
Normed Vector Spaces

Vector Space: A space consisting of vectors, together with the
1 associative and commutative operation of addition of vectors,
2 associative and distributive operation of multiplication of vectors by scalars.

Norm: A function that assigns a strictly positive length or size to each vector in a vector
space — save for the zero vector, which is assigned a length of zero.
Normed Vector Space: A vector space on which a norm is defined.
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Normed Vector Spaces
A vector space on which a norm is defined.

In any real vector space ℜn, the length of a vector has the following properties:
1 The zero vector, 0, has zero length; every other vector has a positive length.

⋆ ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 Multiplying a vector by a positive number changes its length without changing its direction.

Moreover,
⋆ ∥αx∥ = |α|∥x∥ for any scalar α.

3 The triangle inequality holds. That is, taking norms as distances, the distance from point A
through B to C is never shorter than going directly from A to C, or the shortest distance
between any two points is a straight line.

⋆ ||x1 + x2|| ≤ ||x1|| + ||x2|| for any vectors x1 and x2.

The generalization of these three properties to more abstract vector spaces leads to the
notion of norm. For example: A matrix norm.
Additionally, in the case of square matrices (thus, m = n), some (but not all) matrix
norms satisfy the following condition, which is related to the fact that matrices are more
than just vectors: ||AB|| ≤ ||A|| ||B|| for all matrices A and B in Knxn.
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Contrasting the Spaces discussed so far
Topological Spaces: Notion of neighbourhood of points.
Metric Spaces: Notion of positive distance between two points.
Normed Vector Spaces: Notion of positive length of each point.
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Topological Spaces
Set of points X along with the set of open sets (N ) with certain axioms required to be
satisfied by sets in N :

Definition 1: A topological space is an ordered pair (X,N ), where:
▶ X is a set
▶ N is a collection of subsets of X, satisfying the following axioms:

⋆ The empty set and X itself belong to N .
⋆ Any (finite or infinite) union of members of N still belongs to N .
⋆ The intersection of any finite number of members of N still belongs to N .

We already saw examples that are (and are not) toplogies for X = {1, 2, 3} and N =
▶ {{}, {1, 2, 3}} Yes
▶ {{}, {1}, {1, 2, 3}} Yes
▶ {{}, {1}, {2}, {1, 2}, {1, 2, 3}} Yes
▶ {{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}} Yes
▶ {{}, {1}, {2}, {1, 2, 3}} No as {1} ∪ {2} /∈ N
▶ {{}, {1, 2}, {2, 3}, {1, 2, 3}} No as {1,2} ∩ {2,3} /∈ N
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Topological Spaces and Open Sets
The neighbourhoods can be recovered by defining N(x) to be a neighbourhood of x if N
includes a set O such that x ∈ O. The sets O ∈ N are basically the open sets. For example

with X = {1, 2, 3} and N = {{}, {1, 2, 3}, each of {} and {1, 2, 3} is an open set O and
N(1) ∈ {{1, 2, 3}}
N(2) ∈ {{1, 2, 3}}
N(3) ∈ {{1, 2, 3}}
with X = {1, 2, 3} and N = {{}, {1}, {1, 2, 3}}, each of {},{1} and {1, 2, 3} is an open
set O and
N(1) ∈ {{1}, {1, 2, 3}}
N(2) ∈ {{1, 2, 3}}
N(3) ∈ {{1, 2, 3}}
with X = {1, 2, 3} and N = {{}, {1}, {2}, {1, 2}, {1, 2, 3}}, each of {}, {1}, {2}, {1, 2}
and {1, 2, 3} is an open set O and
N(1) ∈ {{1}, {1, 2}, {1, 2, 3}}
N(2) ∈ {{2}, {1, 2}, {1, 2, 3}}
N(3) ∈ {{1, 2, 3}}
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Expect N(.) to contain intersections, unions, supersets
 of its elements



Topological Spaces and Open Sets

with X = {1, 2, 3} and N = {{}, {2}, {1, 2}, {2, 3}, {1, 2, 3}} each of
{}, {2}, {1, 2}, {2, 3} and {1, 2, 3} is an open set O and
N(1) ∈ {{1, 2}, {1, 2, 3}}
N(2) ∈ {{1, 2}, {2, 3}, {1, 2, 3}}
N(3) ∈ {{2, 3}, {1, 2, 3}}

