
HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?
Motivation:

Consider the following inner product on ℜ2: For any x,y ∈ ℜ2, let
< x,y >= 2x1y1 − x1y2 − x2y1 + 4x2y2. It can be easily verified that this in an inner
product (by checking for linearity, symmetry and positive definiteness by expressing it as a
sum of squares).
This inner product is certainly different from the conventional (Eucledian) dot product
< x,y >E= x1y1 + x2y2 which corredponds to the ∥.∥2 norm.
Is it possible that the < x,y > defined in step 1 (or some other such inner product)
corresponds to ∥.∥p norm for p ̸= 2?
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Is it possible that the < x,y > defined in step 1 (or some other such inner product)
corresponds to ∥.∥p norm for p ̸= 2?

In ℜn, it can be proved that for any inner product vector space (V , < ., . >), the inner product
< ., . > (including the Eucledian one) can be represented as

< u,v >=
n∑

i=1

n∑

j=1

aibj < ei, ej >=
n∑

i=1

n∑

j=1

aTEb =< aT,b >E
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Recap: Basis and Dimensions from Linear
Algebra wrt < ., . >E (Eucledian Inner

Product) (For your homework)
Instructor: Prof. Ganesh Ramakrishnan
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Recap: Basis and Dimensions from Linear Algebra (For your homework)

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 34 / 132



Recap: Basis in Linear Algebra
Basis for a space: The basis for a space is a set of vectors v1,v2, . . . ,vn with two

properties, viz., (1) The vectors v1,v2, . . . ,vn are independent and (2) These
vectors span the space.

Set of vectors that is necessary and sufficient for spanning the space.
Eg: A (standard) basis for the four dimensional space ℜ4 is:




1
0
0
0


 ,




0
1
0
0


 ,




0
0
1
0


 ,




0
0
0
1


 (3)

It is easy to verify that the above vectors are independent; if a combination of the vectors using
the scalars in [c1, c2, c3, c4] should yield the zero vector, we must have c1 = c2 = c3 = c4 = 0.
Another way of proving this is by making the four vectors the columns of a matrix. The
resultant matrix will be an identity matrix. The null space of an identity matrix is the zero
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Recap: Basis in Linear Algebra (contd.)
This is not the only basis of ℜ4. Consider the following three vectors




2
0
0
0


 ,




0
0
2
0


 ,




0
0
0
2


 (4)

These vectors are certainly independent. But they do not span ℜ4.
This can be proved by showing that the following vector in ℜ4 cannot be expressed as a linear
combination of these vectors.




0
2
0
0


 (5)
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Recap: Basis in Linear Algebra (contd.)

In fact, if the last vector on the previous slide is added to the set of three vectors in (4),
together, they define another basis for ℜ4.
This could be proved by introducing them as columns of a matrix A, subject A to row
reduction and check if there are any free variables (or equivalently, whether all columns
are pivot columns). If there are no free variables, we can conclude that the vectors form a
basis for ℜ4.
This is also equivalent to the statement that if the matrix A is invertible, its columns form
a basis for its column space.
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Recap: Basis in Linear Algebra (contd.)

We can generalize our observations to ℜn: if an n× n matrix A is invertible, its coulumns
for a basis for ℜn.
While there can be many bases for a space, a commonality between all the bases is that
they have exactly the same number of vectors.
This unique size of the basis is called the dimension of the space.

Dimension: The number of vectors in any basis of a vector space is called the dimension of
the space.
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Recap: Basis in Linear Algebra (contd.)
Do the vectors in (4), form a basis for any space at all?
The vectors are independent and therefore span the space of all linear combinations of the
three vectors.
The space spanned by these vectors is a hyperplane in ℜ4.
Let A be any matrix. By definition, the columns of A span the column space C(A) of A. If
there exists a c ̸= 0 such that, Ac = 0, then the columns of A are not linearly independent.
For example, the columns of the matrix A given below are not linearly independent.

