Local Extrema for $f(x_1, x_2..., x_n)$

Set of n variables is represented as a vector

Definition

[Local minimum]: A function $f: \mathcal{D} \to \Re$ of n variables has a local minimum at \mathbf{x}^0 if $\exists \mathcal{N}(\mathbf{x}^0)$ such that $\forall \mathbf{x} \in \mathcal{N}(\mathbf{x}^0)$, $f(\mathbf{x}^0) \leq f(\mathbf{x})$. In other words, $f(\mathbf{x}^0) \leq f(\mathbf{x})$ whenever \mathbf{x} lies in some neighborhood around \mathbf{x}^0 . An example neighborhood is the circular disc when $\mathcal{D} = \Re^n$. Circular disc: $\{\mathbf{x} \text{ s.t } | |\mathbf{x} - \mathbf{x}^0 | | ^2 <= \enslimits \enslimits$

Definition

[Local maximum]: $f(\mathbf{x}^0) \ge f(\mathbf{x})$.

Local Extrema

These definitions are exactly analogous to the definitions for a function of single variable. Figure 1 shows the plot of $f(x_1, x_2) = 3x_1^2 - x_1^3 - 2x_2^2 + x_2^4$. As can be seen in the plot, the function has several local maxima and minima.

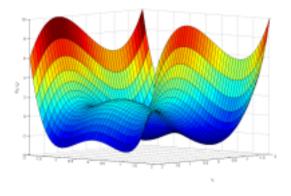


Figure 1:

Convexity and Extremum: Slopeless interpretation (SI)

Definition

A function f is convex on \mathcal{D} , *iff*

Convex combination of vectors x1 and x2 $f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$

and is strictly convex on $\mathcal{D},\ \textit{iff}$

In 1-d case, we saw convex combination corresponded to points on line segment connecting x1 and x2.

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) < \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$
(2)

whenever $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{D}$, $\mathbf{x}_1 \neq \mathbf{x}_2$ and $0 < \alpha < 1$.

Note: This implicitly assumes that whenever $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{D}$, then the convex combination is also in D

(1)

Convexity and Extremum: Slopeless interpretation (SI)

Definition

A function f is convex on \mathcal{D} , *iff*

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) \le \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$

and is strictly convex on \mathcal{D} , iff

$$f(\alpha \mathbf{x}_1 + (1 - \alpha)\mathbf{x}_2) < \alpha f(\mathbf{x}_1) + (1 - \alpha)f(\mathbf{x}_2)$$
(2)

whenever $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{D}$, $\mathbf{x}_1 \neq \mathbf{x}_2$ and $0 < \alpha < 1$. Require set D to be convex

Note: This implicitly assumes that whenever $\mathbf{x}_1, \mathbf{x}_2 \in \mathcal{D}$, $\alpha \mathbf{x}_1 + (1 - \alpha) \mathbf{x}_2 \in \mathcal{D}$

(1)

Local Extrema

Figure 2 shows the plot of $f(x_1, x_2) = 3x_1^2 + 3x_2^2 - 9$. As can be seen in the plot, the function is cup shaped and appears to be convex everywhere in \Re^2 . (where the set R^2 itself is convex)

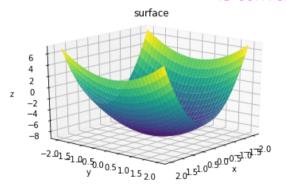


Figure 2:

From $f(x): \Re \to \Re$ to $f(x_1, x_2 \dots x_n): \mathcal{D} \to \Re$

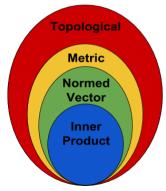
Need to also extend

- Extreme Value Theorem
- Rolle's theorem, Mean Value Theorem, Taylor Expansion
- Necessary and Sufficient first and second order conditions for local/extrema
- First and second order conditions for Convexity
- Need following notions/definitions in $\ensuremath{\mathcal{D}}$
 - Neighborhood and open sets/balls (Local extremum)
 - Bounded, Closed Sets (Extreme value theorem)
 - Convex Sets (Convex functions of *n* variables)
 - Directional Derivatives and Gradients (Taylor Expansion, all first order conditions)

Spaces and Mathematical Structures

Contents: The Mathematical Structures called Spaces

- Topological Spaces: Notion of neighbourhood of points.
- Metric Spaces: Notion of positive distance between two points.
- Normed Vector Spaces: Notion of positive length of each point.
- Inner Product Spaces: Notion of projection of one point on another, both positive and negative.



Topological Spaces

Set of points (\mathcal{X}) along with the set of neighbors ($\mathcal{N}(\mathbf{x})$) of each point (\mathbf{x}), with certain axioms required to be satisfied by the points and their neighbors.

- Example1: A topological space is an ordered pair (\mathcal{X} , \mathcal{N}), where:
 - \mathcal{X} is a set
 - \mathcal{N} is a collection of subsets of \mathcal{X} , satisfying the following axioms:
 - ***** The empty set and \mathcal{X} itself belong to \mathcal{N} .
 - * Any (finite or infinite) union of members of $\mathcal N$ still belongs to $\mathcal N$.
 - $\star\,$ The intersection of any finite number of members of ${\cal N}$ still belongs to ${\cal N}.$
- As per above example, which out of following are toplogies with $\mathcal{X}=\{1,2,3\}$ and $\mathcal{N}=$

- ► {{},{1},{1,2,3}}
- $\blacktriangleright \{\{\},\{1\},\{2\},\{1,2\},\{1,2,3\}\}$
- {{},{2},{1,2},{2,3},{1,2,3}}
- {{},{1},{2},{1,2,3}}
- {{},{1,2},{2,3},{1,2,3}}

Topological Spaces

Set of points (\mathcal{X}) along with the set of neighbors ($\mathcal{N}(\mathbf{x})$) of each point (\mathbf{x}), with certain axioms required to be satisfied by the points and their neighbors.

