Optimization Principles for Univariate Functions

Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if $f(c)$ is a local extreme value:
Procedure
[Local Extreme Value]: Let c be an isolated critical point of f
(1) $f(c)$ is a local minimum if $f(x)$ is decreasing in an interval $\left[c-\epsilon_{1}, c\right]$ and increasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(2) $f(c)$ is a local maximum if $f(x)$ is increasing in an interval $\left[c-\epsilon_{1}, c\right]$ and decreasing in an interval $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.

Given a critical point c, first derivative test (sufficient condition) helps determine if $f(c)$ is a local extreme value:

Procedure

[First derivative test]: Let c be an isolated critical point of f
(1) $f(c)$ is a local minimum if the sign of $f(x)$ changes from negative in $\left[c-\epsilon_{1}, c\right]$ to positive in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(2) $f(c)$ is a local maximum if $f(x)$ the sign of $f(x)$ changes from positive in $\left[c-\epsilon_{1}, c\right]$ to negative in $\left[c, c+\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$.
(3) If $f(x)$ is positive in an interval $\left[c-\epsilon_{1}, c\right]$ and also positive in an interval $\left[c, c-\epsilon_{2}\right]$, or $f(x)$ is negative in an interval $\left[c-\epsilon_{1}, c\right]$ and also negative in an interval $\left[c, c-\epsilon_{2}\right]$ with $\epsilon_{1}, \epsilon_{2}>0$, then $f(c)$ is not a local extremum.

First Derivative Test: Critical Point and Local Extreme Value

As an example, the function $f(x)=3 x^{5}-5 x^{3}$ has

First Derivative Test: Critical Point and Local

Extreme Value

As an example, the function $f(x)=3 x^{5}-5 x^{3}$ has the derivative $f(x)=15 x^{2}(x+1)(x-1)$. The critical points are 0,1 and -1 . Of the three, the sign of $f(x)$ changes at 1 and -1 , which are local minimum and maximum respectively. The sign does not change at 0 , which is therefore not a local supremum.

First Derivative Test: Critical Point and Local
 Extreme Value

As another example, consider the function

$$
f(x)=\left\{\begin{array}{cl}
-x & \text { if } x \leq 0 \\
1 & \text { if } x>0
\end{array}\right.
$$

Then,

$$
f(x)=\left\{\begin{array}{cl}
-1 & \text { if } x<0 \\
0 & \text { if } x>0
\end{array}\right.
$$

Note that $f(x)$ is discontinuous at $x=0$, and therefore $f(x)$ is not defined at $x=0$. All numbers $x \geq 0$ are critical numbers. $f(0)=0$ is a local minimum, whereas $f(x)=1$ is a local minimum as well as a local maximum $\forall x>0$.

Strict Convexity and Extremum

- A differentiable function f is said to be strictly convex (or strictly concave up) on an open interval \mathcal{I}, iff, $f(x)$ is increasing on \mathcal{I}.
- Recall from theorem 7, the graphical interpretation of the first derivative $f(x) ; f(x)>0$ implies that $f(x)$ is increasing at x.
- Similarly, $f(x)$ is increasing when $f^{\prime}(x)>0$. This gives us a sufficient condition for the strict convexity of a function:

Claim

If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime}(x)>0, \forall x \in \mathcal{I}$, then the slope of the function is always increasing with x and the graph is strictly convex. This is illustrated in Figure 8.

- On the other hand, if the function is strictly convex and doubly differentiable in \mathcal{I}, then $f^{\prime}(x) \geq 0, \forall x \in \mathcal{I}$.

Strict Convexity and Extremum (Illustrated)

Figure 8:

Strict Convexity and Extremum: Slopeless interpretation (SI)

Claim
A function f is strictly convex on an open interval \mathcal{I}, iff
actual function eval

$$
\begin{equation*}
\underline{f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right)} \tag{1}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$. interpolation using line-segment