A =




1 2 3 1
2 3 5 2
3 4 7 3


 (6)

A choice of c = [−1 0 0 1]T gives Ac = 0. Thus, the columns of A do not form a basis for its
columns space.
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Recap: Basis in Linear Algebra (contd.)
What is a basis for C(A)? A most natural choice is the first two columns of A; the thid
column is the sum of the first and second columns, while the fourth column is the same as the
first column. Also, column elimination1 on A yields pivots on the first two columns. Thus, a
basis for C(A) is




1
2
3


 ,




2
3
4


 (7)

Another basis for C(A) consists of the first and third columns. We note that the dimension of
C(A) is 2. We also note that the rank of A is the number of its pivots columns, which is
exactly the dimension of C(A).

1Column elimination operations are very similar to row elimination operations.
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Recap: Basis in Linear Algebra (contd.)
All of this gives us a nice result.

Theorem
The rank of a matrix is the same as the dimension of its column space. That is,
rank(A) = dimension

(
C(A)

)
.

What about the dimension of the null space? We already saw that c = [−1 0 0 1]T is in
the null space.
Another element of the null space is c′ = [1 1 − 1 0]T. These vectors in the null space
specify combinations of the columns that yield zeroes. The two vectors c and c′ are
obviously independent. Do these two vectors span the entire null space?
The dimension of the null space is the same as the number of free variables, which
happens to be 4− 2 = 2 in this example. Thus the two vectors c and c′ must indeed span
the null space. In fact, it can be proved that the dimension of the null space of an m× n
matrix A is n− rank(A).
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Recap: Row Space and Column Space in Linear Algebra (contd.)

The space spanned by the rows of a matrix is called the row space. We can also define
the row space of a matrix A as the column space of its transpose AT. Thus the row space
of A can be specified as C(AT).
The null space of A, N(A) is often called the right null space of A, while the null space of
AT, N(AT) is often referred to as its left null space.
How do we visualize these four spaces? N(A) and C(AT) of an m× n matrix A are in ℜn,
while C(A) and N(AT) are in ℜm.
How can we construct bases for each of the four subspaces? We note that dimensions of
C(A) and the rank of C(AT) should be the same, since row rank of a matrix is its column
rank. The bases of C(A) can be obtained as the set of the pivot columns.
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Recap: The Four Subspaces and their Bases (contd.)

Let r be the rank of A. Recall that the null space is constructed by linear combinations of
the special solutions of the null space (??) and there is one special solution for each
assignment of the free variables. In fact, the number of special solutions exactly equals
the number of free variables, which is n− r. Thus, the dimension of N(A) will be n− r.
Similarly, the dimension of N(AT) will be m− r.

Let us illustrate all this on the sample matrix in (6).




1 2 3 1
2 3 5 2
3 4 7 3




E2,1,E3,1=⇒




1 2 3 1
0 −1 −1 0
0 −2 −2 0




E3,2=⇒ (R =)




1 2 3 1
0 −1 −1 0
0 0 0 0


 (8)
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Recap: The Four Subspaces and their Bases (contd.)

The reduced matrix R has the same row space as A, by virtue of the nature of row
reduction. In fact, the rows of A can be retrieved from the rows of R by reversing the
linear operations involved in row elimination. The first two rows give a basis for the row
space of A.
The dimension of C(AT) is 2, which is also the rank of A.
To find the left null space of A, we look at the system yTA = 0. Recall the Gauss-Jordan
elimination method from Section ?? that augments A with an m×m identity matrix, and
performs row elimination on the augmented matrix.

[A Im×m]
rref=⇒ [R Em×m]

The rref will consist of the reduced matrix augmented with the elimination matrix
reproduced on its right.
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Recap: The Four Subspaces and their Bases (contd.)

For the example case in 8, we apply the same elimination steps to obtain the matrix E below:




1 0 0
0 1 0
0 0 1




E2,1,E3,1=⇒




1 0 0
−2 1 0
−3 0 1




E3,2=⇒ (E =)




1 0 0
−2 1 0
1 −2 1


 (9)
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Recap: The Four Subspaces and their Bases (contd.)

Writing down EA = R,




1 0 0
−2 1 0
1 −2 1







1 2 3 1
2 3 5 2
3 4 7 3


 =




1 2 3 1
0 −1 −1 0
0 0 0 0


 (10)

We observe that the last row of E specifies a linear combination of the rows of A that yields a
zero vector (corresponding to the last row of R). This is the only vector that yields a zero row
in R and is therefore the only element in the basis of the left null space of A, that is, N(AT).
The dimension of N(AT) is 1.
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Recap: The Four Subspaces and their Bases (contd.)