(Alternative) Definition 2: A topological space is an ordered pair (X,N(.)), where X is a set
and N(.) is a neighborhood function such that for each x ∈ X, if N(x) is a

neighbourhood of x then x ∈ N(x).
subset of X and includes a neighbourhood of x, then N(bfx) is a neighbourhood of x.
neighbourhood of x, then for any other neighborhood N′(x), N(x) ∩ N′(x) is also a
neighbourhood of x.
neighbourhood of x, then it includes a neighbourhood N′(x) such that N(x) is a
neighbourhood of each point of N′(x).
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The underlying motivation for calling 
these sets as open sets

May not make
too much
sense for 
X=finite 
collection of
points



What topological spaces (and their special cases) give us

Definition 1: A topological space is an ordered pair (X,N ), where.....
Definition 2: A topological space is an ordered pair (X,N(.)), where....
Definition 1 allows for understanding open sets as elements of N .

▶ We can define an open ball B(x) to be any element of N(x).
▶ If additionally, we have metric d(., .) on the space, we can define an open ball B(x, r) of

radius r as {y|d(x,y) < r}
▶ A norm ball B(x, r) = {y|∥x − y∥ < r} also should have homogenity! That is,

∥αx − αy∥ = α∥x − y∥
Definition 2 allows for continuity of function f definied from a topology X,N(.) to another
topology Y,M(.). Function f is continuous if for every x ∈ X and every neighbourhood
M(f(x)) of f(x) there is a neighbourhood N(x) of x such that f(N(x)) ⊆ M(x).
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An enumeration
of open sets

A neighborhood
function

With norms, you can talk of Canonical balls!

Example of a canonical ball is norm ball of radius 1

M(f(x))



HW1: A Topological space that does not have metric

Consider X = {0, 1} and N = {∅, {0}, {0, 1}},
Consider some metric d(., .) which is 0 if both its arguments are the same and 1 otherwise. If
d would be such a metric, a neighborhood (ball) of radius 0.5 around 1, that is B(1, 0.5) would
equal {1}, which should have been open. However, {1} /∈ N . Contradiction!
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HW2: A metric space that does not have norm

Consider (again) the discrete metric d(., .) over a vector space V. We define d(., .) to be 0 if
both its arguments are the same and 1 otherwise. While one can verify that this metric
satisifies the triangle inequality, what one requires from an equivalent norm ∥.∥n is that for any
x,y ∈ V, with x ̸= y, for any scalar α ̸= 0, we must have ∥αx − αy∥n = α∥x − y∥n. This
measure using the norm can clearly not correspond to the discrete distance metric.
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Inner Product Space

It is a vector space over a field of scalars along with an inner product.
Field of scalars: e.g. IR algebraic structure with:-

1 Addition: must be multiplicative and associative.
2 Subtraction.
3 Multiplication: must be commutative, associative and distributive.
4 Division: multiplicative inverse must exist.

Inner Product:
1 (Conjugate) Symmetry: <x1,x2> = < x2,x1 >.
2 Linearity in the first argument.

⋆ < ax1,x2 >= a < x1,x2 >
⋆ < x1 + x2,x3 >=< x1,x3 > + < x3,x3 >

3 Positive definiteness: < x,x >≥ 0, with equality iff x = 0.

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 21 / 89

Conjugacy is when scalars are
allowed to be complex

Equality on projection to x3, Not 
otherwise.. 

(Recall triangle inequality for
normed vector spaces)



Proof: Normed Vector Space is a Metric Space
1 Normed Vector Space: A vector space on which a norm is defined. In any real vector

space ℜn, the length of a vector has the following properties:
1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

2 Metric Space: Set of points (X) along with a notion of distance d(x1,x2) between any
two points (x1,x2 ∈ X) such that:

1 d(x1,x2) ≥ 0 (non-negativity).
2 d(x1,x2) = 0 iff x1 = x2 (identity).
3 d(x1,x2) = d(x2,x1) (symmetry).
4 d(x1,x2) + d(x2,x3) ≥ d(x1,x3) (triangle inequality).