SI: Necessity when f is differentiable

 First we will prove the necessity.
SI: Necessity when f is differentiable

First we will prove the necessity. Suppose f is increasing on \mathcal{I}. Let $0<a<1, x_{1}, x_{2} \in \mathcal{I}$ and $x_{1} \neq x_{2}$. Without loss of generality assume that ${ }^{2} x_{1}<x_{2}$. Then, $x_{1}<a x_{1}+(1-a) x_{2}<x_{2}$ and therefore $a x_{1}+(1-a) x_{2} \in \mathcal{I}$. By the mean value theorem, there exist s and t with $x_{1}<s<a x_{1}+(1-a) x_{2}<t<x_{2}$, such that $f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)=f(s)\left(x_{2}-x_{1}\right)(1-a)$ and $f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)=f(t)\left(x_{2}-x_{1}\right) a$. Therefore,

$$
\mathrm{f}^{\prime}(\mathrm{s})<\mathrm{f}^{\prime}(\mathrm{t})
$$

${ }^{2}$ For the case $x_{2}<x_{1}$, the proof is very similar.

SI: Necessity when f is differentiable

First we will prove the necessity. Suppose f is increasing on \mathcal{I}. Let $0<a<1, x_{1}, x_{2} \in \mathcal{I}$ and $x_{1} \neq x_{2}$. Without loss of generality assume that ${ }^{2} x_{1}<x_{2}$. Then, $x_{1}<a x_{1}+(1-a) x_{2}<x_{2}$ and therefore $a x_{1}+(1-a) x_{2} \in \mathcal{I}$. By the mean value theorem, there exist s and t with $x_{1}<s<a x_{1}+(1-a) x_{2}<t<x_{2}$, such that $f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)=f(s)\left(x_{2}-x_{1}\right)(1-a)$ and $f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)=f(t)\left(x_{2}-x_{1}\right) a$. Therefore,

$$
\begin{aligned}
&(1-a) f\left(x_{1}\right)-f\left(a x_{1}+(1-a) x_{2}\right)+a f\left(x_{2}\right)= \\
& a\left[f\left(x_{2}\right)-f\left(a x_{1}+(1-a) x_{2}\right)\right]-(1-a)\left[f\left(a x_{1}+(1-a) x_{2}\right)-f\left(x_{1}\right)\right]= \\
& a(1-a)\left(x_{2}-x_{1}\right)\left[f^{\prime}(t)-f^{\prime}(s)\right]
\end{aligned}
$$

Since $f(x)$ is strictly convex on $\mathcal{I}, f(x)$ is increasing on \mathcal{I} and therefore, $f(t)-f(s)>0$. Moreover, $x_{2}-x_{1}>0$ and $0<a<1$. Thus, $(1-a) f\left(x_{1}\right)-f\left(a x_{1}+(1-a) x_{2}\right)+a f\left(x_{2}\right)>0$, or equivalently, $f\left(a x_{1}+(1-a) x_{2}\right)<a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right)$, which is what we wanted to prove in inequality (1).
${ }^{2}$ For the case $x_{2}<x_{1}$, the proof is very similar.

SI: Sufficiency when f is differentiable

Suppose the inequality in inqeuality (1) holds. Then, taking limits,

SI: Sufficiency when f is differentiable

Suppose the inequality in inqeuality (1) holds. Then, taking limits, $\lim _{a \rightarrow 0} \frac{f\left(x_{2}+a\left(x_{1}-x_{2}\right)\right)-f\left(x_{2}\right)}{a} \leq f\left(x_{1}\right)-f\left(x_{2}\right)$. That is,

SI: Sufficiency when f is differentiable

Suppose the inequality in inqeuality (1) holds. Then, taking limits, $\lim _{a \rightarrow 0} \frac{f\left(x_{2}+a\left(x_{1}-x_{2}\right)\right)-f\left(x_{2}\right)}{a} \leq f\left(x_{1}\right)-f\left(x_{2}\right)$. That is,

$$
\begin{equation*}
\underline{f\left(x_{2}\right)\left(x_{1}-x_{2}\right) \leq f\left(x_{1}\right)-f\left(x_{2}\right)} \tag{2}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{3}
\end{equation*}
$$

Adding the left and right hand sides of inequalities in (2) and (3), and multiplying the resultant inequality by -1 gives us

Interpretation:

Slope of pink line ($f^{\prime}(x 1)$) cannot get more positive than slope of red/gray line Slope of green line ($f^{\prime}(x 2)$) cannot get more negative than slope of red/gray line

