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Critical Point and Local Extreme Value

Given a critical point c, the following test helps determine if f(c) is a
local extreme value:
Procedure
[Local Extreme Value]: Let c be an isolated critical point of f

1 f(c) is a local minimum if f(x) is decreasing in an
interval [c− ϵ1, c] and increasing in an interval
[c, c+ ϵ2] with ϵ1, ϵ2 > 0.

2 f(c) is a local maximum if f(x) is increasing in an
interval [c− ϵ1, c] and decreasing in an interval
[c, c+ ϵ2] with ϵ1, ϵ2 > 0.
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Given a critical point c, first derivative test (sufficient condition)
helps determine if f(c) is a local extreme value:

Procedure
[First derivative test]: Let c be an isolated critical point of f

1 f(c) is a local minimum if the sign of f′(x) changes
from negative in [c− ϵ1, c] to positive in [c, c+ ϵ2]
with ϵ1, ϵ2 > 0.

2 f(c) is a local maximum if f(x) the sign of f′(x)
changes from positive in [c− ϵ1, c] to negative in
[c, c+ ϵ2] with ϵ1, ϵ2 > 0.

3 If f′(x) is positive in an interval [c− ϵ1, c] and also
positive in an interval [c, c− ϵ2], or f′(x) is negative
in an interval [c− ϵ1, c] and also negative in an
interval [c, c− ϵ2] with ϵ1, ϵ2 > 0, then f(c) is not a
local extremum.
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First Derivative Test: Critical Point and Local
Extreme Value
As an example, the function f(x) = 3x5 − 5x3 has
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First Derivative Test: Critical Point and Local
Extreme Value
As an example, the function f(x) = 3x5 − 5x3 has the derivative
f′(x) = 15x2(x+ 1)(x− 1). The critical points are 0, 1 and −1. Of
the three, the sign of f′(x) changes at 1 and −1, which are local
minimum and maximum respectively. The sign does not change at 0,
which is therefore not a local supremum.
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First Derivative Test: Critical Point and Local
Extreme Value
As another example, consider the function

f(x) =

{
−x if x ≤ 0
1 if x > 0

Then,

f′(x) =

{
−1 if x < 0
0 if x > 0

Note that f(x) is discontinuous at x = 0, and therefore f′(x) is not
defined at x = 0. All numbers x ≥ 0 are critical numbers. f(0) = 0 is
a local minimum, whereas f(x) = 1 is a local minimum as well as a
local maximum ∀x > 0.
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Strict Convexity and Extremum
A differentiable function f is said to be strictly convex (or strictly
concave up) on an open interval I, iff, f′(x) is increasing on I.
Recall from theorem 7, the graphical interpretation of the first
derivative f′(x); f′(x) > 0 implies that f(x) is increasing at x.
Similarly, f′(x) is increasing when f′′(x) > 0. This gives us a
sufficient condition for the strict convexity of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and
if f′′(x) > 0, ∀x ∈ I, then the slope of the function is always
increasing with x and the graph is strictly convex. This is illustrated
in Figure 8.

On the other hand, if the function is strictly convex and doubly
differentiable in I, then f′′(x) ≥ 0, ∀x ∈ I.
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Strict Convexity and Extremum (Illustrated)

Figure 8:
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Strict Convexity and Extremum: Slopeless
interpretation (SI)

Claim
A function f is strictly convex on an open interval I, iff

f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2) (1)

whenver x1, x2 ∈ I, x1 ̸= x2 and 0 < a < 1.
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SI: Necessity when f is differentiable
First we will prove the necessity.

