- Vector Space: A space consisting of vectors, together with the
 - associative and commutative operation of addition of vectors,
 - **2** associative and distributive operation of multiplication of vectors by scalars.
- Norm: A function that assigns a strictly positive length or size to each vector in a vector space save for the zero vector, which is assigned a length of zero.
- Normed Vector Space: A vector space on which a norm is defined.

Normed Vector Spaces

A vector space on which a norm is defined.

- In any real vector space \Re^n , the length of a vector has the following properties:
 - **1** The zero vector, 0, has zero length; every other vector has a positive length.

★ $\|\mathbf{x}\| \ge 0$, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

- Multiplying a vector by a positive number changes its length without changing its direction. Moreover,
 - $\star \ \|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\| \text{ for any scalar } \alpha.$
- The triangle inequality holds. That is, taking norms as distances, the distance from point A through B to C is never shorter than going directly from A to C, or the shortest distance between any two points is a straight line.

★ $||\mathbf{x}_1 + \mathbf{x}_2|| \le ||\mathbf{x}_1|| + ||\mathbf{x}_2||$ for any vectors \mathbf{x}_1 and \mathbf{x}_2 .

The generalization of these three properties to more abstract vector spaces leads to the notion of norm. For example: A matrix norm.

Additionally, in the case of square matrices (thus, m = n), some (but not all) matrix norms satisfy the following condition, which is related to the fact that matrices are more than just vectors: $||AB|| \le ||A|| ||B||$ for all matrices A and B in $\mathcal{K}^{n\times n}$.

Contrasting the Spaces discussed so far

- Topological Spaces: Notion of neighbourhood of points.
- Metric Spaces: Notion of positive distance between two points.
- Normed Vector Spaces: Notion of positive length of each point.

Topological Spaces

Set of points X along with the set of open sets (N) with certain axioms required to be satisfied by sets in N:

- Definition 1: A topological space is an ordered pair (X, \mathcal{N}), where:
 - ► X is a set
 - \mathcal{N} is a collection of subsets of X, satisfying the following axioms:
 - * The empty set and X itself belong to \mathcal{N} .
 - * Any (finite or infinite) union of members of $\mathcal N$ still belongs to $\mathcal N$.
 - $\star\,$ The intersection of any finite number of members of ${\cal N}$ still belongs to ${\cal N}.$
- We already saw examples that are (and are not) toplogies for $X = \{1, 2, 3\}$ and $\mathcal{N} =$
 - $\{\{\}, \{1, 2, 3\}\}$ Yes
 - $\blacktriangleright~\{\{\},\{1\},\{1,2,3\}\}$ Yes
 - $\{\{\}, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}\}$ Yes
 - $\{\{\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$ Yes
 - ▶ $\{\{\}, \{1\}, \{2\}, \{1, 2, 3\}\}$ No as $\{1\} \cup \{2\} \notin \mathcal{N}$
 - ▶ {{},{1,2},{2,3},{1,2,3}} No as {1,2} ∩ {2,3} $\notin N$

Topological Spaces and Open Sets

The neighbourhoods can be recovered by defining $N(\mathbf{x})$ to be a neighbourhood of \mathbf{x} if \mathcal{N} includes a set O such that $\mathbf{x} \in O$. The sets $O \in \mathcal{N}$ are basically the open sets. For example