3 Proof:
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Straightforward!



Proof: Normed Vector Space is a Metric Space
1 Normed Vector Space: A vector space on which a norm is defined. In any real vector

space ℜn, the length of a vector has the following properties:
1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

2 Metric Space: Set of points (X) along with a notion of distance d(x1,x2) between any
two points (x1,x2 ∈ X) such that:

1 d(x1,x2) ≥ 0 (non-negativity).
2 d(x1,x2) = 0 iff x1 = x2 (identity).
3 d(x1,x2) = d(x2,x1) (symmetry).
4 d(x1,x2) + d(x2,x3) ≥ d(x1,x3) (triangle inequality).

3 Proof:
1 In vector space, a vector x = x1 − x2 can be defined by subtraction. Define

d(x1,x2) = ∥x1 − x2∥, so 1.1 ⇒ ∥x1 − x2∥ ≥ 0; ∥x1 − x2∥ = 0 iff x1 − x2 = 0, hence 2.1
and 2.2 are proved.

2 1.2 ⇒ ∥− 1(x1 − x2)∥ = |− 1|∥x1 − x2∥. So, ∥x2 − x1∥ = ∥x1 − x2∥, so 2.3 is proved.
3 Take x1 = z1 − z0 and x2 = z0 − z2, put in 1.3 to get ∥z1 − z0∥+ ∥z0 − z2∥ ≥ ∥z1 − z2∥ so

2.4 is prooved.
Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 22 / 89



The Mathematical Structures & Spaces: Some Proofs
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Some Proofs For Mathematical Structures & Spaces

Under what conditions on P, is
√

xTPx a valid Norm?
Prove that inner product space is a normed vector space.
What is an example of normed vector space that is not an inner product space?
Prove that | < u, v > | ≤ ∥u∥P∥v∥P for any norm P.
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Cauchy Shwarz...

Cauchy Shwarz can be used



Under what conditions on P is
√

xTPx a valid Norm?
Assume x ∈ ℜn and P ∈ ℜn×n.

1 P is symmetric positive definite iff:
1 Symmetric: PT = P
2 Positive Definite: ∀x ̸= 0, xTPx ≥ 0

Proof:

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 25 / 89

All eigenvalues of P are non-negative
Orthonormal basis for column space of P using eigenvectors
Express x as linear combination of that basis

If P were strictly positive definite, the eigenvalues would have been
strictly positive



Under what conditions on P is
√

xTPx a valid Norm?
Assume x ∈ ℜn and P ∈ ℜn×n.

1 P is symmetric positive definite iff:
1 Symmetric: PT = P
2 Positive Definite: ∀x ̸= 0, xTPx ≥ 0

Proof:
If P is symmetric positive definite (SPD), then P can be written as:

▶ P = LDLT, where ...
⋆ L is lower triangular matrix with a 1 in each diagonal entry.
⋆ D is diagonal matrix with positive values.

So, we can write P = RRT where R = L
√

D.
Thus we have xTPx = xTRRTx = (RTx)T(RTx) = yTy

▶ where y = (RTx) and thus y ∈ ℜn.

So, xTPx ≥ 0.
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Can we use this decomp
-osition to show
other norm properties?
Triangle ineq? 



Under what conditions on P is
√

xTPx a valid Norm?

Recall:
1 Normed Vector Space: A vector space on which a norm is defined. In any real vector

space ℜn, the length of a vector has the following properties:
1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Proof:
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Basic idea is to consider standard 2-norm on a transformed space
xR



Under what conditions on P is
√

xTPx a valid Norm?

Recall:
1 Normed Vector Space: A vector space on which a norm is defined. In any real vector

space ℜn, the length of a vector has the following properties:
1 ∥x∥ ≥ 0, and ∥x∥ = 0 iff x = 0.
2 ∥αx∥ = |α|∥x∥ for any scalar α.
3 ∥x1 + x2∥ ≤ ∥x1∥+ ∥x2∥ for any vectors x1 and x2.

Proof:
1 By definition of PST: ∥xTPx∥ ≥ 0, and ∥xTPx∥ = 0 iff x = 0.
2 For any scalar α: ∥αx∥P =

√
(αx)TP(αx) =

√
(α2)(xTPx) = α

√
xTPx = |α|||x||P.