2For the case x2 < x1, the proof is very similar.
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SI: Necessity when f is differentiable
First we will prove the necessity. Suppose f′ is increasing on I. Let
0 < a < 1, x1, x2 ∈ I and x1 ̸= x2. Without loss of generality assume
that2 x1 < x2. Then, x1 < ax1 + (1− a)x2 < x2 and therefore
ax1 + (1− a)x2 ∈ I. By the mean value theorem, there exist s and t
with x1 < s < ax1 + (1− a)x2 < t < x2, such that
f(ax1 + (1− a)x2)− f(x1) = f′(s)(x2 − x1)(1− a) and
f(x2)− f(ax1 + (1− a)x2) = f′(t)(x2 − x1)a. Therefore,

2For the case x2 < x1, the proof is very similar.
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SI: Necessity when f is differentiable
First we will prove the necessity. Suppose f′ is increasing on I. Let
0 < a < 1, x1, x2 ∈ I and x1 ̸= x2. Without loss of generality assume
that2 x1 < x2. Then, x1 < ax1 + (1− a)x2 < x2 and therefore
ax1 + (1− a)x2 ∈ I. By the mean value theorem, there exist s and t
with x1 < s < ax1 + (1− a)x2 < t < x2, such that
f(ax1 + (1− a)x2)− f(x1) = f′(s)(x2 − x1)(1− a) and
f(x2)− f(ax1 + (1− a)x2) = f′(t)(x2 − x1)a. Therefore,

(1 − a)f(x1) − f(ax1 + (1 − a)x2) + af(x2) =

a
[
f(x2) − f(ax1 + (1 − a)x2)

]
− (1 − a)

[
f(ax1 + (1 − a)x2) − f(x1)

]
=

a(1 − a)(x2 − x1)
[
f′(t) − f′(s)

]

Since f(x) is strictly convex on I, f′(x) is increasing on I and
therefore, f′(t)− f′(s) > 0. Moreover, x2 − x1 > 0 and 0 < a < 1.
Thus, (1− a)f(x1)− f(ax1 + (1− a)x2) + af(x2) > 0, or equivalently,
f(ax1 + (1− a)x2) < af(x1) + (1− a)f(x2), which is what we wanted
to prove in inequality (1).

2For the case x2 < x1, the proof is very similar.
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SI: Sufficiency when f is differentiable
Suppose the inequality in inqeuality (1) holds. Then, taking limits,

January 11, 2018 31 / 52



SI: Sufficiency when f is differentiable
Suppose the inequality in inqeuality (1) holds. Then, taking limits,
lim
a→0

f(x2+a(x1−x2))−f(x2)
a ≤ f(x1)− f(x2). That is,
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SI: Sufficiency when f is differentiable
Suppose the inequality in inqeuality (1) holds. Then, taking limits,
lim
a→0

f(x2+a(x1−x2))−f(x2)
a ≤ f(x1)− f(x2). That is,

f′(x2)(x1 − x2) ≤ f(x1)− f(x2) (2)
Similarly, we can show that

f′(x1)(x2 − x1) ≤ f(x2)− f(x1) (3)
Adding the left and right hand sides of inequalities in (2) and (3),
and multiplying the resultant inequality by −1 gives us
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SI: Sufficiency when f is differentiable
Suppose the inequality in inqeuality (1) holds. Then, taking limits,
lim
a→0

f(x2+a(x1−x2))−f(x2)
a ≤ f(x1)− f(x2). That is,

f′(x2)(x1 − x2) ≤ f(x1)− f(x2) (2)
Similarly, we can show that

f′(x1)(x2 − x1) ≤ f(x2)− f(x1) (3)
Adding the left and right hand sides of inequalities in (2) and (3),
and multiplying the resultant inequality by −1 gives us

(
f′(x2)− f′(x1)

)
(x2 − x1) ≥ 0 (4)

We now need to prove that the inequality in (4) is strict.
January 11, 2018 31 / 52



SI: Sufficiency when f is differentiable (contd)
Using the mean value theorem, ∃z = x1 + t(x2 − x1) for t ∈ (0, 1)
such that
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SI: Sufficiency when f is differentiable (contd)
Using the mean value theorem, ∃z = x1 + t(x2 − x1) for t ∈ (0, 1)
such that

f(x2)− f(x1) = f′(z)(x2 − x1) (5)