• with $X = \{1, 2, 3\}$ and $\mathcal{N} = \{\{\}, \{1, 2, 3\}\}$ each of $\{\}$ and $\{1, 2, 3\}$ is an open set O and $N(1) \in \{\{1, 2, 3\}\}$ $N(2) \in \{\{1, 2, 3\}\}$ $N(3) \in \{\{1, 2, 3\}\}$ • with $X = \{1, 2, 3\}$ and $\mathcal{N} = \{\{\}, \{1\}, \{1, 2, 3\}\}$, each of $\{\}, \{1\}$ and $\{1, 2, 3\}$ is an open set O and Expect N(.) to contain intersections, unions, supers $N(1) \in \{\{1\}, \{1, 2, 3\}\}$ of its elements $N(2) \in \{\{1, 2, 3\}\}$ $N(3) \in \{\{1, 2, 3\}\}$ • with $X = \{1, 2, 3\}$ and $\mathcal{N} = \{\{\}, \{1\}, \{2\}, \{1, 2\}, \{1, 2, 3\}\}$, each of $\{\}, \{1\}, \{2\}, \{1, 2\}$ and $\{1, 2, 3\}$ is an open set O and $N(1) \in \{\{1\}, \{1, 2\}, \{1, 2, 3\}\}$ $N(2) \in \{\{2\}, \{1, 2\}, \{1, 2, 3\}\}$ $N(3) \in \{\{1, 2, 3\}\}$

Topological Spaces and Open Sets

• with
$$X = \{1, 2, 3\}$$
 and $\mathcal{N} = \{\{\}, \{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$ each o
 $\{\}, \{2\}, \{1, 2\}, \{2, 3\}$ and $\{1, 2, 3\}$ is an open set O and
 $\mathcal{N}(1) \in \{\{1, 2\}, \{1, 2, 3\}\}$
 $\mathcal{N}(2) \in \{\{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$, $\{2\}$
 $\mathcal{N}(3) \in \{\{2, 3\}, \{1, 2, 3\}\}$

(Alternative) Definition 2: A topological space is an ordered pair (X, N(.)), where X is a set and N(.) is a neighborhood function such that for each $\mathbf{x} \in X$, if $N(\mathbf{x})$ is a

- neighbourhood of \mathbf{x} then $\mathbf{x} \in N(\mathbf{x})$.
- subset of X and includes a neighbourhood of \mathbf{x} , then N(bfx) is a neighbourhood of \mathbf{x} .
- neighbourhood of x, then for any other neighborhood N'(x), $N(x) \cap N'(x)$ is also a neighbourhood of x.

• neighbourhood of x, then it includes a neighbourhood N'(x) such that N(x) is a neighbourhood of each point of N'(x). The underlying motivation for calling

Convex these sets as open sets 26/12/2016 17 / 89

May not make too much sense for X=finite collection of

points

What topological spaces (and their special cases) give us

- Definition 1: A topological space is an ordered pair (X, \mathcal{N}) , where. of open sets
- Definition 2: A topological space is an ordered pair (X, N(.)), where. A neighborhood
- Definition 1 allows for understanding open sets as elements of \mathcal{N} . function
 - We can define an open ball $B(\mathbf{x})$ to be any element of $N(\mathbf{x})$.
 - ► If additionally, we have metric d(.,.) on the space, we can define an open ball B(x, r) of radius r as {y|d(x, y) < r}</p>
 - A norm ball $B(\mathbf{x}, r) = {\mathbf{y} || \mathbf{x} \mathbf{y} || < \mathbf{r}}$ also should have homogenity! That is, $\|\alpha \mathbf{x} - \alpha \mathbf{y}\| = |\alpha| \|\mathbf{x} - \mathbf{y}\|$ With norms, you can talk of Canonical balls!
- Definition 2 allows for continuity of function *f* definied from a topology *X*, *N*(.) to another topology *Y*, *M*(.). Function *f* is continuous if for every *x* ∈ *X* and every neighbourhood *M*(*f*(*x*)) of *f*(*x*) there is a neighbourhood *N*(*x*) of *x* such that *f*(*N*(*x*)) ⊆ *M*(*f*(*x*)) Example of a canonical ball is norm ball of radius 1

An enumeration

HW1: A Topological space that does not have metric

Consider $X = \{0, 1\}$ and $\mathcal{N} = \{\emptyset, \{0\}, \{0, 1\}\},\$

Consider some metric d(.,.) which is 0 if both its arguments are the same and 1 otherwise. If d would be such a metric, a neighborhood (ball) of radius 0.5 around 1, that is B(1,0.5) would equal $\{1\}$, which should have been open. However, $\{1\} \notin \mathcal{N}$. Contradiction!