SI: Sufficiency when f is differentiable

Suppose the inequality in inqeuality (1) holds. Then, taking limits, $\lim _{a \rightarrow 0} \frac{f\left(x_{2}+a\left(x_{1}-x_{2}\right)\right)-f\left(x_{2}\right)}{a} \leq f\left(x_{1}\right)-f\left(x_{2}\right)$. That is,

$$
\begin{equation*}
f\left(x_{2}\right)\left(x_{1}-x_{2}\right) \leq f\left(x_{1}\right)-f\left(x_{2}\right) \tag{2}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{2}\right)-f\left(x_{1}\right) \tag{3}
\end{equation*}
$$

Adding the left and right hand sides of inequalities in (2) and (3), and multiplying the resultant inequality by -1 gives us

$$
\begin{equation*}
\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right) \geq 0 \tag{4}
\end{equation*}
$$

We now need to prove that the inequality in (4) is strict.

SI: Sufficiency when f is differentiable (contd)
Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such that $\quad f^{\prime}(z)=(f(x 1)-f(x 2)) /(x 1-x 2)$

SI: Sufficiency when f is differentiable (contd) Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such that

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f(z)\left(x_{2}-x_{1}\right) \tag{5}
\end{equation*}
$$

Since (4) holds for any $x_{1}, x_{2} \in \mathcal{I}$, it also hold for $x_{2}=z$. Therefore,

$$
\begin{aligned}
& f^{\prime}(z)>=f^{\prime}(x 1) \\
& f^{\prime}(z)<=f^{\prime}(x 2)
\end{aligned}
$$

SI: Sufficiency when f is differentiable (contd) Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such that

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f(z)\left(x_{2}-x_{1}\right) \tag{5}
\end{equation*}
$$

Since (4) holds for any $x_{1}, x_{2} \in \mathcal{I}$, it also hold for $x_{2}=z$. Therefore,

$$
\left(f(z)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)=\frac{1}{t}\left(f(z)-f\left(x_{1}\right)\right)\left(z-x_{1}\right) \geq 0
$$

Additionally using (5), we get

SI: Sufficiency when f is differentiable (contd) Using the mean value theorem, $\exists z=x_{1}+t\left(x_{2}-x_{1}\right)$ for $t \in(0,1)$ such that

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f(z)\left(x_{2}-x_{1}\right) \tag{5}
\end{equation*}
$$

Since (4) holds for any $x_{1}, x_{2} \in \mathcal{I}$, it also hold for $x_{2}=z$. Therefore,

$$
\left(f(z)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)=\frac{1}{t}\left(f(z)-f\left(x_{1}\right)\right)\left(z-x_{1}\right) \geq 0
$$

Additionally using (5), we get

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=\left(f(z)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)+f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \geq f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{6}
\end{equation*}
$$

SI: Sufficiency when f is differentiable (contd) Suppose equality holds in (4) for some $x_{1} \neq x_{2}$. Then it holds in (6) for the same x_{1} and x_{2}. That is,

If pink slope equals green slope then so will it equal the grey slope!!

SI: Sufficiency when f is differentiable (contd) Suppose equality holds in (4) for some $x_{1} \neq x_{2}$. Then it holds in (6) for the same x_{1} and x_{2}. That is,

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{7}
\end{equation*}
$$

Substituting x_{2} with $x_{1}+a\left(x_{2}-x_{1}\right)$ and applying (6), we get
ya
Same property (6) between ya and

SI: Sufficiency when f is differentiable (contd) Suppose equality holds in (4) for some $x_{1} \neq x_{2}$. Then it holds in (6) for the same x_{1} and x_{2}. That is,

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{7}
\end{equation*}
$$

Substituting x_{2} with $x_{1}+a\left(x_{2}-x_{1}\right)$ and applying (6), we get

$$
\begin{equation*}
f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right) \tag{8}
\end{equation*}
$$

Further using (1) and 7, we can derive that

SI: Sufficiency when f is differentiable (contd) Suppose equality holds in (4) for some $x_{1} \neq x_{2}$. Then it holds in (6) for the same x_{1} and x_{2}. That is,

$$
\begin{equation*}
f\left(x_{2}\right)-f\left(x_{1}\right)=f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{7}
\end{equation*}
$$

Substituting x_{2} with $x_{1}+a\left(x_{2}-x_{1}\right)$ and applying (6), we get

$$
\begin{equation*}
f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right) \tag{8}
\end{equation*}
$$

Further using (1) and 7, we can derive that

Linear interpolation

$$
\begin{equation*}
f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right)<(1-a) f\left(x_{1}\right)+a f\left(x_{2}\right)=f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \tag{9}
\end{equation*}
$$

Contradiction between (8) and (9)!