Since (4) holds for any x1, x2 ∈ I, it also hold for x2 = z. Therefore,
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SI: Sufficiency when f is differentiable (contd)
Using the mean value theorem, ∃z = x1 + t(x2 − x1) for t ∈ (0, 1)
such that

f(x2)− f(x1) = f′(z)(x2 − x1) (5)

Since (4) holds for any x1, x2 ∈ I, it also hold for x2 = z. Therefore,

(f′(z)− f′(x1))(x2 − x1) =
1

t (f
′(z)− f′(x1))(z− x1) ≥ 0

Additionally using (5), we get
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SI: Sufficiency when f is differentiable (contd)
Using the mean value theorem, ∃z = x1 + t(x2 − x1) for t ∈ (0, 1)
such that

f(x2)− f(x1) = f′(z)(x2 − x1) (5)

Since (4) holds for any x1, x2 ∈ I, it also hold for x2 = z. Therefore,

(f′(z)− f′(x1))(x2 − x1) =
1

t (f
′(z)− f′(x1))(z− x1) ≥ 0

Additionally using (5), we get

f(x2)−f(x1) = (f′(z)−f′(x1))(x2−x1)+f′(x1)(x2−x1) ≥ f′(x1)(x2−x1)
(6)

January 11, 2018 32 / 52



SI: Sufficiency when f is differentiable (contd)
Suppose equality holds in (4) for some x1 ̸= x2. Then it holds in (6)
for the same x1 and x2. That is,
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SI: Sufficiency when f is differentiable (contd)
Suppose equality holds in (4) for some x1 ̸= x2. Then it holds in (6)
for the same x1 and x2. That is,

f(x2)− f(x1) = f′(x1)(x2 − x1) (7)

Substituting x2 with x1 + a(x2 − x1) and applying (6), we get
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SI: Sufficiency when f is differentiable (contd)
Suppose equality holds in (4) for some x1 ̸= x2. Then it holds in (6)
for the same x1 and x2. That is,

f(x2)− f(x1) = f′(x1)(x2 − x1) (7)

Substituting x2 with x1 + a(x2 − x1) and applying (6), we get

f(x1) + af′(x1)(x2 − x1) ≤ f(x1 + a(x2 − x1)) (8)

Further using (1) and 7, we can derive that
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SI: Sufficiency when f is differentiable (contd)
Suppose equality holds in (4) for some x1 ̸= x2. Then it holds in (6)
for the same x1 and x2. That is,

f(x2)− f(x1) = f′(x1)(x2 − x1) (7)

Substituting x2 with x1 + a(x2 − x1) and applying (6), we get

f(x1) + af′(x1)(x2 − x1) ≤ f(x1 + a(x2 − x1)) (8)

Further using (1) and 7, we can derive that

f(x1+a(x2−x1)) < (1−a)f(x1)+af(x2) = f(x1)+af′(x1)(x2−x1) (9)

Contradiction between (8) and (9)!
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SI: Sufficiency when f is differentiable (contd)

Thus, equations 8 and 9 contradict each other.

f(x1) + af′(x1)(x2 − x1) ≤ f(x1 + a(x2 − x1))

f(x1 + a(x2 − x1)) < (1− a)f(x1) + af(x2) = f(x1) + af′(x1)(x2 − x1)
Therefore, equality in 4 cannot hold for any x1 ̸= x2, implying that

(
f′(x2)− f′(x1)

)
(x2 − x1) > 0

that is, f′(x) is increasing and therefore f is convex on I.
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Strict Concavity

A differentiable function f is said to be strictly concave on an
open interval I, iff, f′(x) is decreasing on I.
Recall from theorem 7, the graphical interpretation of the first
derivative f′(x); f′(x) < 0 implies that f(x) is decreasing at x.
Similarly, f′(x) is (strictly) monotonically decreasing when
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Strict Concavity

A differentiable function f is said to be strictly concave on an
open interval I, iff, f′(x) is decreasing on I.
Recall from theorem 7, the graphical interpretation of the first
derivative f′(x); f′(x) < 0 implies that f(x) is decreasing at x.
Similarly, f′(x) is (strictly) monotonically decreasing when
f′′(x) > 0. This gives us a sufficient condition for the concavity
of a function:

Claim
If at all points in an open interval I, f(x) is doubly differentiable and
if f′′(x) < 0, ∀x ∈ I, then the slope of the function is always
decreasing with x and the graph is strictly concave.
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Strict Concavity
On the other hand, if the function is strictly concave and doubly
differentiable in I, then f′′(x) ≤ 0, ∀x ∈ I. This is illustrated in
Figure 9.