HW2: A metric space that does not have norm

Consider (again) the **discrete** metric d(.,.) over a vector space V. We define d(.,.) to be 0 if both its arguments are the same and 1 otherwise. While one can verify that this metric satisifies the triangle inequality, what one requires from an equivalent norm $\|.\|_n$ is that for any $\mathbf{x}, \mathbf{y} \in V$, with $\mathbf{x} \neq \mathbf{y}$, for any scalar $\alpha \neq 0$, we must have $\|\alpha \mathbf{x} - \alpha \mathbf{y}\|_n = \alpha \|\mathbf{x} - \mathbf{y}\|_n$. This measure using the norm can clearly not correspond to the **discrete** distance metric.

Inner Product Space

It is a vector space over a field of scalars along with an inner product.

- Field of scalars: e.g. IR algebraic structure with:-
 - Addition: must be multiplicative and associative.
 - 2 Subtraction.
 - Multiplication: must be commutative, associative and distributive.
 - Division: multiplicative inverse must exist.

• Inner Product:

- (Conjugate) Symmetry: <x₁, x₂> = < x₂, x₁ >. Conjugacy is when scalars are allowed to be complex
 - $\star < a\mathbf{x}_1, \mathbf{x}_2 >= a < \mathbf{x}_1, \mathbf{x}_2 >$
 - $\star < \mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_3 > = < \mathbf{x}_1, \mathbf{x}_3 > + < \mathbf{x}_3, \mathbf{x}_3 >$ Equality on projection to x3, Not
- Solution Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, with equality iff $\mathbf{x} = 0$. otherwise...

(Recall triangle inequality for normed vector spaces)

Proof: Normed Vector Space is a Metric Space

• Normed Vector Space: A vector space on which a norm is defined. In any real vector space \Re^n , the length of a vector has the following properties:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2 $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for any scalar α .

- ② Metric Space: Set of points (X) along with a notion of distance d(x₁, x₂) between any two points (x₁, x₂ ∈ X) such that:
 - $d(\mathbf{x}_1, \mathbf{x}_2) \geq 0$ (non-negativity).

 - $d(\mathbf{x}_1, \mathbf{x}_2) = d(\mathbf{x}_2, \mathbf{x}_1)$ (symmetry).
 - $\textbf{0} \ \ \textit{d}(\mathbf{x}_1,\mathbf{x}_2) + \textit{d}(\mathbf{x}_2,\mathbf{x}_3) \geq \textit{d}(\mathbf{x}_1,\mathbf{x}_3) \ \text{(triangle inequality)}.$

OProof:

Straightforward!

Proof: Normed Vector Space is a Metric Space

• Normed Vector Space: A vector space on which a norm is defined. In any real vector space \Re^n , the length of a vector has the following properties:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2 $\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$ for any scalar α .

 $\textbf{ (} \|\mathbf{x}_1 + \mathbf{x}_2\| \le \|\mathbf{x}_1\| + \|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$

- ② Metric Space: Set of points (X) along with a notion of distance d(x₁, x₂) between any two points (x₁, x₂ ∈ X) such that:
 - $d(\mathbf{x}_1, \mathbf{x}_2) \geq 0$ (non-negativity).
 - $\ \ \, {\boldsymbol \partial} \ \ \, {\boldsymbol d}({\mathbf x}_1,{\mathbf x}_2)=0 \ \, {\rm iff} \ {\mathbf x}_1={\mathbf x}_2 \ \, {\rm (identity)}.$

 - $\textbf{0} \ \ \textbf{\textit{d}}(\mathbf{x}_1,\mathbf{x}_2) + \textbf{\textit{d}}(\mathbf{x}_2,\mathbf{x}_3) \geq \textbf{\textit{d}}(\mathbf{x}_1,\mathbf{x}_3) \ \text{(triangle inequality)}.$