SI: Sufficiency when f is differentiable (contd)

Thus, equations 8 and 9 contradict each other.

$$
\begin{gathered}
f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right) \leq f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right) \\
f\left(x_{1}+a\left(x_{2}-x_{1}\right)\right)<(1-a) f\left(x_{1}\right)+a f\left(x_{2}\right)=f\left(x_{1}\right)+a f\left(x_{1}\right)\left(x_{2}-x_{1}\right)
\end{gathered}
$$

Therefore, equality in 4 cannot hold for any $x_{1} \neq x_{2}$, implying that

$$
\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right)\left(x_{2}-x_{1}\right)>0
$$

that is, $f(x)$ is increasing and therefore f is convex on \mathcal{I}.

Strict Concavity

- A differentiable function f is said to be strictly concave on an open interval \mathcal{I}, iff, $f(x)$ is decreasing on \mathcal{I}.
- Recall from theorem 7, the graphical interpretation of the first derivative $f(x) ; f(x)<0$ implies that $f(x)$ is decreasing at x.
- Similarly, $f(x)$ is (strictly) monotonically decreasing when

Strict Concavity

- A differentiable function f is said to be strictly concave on an open interval \mathcal{I}, iff, $f(x)$ is decreasing on \mathcal{I}.
- Recall from theorem 7, the graphical interpretation of the first derivative $f(x) ; f(x)<0$ implies that $f(x)$ is decreasing at x.
- Similarly, $f(x)$ is (strictly) monotonically decreasing when $f^{\prime}(x)>0$. This gives us a sufficient condition for the concavity of a function:

Claim

If at all points in an open interval $\mathcal{I}, f(x)$ is doubly differentiable and if $f^{\prime}(x)<0, \forall x \in \mathcal{I}$, then the slope of the function is always decreasing with x and the graph is strictly concave.

Strict Concavity

On the other hand, if the function is strictly concave and doubly differentiable in \mathcal{I}, then $f^{\prime}(x) \leq 0, \forall x \in \mathcal{I}$. This is illustrated in Figure 9.

Figure 9:

Strict Concavity (slopeless interpretation)

There is also a slopeless interpretation of concavity as stated in the following theorem:

Claim

A differentiable function f is strictly concave on an open interval \mathcal{I}, iff

$$
\begin{equation*}
f\left(a x_{1}+(1-a) x_{2}\right)>a f\left(x_{1}\right)+(1-a) f\left(x_{2}\right) \tag{10}
\end{equation*}
$$

whenver $x_{1}, x_{2} \in \mathcal{I}, x_{1} \neq x_{2}$ and $0<a<1$.
The proof is similar to that for theorem 12.

Convex \& Concave Regions and Inflection Point

 Study the function $f(x)=x^{3}-x+2$.
Convex \& Concave Regions and Inflection Point

 Study the function $f(x)=x^{3}-x+2$. It's slope decreases as x increases to $0\left(f^{\prime}(x)<0\right)$ and then the slope increases beyond $x=0$ $\left(f^{\prime}(x)>0\right)$. The point 0 , where the $f^{\prime}(x)$ changes sign is called the inflection point; the graph is strictly concave for $x<0$ and strictly convex for $x>0$. See Figure 10.

Convex \& Concave Regions and Inflection Point

Along similar lines, study the function

$$
f(x)=\frac{1}{20} x^{5}-\frac{7}{12} x^{4}+\frac{7}{6} x^{3}-\frac{15}{2} x^{2}
$$

Convex \& Concave Regions and Inflection Point

Along similar lines, study the function
$f(x)=\frac{1}{20} x^{5}-\frac{7}{12} x^{4}+\frac{7}{6} x^{3}-\frac{15}{2} x^{2}$.
It is strictly concave on $(-\infty,-1]$ and $[3,5]$ and strictly convex on $[-1,3]$ and $[5, \infty]$.
The inflection points for this function are at $x=-1, x=3$ and $x=5$.