Figure 9:
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Strict Concavity (slopeless interpretation)

There is also a slopeless interpretation of concavity as stated in the
following theorem:

Claim
A differentiable function f is strictly concave on an open interval I, iff

f(ax1 + (1− a)x2) > af(x1) + (1− a)f(x2) (10)

whenver x1, x2 ∈ I, x1 ̸= x2 and 0 < a < 1.

The proof is similar to that for theorem 12.
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Convex & Concave Regions and Inflection Point
Study the function f(x) = x3 − x+ 2.
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Convex & Concave Regions and Inflection Point
Study the function f(x) = x3 − x+ 2. It’s slope decreases as x
increases to 0 (f′′(x) < 0) and then the slope increases beyond x = 0
(f′′(x) > 0). The point 0, where the f′′(x) changes sign is called the
inflection point; the graph is strictly concave for x < 0 and strictly
convex for x > 0. See Figure 10.
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Convex & Concave Regions and Inflection Point

Along similar lines, study the function
f(x) = 1

20
x5 − 7

12
x4 + 7

6
x3 − 15

2
x2.
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Convex & Concave Regions and Inflection Point

Along similar lines, study the function
f(x) = 1

20
x5 − 7

12
x4 + 7

6
x3 − 15

2
x2.

It is strictly concave on (−∞,−1] and [3, 5] and strictly convex on
[−1, 3] and [5,∞].
The inflection points for this function are at x = −1, x = 3 and
x = 5.
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First Derivative Test: Restated using Strict
Convexity

The first derivative test for local extrema can be restated in terms of
strict convexity and concavity of functions.
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First Derivative Test: Restated using Strict
Convexity

The first derivative test for local extrema can be restated in terms of
strict convexity and concavity of functions.

Procedure
[First derivative test in terms of strict convexity]: Let c be a

critical number of f and f′(c) = 0. Then,
1 f(c) is a local minimum if the graph of f(x) is
strictly convex on an open interval containing c.

2 f(c) is a local maximum if the graph of f(x) is
strictly concave on an open interval containing c.
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Strict Convexity: Restated using Second Derivative

If the second derivative f′′(c) exists, then the strict convexity
conditions for the critical number can be stated in terms of the sign
of of f′′(c), making use of previous results. This is called the second
derivative test.
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Strict Convexity: Restated using Second Derivative

If the second derivative f′′(c) exists, then the strict convexity
conditions for the critical number can be stated in terms of the sign
of of f′′(c), making use of previous results. This is called the second
derivative test.
Procedure
[Second derivative test]: Let c be a critical number of f where

f′(c) = 0 and f′′(c) exists.
1 If f′′(c) > 0 then f(c) is a local minimum.
2 If f′′(c) < 0 then f(c) is a local maximum.
3 If f′′(c) = 0 then f(c) could be a local maximum, a
local minimum, neither or both. That is, the test
fails.
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Convexity, Minima and Maxima: Illustrations

Study the functions f(x) = x4, f(x) = −x4 and f(x) = x3:
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Convexity, Minima and Maxima: Illustrations

Study the functions f(x) = x4, f(x) = −x4 and f(x) = x3:
If f(x) = x4, then f′(0) = 0 and f′′(0) = 0 and we can see that
f(0) is a local minimum.
If f(x) = −x4, then f′(0) = 0 and f′′(0) = 0 and we can see that
f(0) is a local maximum.
If f(x) = x3, then f′(0) = 0 and f′′(0) = 0 and we can see that
f(0) is neither a local minimum nor a local maximum. (0, 0) is
an inflection point in this case.
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Convexity, Minima and Maxima: Illustrations
(contd.)
Study the functions: f(x) = x+ 2 sin x and f(x) = x+ 1

x :
If f(x) = x+ 2 sin x, then f′(x) = 1 + 2 cos x. f′(x) = 0 for
x = 2π

3
, 4π

3
, which are the critical numbers.

