (% — x1) (7)
Substituting xo with x; + a(x2 — x1) and applying (6), we get
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SI: Sufficiency when fis differentiable (contd)

Suppose equality holds in (4) for some x; # xo. Then it holds in (6)
for the same x; and x». That is,

fixe) — fix1) = f(x1) (% — x1) (7)
Substituting xo with x; + a(x2 — x1) and applying (6), we get

fix)) +af (x1) (0 — x1) < fixg + alxe — x1)) (8)

Further using (1) and 7, we can derive that

] January 11,2018 33 / 52



SI: Sufficiency when fis differentiable (contd)

Suppose equality holds in (4) for some x; # xo. Then it holds in (6)
for the same x; and x». That is,

fixe) — fix1) = f(x1) (% — x1) (7)
Substituting xo with x; + a(x2 — x1) and applying (6), we get

fix)) +af (x1) (0 — x1) < fixg + alxe — x1)) (8)

Further using (1) and 7, we can derive that

fixi+alxe—x)) < (1—a)fix)+af(x) = fix)+af (x1)(x2—x1) (9)

Contradiction between (8) and (9)!
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SI: Sufficiency when fis differentiable (contd)

Thus, equations 8 and 9 contradict each other.
fix1) + af (x1)(x2 — x1) < fix; + a(xe — x1))

fix) +alxo — x1)) < (1 —a)f(x)) + af(x) = f(x) + af (x1) 2 — x1)
Therefore, equality in 4 cannot hold for any x; # xu, implying that

(f0Oe) = f(x1)) (o —x1) >0

that is, f(x) is increasing and therefore fis convex on Z. O
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Strict Concavity

o A differentiable function fis said to be strictly concave on an
open interval Z, iff, f(x) is decreasing on Z.

@ Recall from theorem 7, the graphical interpretation of the first
derivative f(x); f(x) < 0 implies that f(x) is decreasing at x.

e Similarly, (x) is (strictly) monotonically decreasing when
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Strict Concavity

o A differentiable function fis said to be strictly concave on an
open interval Z, iff, f(x) is decreasing on Z.

@ Recall from theorem 7, the graphical interpretation of the first
derivative f(x); f(x) < 0 implies that f(x) is decreasing at x.
e Similarly, (x) is (strictly) monotonically decreasing when

f'(x) > 0. This gives us a sufficient condition for the concavity
of a function:

Claim

If at all points in an open interval Z, f(x) is doubly differentiable and
if f'(x) <0, ¥x € Z, then the slope of the function is always
decreasing with x and the graph is strictly concave.
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Strict Concavity

On the other hand, if the function is strictly concave and doubly
differentiable in Z, then ’(x) < 0, Vx € Z. This is illustrated in
Figure 9.
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Strict Concavity (slopeless interpretation)

There is also a slopeless interpretation of concavity as stated in the
following theorem:

Claim

A differentiable function f is strictly concave on an open interval Z, iff

flaxy + (1 — a)x) > af(x1) + (1 — a)f(xe) (10)

whenver x1,xo € L, x; # x2 and 0 < a < 1.

The proof is similar to that for theorem 12.
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Study the function flx) = x> — x+ 2.

Convex & Concave Regions and Inflection Point



Convex & Concave Regions and Inflection Point
Study the function fix) = x> — x+ 2. It's slope decreases as x
increases to 0 (f'(x) < 0) and then the slope increases beyond x = 0
(f'(x) > 0). The point 0, where the f’(x) changes sign is called the
inflection point; the graph is strictly concave for x < 0 and strictly
convex for x > 0. See Figure 10.

Ell

Ioflection’.............5..
point : :

20

I January 11,2018 38 / 52