First Derivative Test: Restated using Strict Convexity

The first derivative test for local extrema can be restated in terms of strict convexity and concavity of functions.

First Derivative Test: Restated using Strict Convexity

The first derivative test for local extrema can be restated in terms of strict convexity and concavity of functions.

Procedure

[First derivative test in terms of strict convexity]: Let c be a critical number of f and $f(c)=0$. Then,
(1) $f(c)$ is a local minimum if the graph of $f(x)$ is strictly convex on an open interval containing c.
(2) $f(c)$ is a local maximum if the graph of $f(x)$ is strictly concave on an open interval containing c.

Strict Convexity: Restated using Second Derivative

If the second derivative $f^{\prime}(c)$ exists, then the strict convexity conditions for the critical number can be stated in terms of the sign of of $f^{\prime}(c)$, making use of previous results. This is called the second derivative test.

Strict Convexity: Restated using Second Derivative

If the second derivative $f^{\prime}(c)$ exists, then the strict convexity conditions for the critical number can be stated in terms of the sign of of $f^{\prime}(c)$, making use of previous results. This is called the second derivative test.

Procedure

[Second derivative test]: Let c be a critical number of f where $f(c)=0$ and $f^{\prime}(c)$ exists.
(1) If $f^{\prime}(c)>0$ then $f(c)$ is a local minimum.
(2) If $f^{\prime}(c)<0$ then $f(c)$ is a local maximum.

- If $f^{\prime}(c)=0$ then $f(c)$ could be a local maximum, a local minimum, neither or both. That is, the test fails.

Convexity, Minima and Maxima: Illustrations

Study the functions $f(x)=x^{4}, f(x)=-x^{4}$ and $f(x)=x^{3}$:

Convexity, Minima and Maxima: Illustrations

Study the functions $f(x)=x^{4}, f(x)=-x^{4}$ and $f(x)=x^{3}$:

- If $f(x)=x^{4}$, then $f(0)=0$ and $f^{\prime}(0)=0$ and we can see that $f(0)$ is a local minimum.
- If $f(x)=-x^{4}$, then $f(0)=0$ and $f^{\prime}(0)=0$ and we can see that $f(0)$ is a local maximum.
- If $f(x)=x^{3}$, then $f(0)=0$ and $f^{\prime}(0)=0$ and we can see that $f(0)$ is neither a local minimum nor a local maximum. $(0,0)$ is an inflection point in this case.

Convexity, Minima and Maxima: Illustrations (contd.)

Study the functions: $f(x)=x+2 \sin x$ and $f(x)=x+\frac{1}{x}$:

- If $f(x)=x+2 \sin x$, then $f(x)=1+2 \cos x$. $f(x)=0$ for $x=\frac{2 \pi}{3}, \frac{4 \pi}{3}$, which are the critical numbers.
$f^{\prime}\left(\frac{2 \pi}{3}\right)=-2 \sin \frac{2 \pi}{3}=-\sqrt{3}<0 \Rightarrow f\left(\frac{2 \pi}{3}\right)=\frac{2 \pi}{3}+\sqrt{3}$ is a local maximum value. On the other hand, $f^{\prime}\left(\frac{4 \pi}{3}\right)=\sqrt{3}>0 \Rightarrow$ $f\left(\frac{4 \pi}{3}\right)=\frac{4 \pi}{3}-\sqrt{3}$ is a local minimum value.
- If $f(x)=x+\frac{1}{x}$, then $f(x)=1-\frac{1}{x^{2}}$. The critical numbers are $x= \pm 1$. Note that $x=0$ is not a critical number, even though $f(0)$ does not exist, because 0 is not in the domain of f. $f^{\prime}(x)=\frac{2}{x^{3}}$. $f^{\prime}(-1)=-2<0$ and therefore $f(-1)=-2$ is a local maximum. $f^{\prime}(1)=2>0$ and therefore $f(1)=2$ is a local minimum.