f′′
(
2π
3

)
= −2 sin 2π

3
= −

√
3 < 0 ⇒ f

(
2π
3

)
= 2π

3
+
√
3 is a local

maximum value. On the other hand, f′′
(
4π
3

)
=

√
3 > 0 ⇒

f
(
4π
3

)
= 4π

3
−
√
3 is a local minimum value.

If f(x) = x+ 1
x , then f′(x) = 1− 1

x2 . The critical numbers are
x = ±1. Note that x = 0 is not a critical number, even though
f′(0) does not exist, because 0 is not in the domain of f.
f′′(x) = 2

x3 . f′′(−1) = −2 < 0 and therefore f(−1) = −2 is a
local maximum. f′′(1) = 2 > 0 and therefore f(1) = 2 is a local
minimum.
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Global Extrema on Closed Intervals
Recall the extreme value theorem. A consequence is that:

if either of c or d lies in (a, b), then it is a critical number of f;
else each of c and d must lie on one of the boundaries of [a, b].

This gives us a procedure for finding the maximum and minimum of a
continuous function f on a closed bounded interval I:
Procedure

[Finding extreme values on closed, bounded
intervals]:

1 Find the critical points in int(I).
2 Compute the values of f at the critical points and at
the endpoints of the interval.

3 Select the least and greatest of the computed
values.
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of
f(x) = 4x3 − 8x2 + 5x on the interval [0, 1],
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of
f(x) = 4x3 − 8x2 + 5x on the interval [0, 1],

▶ We first compute f′(x) = 12x2 − 16x + 5 which is 0 at x = 1
2 ,

5
6 .

▶ Values at the critical points are f(12) = 1, f(56) =
25
27 .

▶ The values at the end points are f(0) = 0 and f(1) = 1.
▶ Therefore, the minimum value is f(0) = 0 and the maximum
value is f(1) = f(12) = 1.
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Global Extrema on Closed Intervals (contd)

To compute the maximum and minimum values of
f(x) = 4x3 − 8x2 + 5x on the interval [0, 1],

▶ We first compute f′(x) = 12x2 − 16x + 5 which is 0 at x = 1
2 ,

5
6 .

▶ Values at the critical points are f(12) = 1, f(56) =
25
27 .

▶ The values at the end points are f(0) = 0 and f(1) = 1.
▶ Therefore, the minimum value is f(0) = 0 and the maximum
value is f(1) = f(12) = 1.

In this context, it is relevant to discuss the one-sided derivatives
of a function at the endpoints of the closed interval on which it
is defined.
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Global Extrema on Closed Intervals (contd)
Definition
[One-sided derivatives at endpoints]: Let f be defined on a

closed bounded interval [a, b]. The (right-sided)
derivative of f at x = a is defined as

f′(a) = lim
h→0+

f(a+ h)− f(a)
h

Similarly, the (left-sided) derivative of f at x = b is
defined as

f′(b) = lim
h→0−

f(b+ h)− f(b)
h

Essentially, each of the one-sided derivatives defines one-sided slopes
at the endpoints.

January 11, 2018 46 / 52



Global Extrema on Closed Intervals (contd)
Based on these definitions, the following result can be derived.
Claim
If f is continuous on [a, b] and f′(a) exists as a real number or as ±∞,
then we have the following necessary conditions for extremum at a.

If f(a) is the maximum value of f on [a, b], then f′(a) ≤ 0 or
f′(a) = −∞.
If f(a) is the minimum value of f on [a, b], then f′(a) ≥ 0 or
f′(a) = ∞.

