Local Extrema for $f\left(x_{1}, x_{2} . ., x_{n}\right)$

Set of n variables is represented as a vector

Definition

[Local minimum]: A function $f: \mathcal{D} \rightarrow \Re$ of n variables has a local minimum at \mathbf{x}^{0} if $\exists \mathcal{N}\left(x^{0}\right)$ such that $\forall \mathbf{x} \in \mathcal{N}\left(\mathbf{x}^{0}\right), f\left(\mathbf{x}^{0}\right) \leq f(\mathbf{x})$. In other words, $f\left(\mathbf{x}^{0}\right) \leq f(\mathbf{x})$ whenever x lies in some neighborhood around x^{0}. An example neighborhood is the circular disc when $\mathcal{D}=\Re^{n} . \quad$ Circular disc: $\left\{x\right.$ s.t $\left.\left\|x-x^{\wedge} 0\right\|^{\wedge} 2<=\mid e p s\right\}$

Definition

[Local maximum]: $f\left(\mathbf{x}^{0}\right) \geq f(\mathbf{x})$.

Local Extrema

These definitions are exactly analogous to the definitions for a function of single variable. Figure 1 shows the plot of $f\left(x_{1}, x_{2}\right)=3 x_{1}^{2}-x_{1}^{3}-2 x_{2}^{2}+x_{2}^{4}$. As can be seen in the plot, the function has several local maxima and minima.

Figure 1:

Convexity and Extremum: Slopeless interpretation (SI)
Definition
A function f is convex on \mathcal{D}, iff

$$
\begin{align*}
& \text { Convex combination of vectors } \times 1 \text { and } \times 2 \\
& f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) \tag{1}
\end{align*}
$$

and is strictly convex on \mathcal{D}, iff
In 1-d case, we saw convex combination corresponded to points on line segment connecting $x 1$ and $x 2$.

$$
\begin{equation*}
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right)<\alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) \tag{2}
\end{equation*}
$$

whenever $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}, \mathbf{x}_{1} \neq \mathbf{x}_{2}$ and $0<\alpha<1$.
Note: This implicitly assumes that whenever $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathcal{D}$, then the convex combination is also in D

Convexity and Extremum: Slopeless interpretation (SI)

Definition

A function f is convex on \mathcal{D}, iff

$$
\begin{equation*}
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right) \leq \alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) \tag{1}
\end{equation*}
$$

and is strictly convex on \mathcal{D}, iff

$$
\begin{equation*}
f\left(\alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2}\right)<\alpha f\left(\mathbf{x}_{1}\right)+(1-\alpha) f\left(\mathbf{x}_{2}\right) \tag{2}
\end{equation*}
$$

whenever $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}, \mathbf{x}_{1} \neq \mathbf{x}_{2}$ and $0<\alpha<1$. Require set D to be convex
Note: This implicitly assumes that whenever $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathcal{D}, \quad \alpha \mathbf{x}_{1}+(1-\alpha) \mathbf{x}_{2} \in \mathcal{D}$

Local Extrema

Figure 2 shows the plot of $f\left(x_{1}, x_{2}\right)=3 x_{1}^{2}+3 x_{2}^{2}-9$. As can be seen in the plot, the function is cup shaped and appears to be convex everywhere in \Re^{2}. (where the set $R^{\wedge} 2$ itself is convex)

Figure 2:

From $f(x): \Re \rightarrow \Re$ to $f\left(x_{1}, x_{2} \ldots x_{n}\right): \mathcal{D} \rightarrow \Re$

Need to also extend

- Extreme Value Theorem
- Rolle's theorem, Mean Value Theorem, Taylor Expansion
- Necessary and Sufficient first and second order conditions for local/extrema
- First and second order conditions for Convexity

Need following notions/definitions in \mathcal{D}

- Neighborhood and open sets/balls (\Leftarrow Local extremum)
- Bounded, Closed Sets (\Leftarrow Extreme value theorem)
- Convex Sets (\Leftarrow Convex functions of n variables)
- Directional Derivatives and Gradients (\Leftarrow Taylor Expansion, all first order conditions)

Spaces and Mathematical Structures

Contents: The Mathematical Structures called Spaces

- Topological Spaces: Notion of neighbourhood of points.
- Metric Spaces: Notion of positive distance between two points.
- Normed Vector Spaces: Notion of positive length of each point.
- Inner Product Spaces: Notion of projection of one point on another, both positive and negative.

Topological Spaces

Set of points (\mathcal{X}) along with the set of neighbors $(\mathcal{N}(\mathbf{x}))$ of each point (x), with certain axioms required to be satisfied by the points and their neighbors.