Global Extrema on Closed Intervals

Recall the extreme value theorem. A consequence is that:

- if either of c or d lies in (a, b), then it is a critical number of f,
- else each of c and d must lie on one of the boundaries of $[a, b]$. This gives us a procedure for finding the maximum and minimum of a continuous function f on a closed bounded interval \mathcal{I} :

Procedure

[Finding extreme values on closed, bounded intervals]:

(1) Find the critical points in int (\mathcal{I}).
(2) Compute the values of f at the critical points and at the endpoints of the interval.
(3) Select the least and greatest of the computed values.

Global Extrema on Closed Intervals (contd)

- To compute the maximum and minimum values of $f(x)=4 x^{3}-8 x^{2}+5 x$ on the interval $[0,1]$,

Global Extrema on Closed Intervals (contd)

- To compute the maximum and minimum values of $f(x)=4 x^{3}-8 x^{2}+5 x$ on the interval $[0,1]$,
- We first compute $f(x)=12 x^{2}-16 x+5$ which is 0 at $x=\frac{1}{2}, \frac{5}{6}$.
- Values at the critical points are $f\left(\frac{1}{2}\right)=1, f\left(\frac{5}{6}\right)=\frac{25}{27}$.
- The values at the end points are $f(0)=0$ and $f(1)=1$.
- Therefore, the minimum value is $f(0)=0$ and the maximum value is $f(1)=f\left(\frac{1}{2}\right)=1$.

Global Extrema on Closed Intervals (contd)

- To compute the maximum and minimum values of $f(x)=4 x^{3}-8 x^{2}+5 x$ on the interval $[0,1]$,
- We first compute $f(x)=12 x^{2}-16 x+5$ which is 0 at $x=\frac{1}{2}, \frac{5}{6}$.
- Values at the critical points are $f\left(\frac{1}{2}\right)=1, f\left(\frac{5}{6}\right)=\frac{25}{27}$.
- The values at the end points are $f(0)=0$ and $f(1)=1$.
- Therefore, the minimum value is $f(0)=0$ and the maximum value is $f(1)=f\left(\frac{1}{2}\right)=1$.
- In this context, it is relevant to discuss the one-sided derivatives of a function at the endpoints of the closed interval on which it is defined.

Global Extrema on Closed Intervals (contd)

Definition

[One-sided derivatives at endpoints]: Let f be defined on a closed bounded interval $[a, b]$. The (right-sided) derivative of f at $x=a$ is defined as

$$
f(a)=\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}
$$

Similarly, the (left-sided) derivative of f at $x=b$ is defined as

$$
f(b)=\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h}
$$

Essentially, each of the one-sided derivatives defines one-sided slopes at the endpoints.

Global Extrema on Closed Intervals (contd)

 Based on these definitions, the following result can be derived.
Claim

If f is continuous on $[a, b]$ and $f(a)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at a.

- If $f(a)$ is the maximum value of f on $[a, b]$, then $f(a) \leq 0$ or $f(a)=-\infty$.
- If $f(a)$ is the minimum value of f on $[a, b]$, then $f(a) \geq 0$ or $f(a)=\infty$.
If f is continuous on $[a, b]$ and $f(b)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions

Global Extrema on Closed Intervals (contd)

 Based on these definitions, the following result can be derived.
Claim

If f is continuous on $[a, b]$ and $f(a)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at a.

- If $f(a)$ is the maximum value of f on $[a, b]$, then $f(a) \leq 0$ or $f(a)=-\infty$.
- If $f(a)$ is the minimum value of f on $[a, b]$, then $f(a) \geq 0$ or $f(a)=\infty$.
If f is continuous on $[a, b]$ and $f(b)$ exists as a real number or as $\pm \infty$, then we have the following necessary conditions for extremum at b.
- If $f(b)$ is the maximum value of f on $[a, b]$, then $f(b) \geq 0$ or $f(b)=\infty$.
- If $f(b)$ is the minimum value of f on $[a, b]$, then $f(b) \leq 0$ or $f(b)=-\infty$.

Global Extrema on Closed Intervals (contd)

The following result gives a useful procedure for finding extrema on closed intervals.