If f is continuous on [a, b] and f′(b) exists as a real number or as ±∞,
then we have the following necessary conditions
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Global Extrema on Closed Intervals (contd)
Based on these definitions, the following result can be derived.
Claim
If f is continuous on [a, b] and f′(a) exists as a real number or as ±∞,
then we have the following necessary conditions for extremum at a.

If f(a) is the maximum value of f on [a, b], then f′(a) ≤ 0 or
f′(a) = −∞.
If f(a) is the minimum value of f on [a, b], then f′(a) ≥ 0 or
f′(a) = ∞.

If f is continuous on [a, b] and f′(b) exists as a real number or as ±∞,
then we have the following necessary conditions for extremum at b.

If f(b) is the maximum value of f on [a, b], then f′(b) ≥ 0 or
f′(b) = ∞.
If f(b) is the minimum value of f on [a, b], then f′(b) ≤ 0 or
f′(b) = −∞.
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Global Extrema on Closed Intervals (contd)

The following result gives a useful procedure for finding extrema on
closed intervals.
Claim
If f is continuous on [a, b] and f′′(x) exists for all x ∈ (a, b). Then,

If f′′(x) ≤ 0, ∀x ∈ (a, b), then the minimum value of f on [a, b] is
either f(a) or f(b). If, in addition, f has a critical point c ∈ (a, b),
then f(c) is the maximum value of f on [a, b].
If f′′(x) ≥ 0, ∀x ∈ (a, b), then the maximum value of f on [a, b]
is either f(a) or f(b). If, in addition, f has a critical point
c ∈ (a, b), then f(c) is the minimum value of f on [a, b].
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Global Extrema on Open Intervals
The next result is very useful for finding extrema on open
intervals.
Claim
Let I be an open interval and let f′′(x) exist ∀x ∈ I.

If f′′(x) ≥ 0, ∀x ∈ I, and if there is a number c ∈ I where
f′(c) = 0, then f(c) is the global minimum value of f on I.
If f′′(x) ≤ 0, ∀x ∈ I, and if there is a number c ∈ I where
f′(c) = 0, then f(c) is the global maximum value of f on I.

For example, let f(x) = 2
3
x− sec x and I = (−π

2
, π
2
).

f′(x) = 2
3
− sec x tan x = 2

3
− sin x

cos2 x = 0 ⇒ x = π
6
. Further,

f′′(x) = − sec x(tan2 x+ sec2 x) < 0 on (−π
2
, π
2
). Therefore, f attains

the maximum value f(π
6
) = π

9
− 2√

3
on I.

January 11, 2018 49 / 52



Global Extrema on Open Intervals (contd)
As another example, let us find the dimensions of the cone with
minimum volume that can contain a sphere with radius R. Let h be
the height of the cone and r the radius of its base. The objective to
be minimized is the volume f(r, h) = 1

3
πr2h. The constraint betwen r

and h is shown in Figure 11. The traingle AEF is similar to traingle
ADB and therefore, h−R

R =
√

h2+r2
r .

January 11, 2018 50 / 52



Global Extrema on Open Intervals (contd)
Our first step is to reduce the volume formula to involve only one of
r23 or h.
The algebra involved will be the simplest if we solved for h.
The constraint gives us r2 = R2h

h−2R . Substituting this expression for r2
into the volume formula, we get g(h) = πR2

3
h2

(h−2R) with the domain
given by D =

{
h|2R < h < ∞

}
.

Note that D is an open interval.
g′ = πR2

3
2h(h−2R)−h2

(h−2R)2 = πR2

3
h(h−4R)
(h−2R)2 which is 0 in its domain D if and

only if h = 4R.
g′′ = πR2

3
2(h−2R)3−2h(h−4R)(h−2R)2

(h−2R)4 = πR2

3
2(h2−4Rh+4R2−h2+4Rh)

(h−2R)3 =
πR2

3
8R2

(h−2R)3 , which is greater than 0 in D.
Therefore, g (and consequently f) has a unique minimum at h = 4R
and correspondingly, r2 = R2h

h−2R = 2R2.
3Since r appears in the volume formula only in terms of r2.
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