- Example1: A topological space is an ordered pair (\mathcal{X} , \mathcal{N}), where:
 - \mathcal{X} is a set
 - \mathcal{N} is a collection of subsets of \mathcal{X} , satisfying the following axioms:
 - ***** The empty set and \mathcal{X} itself belong to \mathcal{N} .
 - * Any (finite or infinite) union of members of $\mathcal N$ still belongs to $\mathcal N$.
 - $\star\,$ The intersection of any finite number of members of ${\cal N}$ still belongs to ${\cal N}.$
- As per above example, which out of following are toplogies with $\mathcal{X}=\{1,2,3\}$ and $\mathcal{N}=$
 - ► {{},{1,2,3}} Yes
 - ► {{},{1},{1,2,3}} **Yes**
 - ► {{},{1},{2},{1,2},{1,2,3}} Yes
 - ► {{},{2},{1,2},{2,3},{1,2,3}} Yes
 - {{},{1},{2},{1,2,3}} No as $\{1\} \cup \{2\} \notin \mathcal{N}$
 - ▶ {{},{1,2},{2,3},{1,2,3}} No as $\{1,2\} \cap \{2,3\} \notin \mathcal{N}$

Metric Spaces

Set of points (X) along with a notion of distance $d(x_1, x_2)$ between any two points $(x_1, x_2 \in X)$ such that:

- $d(\mathbf{x}_1, \mathbf{x}_2) \geq 0$ (non-negativity).
- 2 $d(\mathbf{x}_1, \mathbf{x}_2) = 0$ iff $\mathbf{x}_1 = \mathbf{x}_2$ (identity).
- $\ \, \bullet \ \, \mathsf{d}(\mathbf{x}_1,\mathbf{x}_2)=\mathsf{d}(\mathbf{x}_2,\mathbf{x}_1) \ \, (\mathsf{symmetry}).$
- $\label{eq:distance} \bullet \mathsf{d}(\mathbf{x}_1,\mathbf{x}_2) + \mathsf{d}(\mathbf{x}_2,\mathbf{x}_3) \geq \mathsf{d}(\mathbf{x}_1,\mathbf{x}_3) \mbox{ (triangle inequality)}.$

Metric Spaces

Examples:

• 1-metric d_1 : The plane with the taxi cab metric

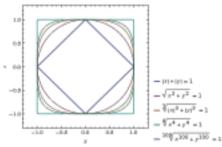
•
$$d((\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2)) = |\mathbf{x}_1 - \mathbf{x}_2| + |\mathbf{y}_1 - \mathbf{y}_2|$$

• 2-metric *d*₂: The plane R2 with the "usual distance" (measured using Pythagoras's theorem):

•
$$d((\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2)) = \sqrt{((\mathbf{x}_1 - \mathbf{x}_2)^2 + (\mathbf{y}_1 - \mathbf{y}_2)^2)}$$

• Infinity metric d_∞ : The plane with the maximum metric

•
$$d((\mathbf{x}_1, \mathbf{y}_1), (\mathbf{x}_2, \mathbf{y}_2)) = max(|\mathbf{x}_1 - \mathbf{x}_2|, |\mathbf{y}_1 - \mathbf{y}_2|).$$



- Vector Space: A space consisting of vectors, together with the
 - **()** associative and commutative operation of addition of vectors,
 - **2** associative and distributive operation of multiplication of vectors by scalars.
- Norm: A function that assigns a strictly positive length or size to each vector in a vector space save for the zero vector, which is assigned a length of zero.
- Normed Vector Space: A vector space on which a norm is defined.

Normed Vector Spaces

A vector space on which a norm is defined.

- In any real vector space R^n , the length of a vector has the following properties:
 - **1** The zero vector, 0, has zero length; every other vector has a positive length.

★ $||x|| \ge 0$, and ||x|| = 0 iff x = 0.

- Multiplying a vector by a positive number changes its length without changing its direction. Moreover,
 - ★ $||\alpha \mathbf{x}|| = |\alpha| ||\mathbf{x}||$ for any scaler α .
- The triangle inequality holds. That is, taking norms as distances, the distance from point A through B to C is never shorter than going directly from A to C, or the shortest distance between any two points is a straight line.

★ $||x_1 + x_2|| \le ||x_1|| + ||x_2||$ for any vectors x_1 and x_2 .

The generalization of these three properties to more abstract vector spaces leads to the notion of norm. For example: A matrix norm.

Additionally, in the case of square matrices (thus, m = n), some (but not all) matrix norms satisfy the following condition, which is related to the fact that matrices are more than just vectors: $||\mathbf{AB}|| \le ||\mathbf{A}|| ||\mathbf{B}||$ for all matrices **A** and **B** in $K^{n \times n}$.