Claim

If f is continuous on $[a, b]$ and $f^{\prime}(x)$ exists for all $x \in(a, b)$. Then,

- If $f^{\prime}(x) \leq 0, \forall x \in(a, b)$, then the minimum value of f on $[a, b]$ is either $f(a)$ or $f(b)$. If, in addition, f has a critical point $c \in(a, b)$, then $f(c)$ is the maximum value of f on $[a, b]$.
- If $f^{\prime}(x) \geq 0, \forall x \in(a, b)$, then the maximum value of f on $[a, b]$ is either $f(a)$ or $f(b)$. If, in addition, f has a critical point $c \in(a, b)$, then $f(c)$ is the minimum value of f on $[a, b]$.

Global Extrema on Open Intervals

The next result is very useful for finding extrema on open intervals.

Claim

Let \mathcal{I} be an open interval and let $f^{\prime}(x)$ exist $\forall x \in \mathcal{I}$.

- If $f^{\prime}(x) \geq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f(c)=0$, then $f(c)$ is the global minimum value of f on \mathcal{I}.
- If $f^{\prime}(x) \leq 0, \forall x \in \mathcal{I}$, and if there is a number $c \in \mathcal{I}$ where $f(c)=0$, then $f(c)$ is the global maximum value of f on \mathcal{I}.

For example, let $f(x)=\frac{2}{3} x-\sec x$ and $\mathcal{I}=\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$.
$f(x)=\frac{2}{3}-\sec x \tan x=\frac{2}{3}-\frac{\sin x}{\cos ^{2} x}=0 \Rightarrow x=\frac{\pi}{6}$. Further, $f^{\prime}(x)=-\sec x\left(\tan ^{2} x+\sec ^{2} x\right)<0$ on $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$. Therefore, f attains the maximum value $f\left(\frac{\pi}{6}\right)=\frac{\pi}{9}-\frac{2}{\sqrt{3}}$ on \mathcal{I}.

Global Extrema on Open Intervals (contd)

As another example, let us find the dimensions of the cone with minimum volume that can contain a sphere with radius R. Let h be the height of the cone and r the radius of its base. The objective to be minimized is the volume $f(r, h)=\frac{1}{3} \pi r^{2} h$. The constraint betwen r and h is shown in Figure 11. The traingle $A E F$ is similar to traingle $A D B$ and therefore, $\frac{h-R}{R}=\frac{\sqrt{h^{2}+r^{2}}}{r}$.

Global Extrema on Open Intervals (contd)

Our first step is to reduce the volume formula to involve only one of r^{23} or h.
The algebra involved will be the simplest if we solved for h.
The constraint gives us $r^{2}=\frac{R^{2} h}{h-2 R}$. Substituting this expression for r^{2} into the volume formula, we get $g(h)=\frac{\pi R^{2}}{3} \frac{h^{2}}{(h-2 R)}$ with the domain given by $\mathcal{D}=\{h \mid 2 R<h<\infty\}$.
Note that \mathcal{D} is an open interval.
$g^{\prime}=\frac{\pi R^{2}}{3} \frac{2 h(h-2 R)-h^{2}}{(h-2 R)^{2}}=\frac{\pi R^{2}}{3} \frac{h(h-4 R)}{(h-2 R)^{2}}$ which is 0 in its domain \mathcal{D} if and only if $h=4 R$.
$g^{\prime \prime}=\frac{\pi R^{2}}{3} \frac{2(h-2 R)^{3}-2 h(h-4 R)(h-2 R)^{2}}{(h-2 R)^{4}}=\frac{\pi R^{2}}{3} \frac{2\left(h^{2}-4 R h+4 R^{2}-h^{2}+4 R h\right)}{(h-2 R)^{3}}=$ $\frac{\pi R^{2}}{3} \frac{8 R^{2}}{(h-2 R)^{3}}$, which is greater than 0 in \mathcal{D}.
Therefore, g (and consequently f) has a unique minimum at $h=4 R$ and correspondingly, $r^{2}=\frac{R^{2} h}{h-2 R}=2 R^{2}$.
${ }^{3}$ Since r appears in the volume formula only in terms of e^{2}.

References

- Online Gradient Descent: Efficient Algorithm for Regret Minimization - Zinkevich 2005
- Yu-Hong Dai, Roger Fletcher. New algorithms for singly linearly constrained quadratic programs subject to lower and upper bounds. http://link.springer.com/content/pdf/10. 1007\%2Fs10107-005-0595-2.pdf
- Kalai-Vempala 2005
- Regret bound for Adagrad: Duchi, Hazan, Singer 2010