Operation of the second sec

- In vector space, a vector $\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2$ can be defined by subtraction. Define $d(\mathbf{x}_1, \mathbf{x}_2) = \|\mathbf{x}_1 \mathbf{x}_2\|$, so $1.1 \Rightarrow \|\mathbf{x}_1 \mathbf{x}_2\| \ge 0$; $\|\mathbf{x}_1 \mathbf{x}_2\| = 0$ iff $\mathbf{x}_1 \mathbf{x}_2 = 0$, hence 2.1 and 2.2 are proved.
- **2** $1.2 \Rightarrow \| -1(\mathbf{x}_1 \mathbf{x}_2)\| = |-1| \|\mathbf{x}_1 \mathbf{x}_2\|$. So, $\|\mathbf{x}_2 \mathbf{x}_1\| = \|\mathbf{x}_1 \mathbf{x}_2\|$, so 2.3 is proved.
- **3** Take $\mathbf{x}_1 = \mathbf{z}_1 z_0$ and $\mathbf{x}_2 = \mathbf{z}_0 \mathbf{z}_2$, put in 1.3 to get $\|\mathbf{z}_1 \mathbf{z}_0\| + \|\mathbf{z}_0 \mathbf{z}_2\| \ge \|\mathbf{z}_1 \mathbf{z}_2\|$ so 2.4 is prooved.

The Mathematical Structures & Spaces: Some Proofs

Some Proofs For Mathematical Structures & Spaces

- Under what conditions on *P*, is $\sqrt{\mathbf{x}^T P \mathbf{x}}$ a valid Norm?
- Prove that inner product space is a normed vector space. Cauchy Shwarz can be use
- What is an example of normed vector space that is not an inner product space?
- Prove that $|\langle u, v \rangle| \leq ||u||_P ||v||_P$ for any norm P. Cauchy Shwarz...

Assume $\mathbf{x} \in \Re^n$ and $P \in \Re^{n \times n}$.

- **•** *P* is symmetric positive definite iff:
 - **()** Symmetric: $P^T = P$
 - **2** Positive Definite: $\forall \mathbf{x} \neq 0, \ \mathbf{x}^T P \mathbf{x} \geq 0$

Proof:

All eigenvalues of P are non-negative Orthonormal basis for column space of P using eigenvectors Express x as linear combination of that basis

If P were strictly positive definite, the eigenvalues would have been strictly positive

Assume $\mathbf{x} \in \Re^n$ and $P \in \Re^{n \times n}$.

- **•** *P* is symmetric positive definite iff:
 - **()** Symmetric: $P^T = P$
 - **2** Positive Definite: $\forall \mathbf{x} \neq 0, \ \mathbf{x}^T P \mathbf{x} \ge 0$

Proof:

- If P is symmetric positive definite (SPD), then P can be written as:
 - $P = LDL^T$, where ...
 - * L is lower triangular matrix with a 1 in each diagonal entry. Can we use this decomp
 - \star D is diagonal matrix with positive values.
- So, we can write $P = RR^T$ where $R = L\sqrt{D}$.
- Thus we have $\mathbf{x}^T P \mathbf{x} = \mathbf{x}^T R R^T \mathbf{x} = (R^T \mathbf{x})^T (R^T \mathbf{x}) = \mathbf{y}^T \mathbf{y}$
 - where $\mathbf{y} = (\mathbf{R}^T \mathbf{x})$ and thus $\mathbf{y} \in \Re^n$.

-osition to show other norm properties? Triangle ineq?

• So, $\mathbf{x}^T P \mathbf{x} \ge 0$.

Recall:

• Normed Vector Space: A vector space on which a norm is defined. In any real vector space \Re^n , the length of a vector has the following properties:

$$\|\mathbf{x}\| \geq 0, \text{ and } \|\mathbf{x}\| = 0 \text{ iff } \mathbf{x} = 0.$$

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar α .

Proof:

Basic idea is to consider standard 2-norm on a transformed space $\mathbf{x}\mathbf{R}$

Recall:

Normed Vector Space: A vector space on which a norm is defined. In any real vector space Rⁿ, the length of a vector has the following properties:

1
$$\|\mathbf{x}\| \ge 0$$
, and $\|\mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.