3 ∥x1 + x2∥P ≤ ∥x1∥P + ∥x2∥P for any vectors x1 and x2. Next Slide.
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Under what conditions on P is
√

xTPx a valid Norm?

Proof for ∥x1 + x2∥P ≤ ∥x1∥P∥x2∥P
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Under what conditions on P is
√

xTPx a valid Norm?

Proof for ∥x1 + x2∥P ≤ ∥x1∥P∥x2∥P
For any vectors x1 and x2:

1 ∥x1 + x2∥2P =
▶ (x1 + x2)

TP(x1 + x2)
▶ xT

1 Px1 + xT
2 Px2 + xT

1 Px2 + xT
2 Px1

▶ uTu + vTv + uTv + vTu (Using P = RRT, u = RTx1 and v = RTx2)
▶ uTu + vTv + 2uTv, since uTv = vTu

2 (∥x1∥P + ∥x2∥P)2 =
▶ ∥x1∥2P + ∥x2∥2P + 2∥x1∥P∥x2∥P
▶ xT

1 Px1 + xT
2 Px2 + 2

√
(xT

1 Px1)(xT
2 Px2)

▶ uTu + vTv + 2
√
(uTu)(vTv)

3 By Cauchy Schwarz Inequality: uTv ≤
√

(uTu)(vTv) (Cos(θ) ≤ 1)

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 27 / 89

This is a more verbose proof in terms
of the quadratic expansion itself, 
instead of 2-norm on the transformed
space xR



Recall: Inner Product Space

It is a vector space over a field of scalars along with an inner product.
Field of scalars: e.g. IR algebraic structure with:-

1 Addition: must be multiplicative and associative.
2 Subtraction.
3 Multiplication: must be commutative, associative and distributive.
4 Division: multiplicative inverse must exist.

Inner Product:
1 (Conjugate) Symmetry: <x1,x2> = < x2,x1 >.
2 Linearity in the first argument.

⋆ < ax1,x2 >= a < x1,x2 >
⋆ < x1 + x2,x3 >=< x1,x3 > + < x3,x3 >

3 Positive definiteness: < x,x >≥ 0, with equality iff x = 0.
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Prove that inner product space is a normed vector space.

Q) Why field of scalers?
A) By conjugate symmetry, we have < x,x >= < x,x >. So < x,x > must be real.
So, we can define ∥x∥ =

√
< x,x >.

We need to prove that ∥x∥ is a valid norm:-
1 By positive definiteness: < x,x >≥ 0, with equality iff x = 0. So ∥x∥ ≥ 0 (= iff x = 0).
2 For any complex t, ∥tx∥ =

√
< tx, tx > =

√
t ∗ t < x,x > = |t|√< x,x > ( as

|t| =
√

t ∗ t ) So ∥tx∥ == |t|∥x∥
3 ∥x1 + x2∥ =

√
< x1 + x2,x1 + x2 > =√

< x1,x1 > + < x2,x2 > + < x1,x2 > + < x2,x1 >
≤

√
< x1,x1 > + < x2,x2 > +2

√
< x1,x1 >< x2,x2 > (by Cauchy Schwartz

inequality)
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Only these two desired for triangle inequality



Example of normed vector space that is not an inner product space.

∥x∥p = [
∑∞

i=1 |xi|p ]
1
p
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p != 2

HH/w: Argue...



Prove that |<u,v>| ≤ ∥u∥P ∥v∥P for any norm P

Proof:
If u = 0 or v = 0, then L.H.S. = R.H.S = 0. Hence the equality holds.
Assume u,v ̸= 0. Let z = u - <u,v>

<v,v>v.
By linearity of inner product in first argument, we have:
<z,v> = <u - <u,v>

<v,v>v,v> = <u,v> - <u,v>
<v,v> <v,v> = 0

Therefore, <u,u> = <z+<u,v>
<v,v>v,z+

<u,v>
<v,v>v> = <z,z> + (<u,v>

<v,v> )2<v,v> + 0

So <u,u> ≥ |<u,v>|2
<v,v>
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