- Example1: A topological space is an ordered pair $(\mathcal{X}, \mathcal{N})$, where:
- \mathcal{X} is a set
- \mathcal{N} is a collection of subsets of \mathcal{X}, satisfying the following axioms:
\star The empty set and \mathcal{X} itself belong to \mathcal{N}.
\star Any (finite or infinite) union of members of \mathcal{N} still belongs to \mathcal{N}.
\star The intersection of any finite number of members of \mathcal{N} still belongs to \mathcal{N}.
- As per above example, which out of following are toplogies with $\mathcal{X}=\{1,2,3\}$ and $\mathcal{N}=$
- $\{\},\{1,2,3\}\}$
- $\{\},\{1\},\{1,2,3\}\}$
- $\{\},\{1\},\{2\},\{1,2\},\{1,2,3\}\}$
- $\{\},\{2\},\{1,2\},\{2,3\},\{1,2,3\}\}$
- $\{\},\{1\},\{2\},\{1,2,3\}\}$
- $\{\},\{1,2\},\{2,3\},\{1,2,3\}\}$

Topological Spaces

Set of points (\mathcal{X}) along with the set of neighbors $(\mathcal{N}(\mathbf{x}))$ of each point (x), with certain axioms required to be satisfied by the points and their neighbors.

- Example1: A topological space is an ordered pair $(\mathcal{X}, \mathcal{N})$, where:
- \mathcal{X} is a set
- \mathcal{N} is a collection of subsets of \mathcal{X}, satisfying the following axioms:
\star The empty set and \mathcal{X} itself belong to \mathcal{N}.
\star Any (finite or infinite) union of members of \mathcal{N} still belongs to \mathcal{N}.
\star The intersection of any finite number of members of \mathcal{N} still belongs to \mathcal{N}.
- As per above example, which out of following are toplogies with $\mathcal{X}=\{1,2,3\}$ and $\mathcal{N}=$
- $\{\},\{1,2,3\}\}$ Yes
- $\{\},\{1\},\{1,2,3\}\}$ Yes
- $\{\},\{1\},\{2\},\{1,2\},\{1,2,3\}\}$ Yes
- $\{\},\{2\},\{1,2\},\{2,3\},\{1,2,3\}\}$ Yes
- $\{\},\{1\},\{2\},\{1,2,3\}\}$ No as $\{1\} \cup\{2\} \notin \mathcal{N}$
- $\{\},\{1,2\},\{2,3\},\{1,2,3\}\}$ No as $\{1,2\} \cap\{2,3\} \notin \mathcal{N}$

Metric Spaces

Set of points (\mathcal{X}) along with a notion of distance $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)$ between any two points $\left(\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathcal{X}\right)$ such that:
(1) $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \geq 0$ (non-negativity).
(2) $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=0$ iff $\mathrm{x}_{1}=\mathrm{x}_{2}$ (identity).
(3) $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{x}_{1}\right)$ (symmetry).
(a) $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)+\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right) \geq \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)$ (triangle inequality).

Metric Spaces

Examples:

- 1-metric d_{1} : The plane with the taxi cab metric
- $d\left(\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right),\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)\right)=\left|\mathbf{x} 1-\mathbf{x}_{2}\right|+\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right|$
- 2-metric d_{2} : The plane R2 with the "usual distance" (measured using Pythagoras's theorem):
- $d\left(\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right),\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)\right)=\sqrt{\left(\left(\mathbf{x}_{1}-\mathbf{x}_{2}\right)^{2}+\left(\mathbf{y}_{1}-\mathbf{y}_{2}\right)^{2}\right)}$.
- Infinity metric d_{∞} : The plane with the maximum metric
$-d\left(\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right),\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right)\right)=\max \left(\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|,\left|\mathbf{y}_{1}-\mathbf{y}_{2}\right|\right)$.

Normed Vector Spaces

- Vector Space: A space consisting of vectors, together with the
(1) associative and commutative operation of addition of vectors,
(2) associative and distributive operation of multiplication of vectors by scalars.
- Norm: A function that assigns a strictly positive length or size to each vector in a vector space - save for the zero vector, which is assigned a length of zero.
- Normed Vector Space: A vector space on which a norm is defined.

Normed Vector Spaces

A vector space on which a norm is defined.

- In any real vector space R^{n}, the length of a vector has the following properties:
(1) The zero vector, 0 , has zero length; every other vector has a positive length.

$$
\star\|x\| \geq 0 \text {, and }\|x\|=0 \text { iff } x=0 \text {. }
$$

(2) Multiplying a vector by a positive number changes its length without changing its direction. Moreover,

$$
\star\|\alpha x\|=|\alpha|\|x\| \text { for any scaler } \alpha \text {. }
$$

(3) The triangle inequality holds. That is, taking norms as distances, the distance from point A through B to C is never shorter than going directly from A to C, or the shortest distance between any two points is a straight line.

$$
\star\left\|x_{1}+x_{2}\right\| \leq\left\|x_{1}\right\|+\left\|x_{2}\right\| \text { for any vectors } x_{1} \text { and } x_{2} .
$$

The generalization of these three properties to more abstract vector spaces leads to the notion of norm. For example: A matrix norm.
Additionally, in the case of square matrices (thus, $\mathrm{m}=\mathrm{n}$), some (but not all) matrix norms satisfy the following condition, which is related to the fact that matrices are more than just vectors: $\|\mathbf{A B}\| \leq\|\mathbf{A}\|\|\mathbf{B}\|$ for all matrices \mathbf{A} and \mathbf{B} in $K^{n \times n}$.