2
$$\|\alpha \mathbf{x}\| = |\alpha| \|\mathbf{x}\|$$
 for any scalar α .

$$\|\mathbf{x}_1 + \mathbf{x}_2\| \le \|\mathbf{x}_1\| + \|\mathbf{x}_2\| \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2.$$

Proof:

- By definition of PST: $\|\mathbf{x}^T P \mathbf{x}\| \ge 0$, and $\|\mathbf{x}^T P \mathbf{x}\| = 0$ iff $\mathbf{x} = 0$.
- **2** For any scalar α : $\|\alpha \mathbf{x}\|_{P} = \sqrt{(\alpha \mathbf{x})^{T} P(\alpha \mathbf{x})} = \sqrt{(\alpha^{2})(\mathbf{x}^{T} P \mathbf{x})} = \alpha \sqrt{\mathbf{x}^{T} P \mathbf{x}} = |\alpha| ||\mathbf{x}||_{P}$.
- $\mathbf{0} \ \|\mathbf{x}_1 + \mathbf{x}_2\|_P \le \|\mathbf{x}_1\|_P + \|\mathbf{x}_2\|_P \text{ for any vectors } \mathbf{x}_1 \text{ and } \mathbf{x}_2. \text{ Next Slide.}$

Proof for $\|\mathbf{x}_1 + \mathbf{x}_2\|_P \le \|\mathbf{x}_1\|_P \|\mathbf{x}_2\|_P$

Proof for $\|\mathbf{x}_1 + \mathbf{x}_2\|_P \le \|\mathbf{x}_1\|_P \|\mathbf{x}_2\|_P$ For any vectors \mathbf{x}_1 and \mathbf{x}_2 :

For any vectors \mathbf{x}_1 and \mathbf{x}_2 : $\|\mathbf{x}_1 + \mathbf{x}_2\|_P^2 =$ $(\mathbf{x}_1 + \mathbf{x}_2)^T P(\mathbf{x}_1 + \mathbf{x}_2)$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_1$ $\mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_2$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_2 + \mathbf{x}_2^T P \mathbf{x}_2$ $\mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_2^T P \mathbf{x}_2 + \mathbf{x}_1^T P \mathbf{x}_1 + \mathbf{x}_1^T P \mathbf{x}_1$

2
$$(\|\mathbf{x}_1\|_P + \|\mathbf{x}_2\|_P)^2 =$$

$$\|\mathbf{x}_1\|_{P}^{2} + \|\mathbf{x}_2\|_{P}^{2} + 2\|\mathbf{x}_1\|_{P}\|\mathbf{x}_2\|_{P} \mathbf{x}_1^{T}P\mathbf{x}_1 + \mathbf{x}_2^{T}P\mathbf{x}_2 + 2\sqrt{(\mathbf{x}_1^{T}P\mathbf{x}_1)(\mathbf{x}_2^{T}P\mathbf{x}_2)} \mathbf{u}^{T}\mathbf{u} + \mathbf{v}^{T}\mathbf{v} + 2\sqrt{(\mathbf{u}^{T}\mathbf{u})(\mathbf{v}^{T}\mathbf{v})}$$

3 By Cauchy Schwarz Inequality: $u^T v \leq \sqrt{(u^T u)(v^T v)}$ ($Cos(\theta) \leq 1$)

Recall: Inner Product Space

It is a vector space over a field of scalars along with an inner product.

- Field of scalars: e.g. IR algebraic structure with:-
 - Addition: must be multiplicative and associative.
 - 2 Subtraction.
 - Multiplication: must be commutative, associative and distributive.
 - Oivision: multiplicative inverse must exist.

• Inner Product:

- (Conjugate) Symmetry: $\langle \mathbf{x}_1, \mathbf{x}_2 \rangle = \overline{\langle \mathbf{x}_2, \mathbf{x}_1 \rangle}$.
- 2 Linearity in the first argument.
 - $\star \ < \mathbf{a}\mathbf{x}_1, \mathbf{x}_2 >= \mathbf{a} < \mathbf{x}_1, \mathbf{x}_2 >$
 - $\star \ < \mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_3 > = < \mathbf{x}_1, \mathbf{x}_3 > + < \mathbf{x}_3, \mathbf{x}_3 >$
- **③** Positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$, with equality iff $\mathbf{x} = 0$.

Prove that inner product space is a normed vector space.

Q) Why field of scalers? A) By conjugate symmetry, we have $\langle \mathbf{x}, \mathbf{x} \rangle = \overline{\langle \mathbf{x}, \mathbf{x} \rangle}$. So $\langle \mathbf{x}, \mathbf{x} \rangle$ must be real. So, we can define $\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$. We need to prove that $\|\mathbf{x}\|$ is a valid norm:-

1 By positive definiteness: $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$, with equality iff $\mathbf{x} = 0$. So $\|\mathbf{x}\| \ge 0$ (= iff $\mathbf{x} = 0$).

• For any complex t, $||\mathbf{tx}|| = \sqrt{\langle \mathbf{tx}, \mathbf{tx} \rangle} = \sqrt{t * \overline{t} \langle \mathbf{x}, \mathbf{x} \rangle} = |t| \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}$ (as $|t| = \sqrt{t * \overline{t}}$) So $||\mathbf{tx}|| = |t| ||\mathbf{x}||$

$$\begin{aligned} & \|\mathbf{x}_1 + \mathbf{x}_2\| = \sqrt{\langle \mathbf{x}_1 + \mathbf{x}_2, \mathbf{x}_1 + \mathbf{x}_2 \rangle} = \\ & \sqrt{\langle \mathbf{x}_1, \mathbf{x}_1 \rangle + \langle \mathbf{x}_2, \mathbf{x}_2 \rangle + \langle \mathbf{x}_1, \mathbf{x}_2 \rangle + \langle \mathbf{x}_2, \mathbf{x}_1 \rangle} \\ & \leq \sqrt{\langle \mathbf{x}_1, \mathbf{x}_1 \rangle + \langle \mathbf{x}_2, \mathbf{x}_2 \rangle + 2\sqrt{\langle \mathbf{x}_1, \mathbf{x}_1 \rangle \langle \mathbf{x}_2, \mathbf{x}_2 \rangle}} \text{ (by Cauchy Schwartz inequality)} \end{aligned}$$

Example of normed vector space that is not an inner product space.

$$\|\mathbf{x}\|_{p} = \left[\sum_{i=1}^{\infty} |\mathbf{x}_{i}|^{p}\right]^{\frac{1}{p}}$$

p != 2

H/w: Argue...

Prof. Ganesh Ramakrishnan (IIT Bombay)

Convex Sets : CS709

Prove that $|\langle u, v \rangle| \leq ||u||_P ||v||_P$ for any norm P

Proof:

- If u = 0 or v = 0, then L.H.S. = R.H.S = 0. Hence the equality holds.
- Assume $u, v \neq 0$. Let $z = u \frac{\langle u, v \rangle}{\langle v, v \rangle} v$.
- By linearity of inner product in first argument, we have: $\langle z,v \rangle = \langle u - \frac{\langle u,v \rangle}{\langle v,v \rangle}v,v \rangle = \langle u,v \rangle - \frac{\langle u,v \rangle}{\langle v,v \rangle}\langle v,v \rangle = 0$
- Therefore, $\langle u, u \rangle = \langle z + \frac{\langle u, v \rangle}{\langle v, v \rangle} v, z + \frac{\langle u, v \rangle}{\langle v, v \rangle} v \rangle = \langle z, z \rangle + (\frac{\langle u, v \rangle}{\langle v, v \rangle})^2 \langle v, v \rangle + 0$
- So $\langle \mathsf{u},\mathsf{u} \rangle \geq \frac{|\langle u,v \rangle|^2}{\langle v,v \rangle}$