As another example, consider the space S of vectors v ∈ ℜ3 where v = [v1 v2 v3]T such
that v1 + v2 + v3 = 0. What is the dimension of this subspace?
Note that this subspace is the right null space N(A) of a 1× 3 matrix A = [1 1 1], since
Av = 0. The rank, r = rank(A) is 1, implying that the dimension of the right null space is
n− r = 3− 1 = 2.
One set of basis vectors for S is [−1 1 0], [−1 0 1]. The column space C(A) is ℜ1 with
dimension 1. The left null space N(AT) is the singleton set {0} and as expected, has a
dimension of m− r = 1− 1 = 0.
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Recap: Matrix Spaces
We will extend the set of examples of vector spaces discussed in Section ?? with a new vector
space, that of all m× n matrices with real entries, denoted by ℜm×n.

It is easy to verify that the space of all matrices is closed under operations of addition and
scalar multiplication. Additionally, there are interesting subspaces in the entire matrix
space ℜm×n, viz.,

▶ set S of all n× n symmetric matrices
▶ set U of all n× n upper triangular matrices
▶ set L of all n× n lower triangular matrices
▶ set D of all n× n diagonal matrices

Let M = ℜ3×3 be the space of all 3× 3 matrices. The dimension of M is 9. Each
element of this basis has a 1 in one of the 9 positions and the remaining entries as zeroes.
Of these basis elements, three are symmetric (those having a 1 in any of the diagonal
positions). These three matrices form the basis for the subspace of diagonal matrices.
Six of the nine basis elements of M form the basis of U while six of them form the basis
of L.
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Recap: Matrix Spaces (contd.)

The intersection of any two matrix spaces is also a matrix space. For example, S ∩ U is
D, the set of diagonal matrices.
However the union of any two matrix spaces need not be a matrix space. For example,
S ∪ U is not a matrix space; the sum S+ U, S ∈ S, U ∈ U need not belong to S ∪ U .
We will discuss a special set comprising all linear combinations of the elements of union of
two vector spaces V1 and V2 (i.e., V1 ∪ V2), and denote this set by V1 ⊕ V2. By definition,
this set is a vector space. For example, S + U = M, which is a vector space.
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Recap: Matrix Spaces (contd.)

A property fundamental to many properties of matrices is the expression for a rank 1 matrix.
A rank 1 matrix can be expressed as the product of a column vector with a row vector (the
row vector forming a basis for the matrix). Thus, any rank 1 matrix X can be expressed as

Xm×n = uTv =




u1
u2
u3
.
.
um




[
v1 v2 . . . vn

]
(11)

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 50 / 132



Recap: Matrix Spaces (contd.)

Let Mm×n be the set of all m× n matrices. Is the subset of Mm×n matrices with rank k, a
subspace? For k = 1, this space is obviously not a vector space as is evident from the sum of
rank 1 matrices, A1 and B1, which is not a rank 1 matrix. In fact, the subset of Mm×n
matrices with rank k is not a subspace.

A1 + B1 =




1 2 1
2 4 1
1 2 1


+




4 4 2
2 2 1
4 4 2


 =




5 6 3
4 6 2
5 6 3


 (12)
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Orthogonality and Projection

Two vectors x and y are said to be orthogonal iff, their dot product (more generally, the
inner product) is 0. In the eucledian space, the dot product of the two vectors is xTy.
The condition xTy = 0 is equivalent to the pythagorous condition between the vectors x
and y that form the perpendicular sides of a right triangle with the hypotenuse given by
x + y. The pythagorous condition is ||x||2 + ||y||2 = ||x + y||2, where the norm is the
eucledian norm, given by ||x||2 = xTx.
This equivalence can be easily proved and is left to the reader as an exercise. By
definition, the vector 0 is orthogonal to every other vector.
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Orthogonality and Projection

We will extend the definition of orthogonality to subspaces; a subspace U is orthogonal to
subspace V iff, every vector in U is orthogonal to every vector in V. As an example:

Theorem
The row space C(AT) of an m× n matrix A is orthogonal to its right null space N(A).

Proof: Ax = 0, ∀x ∈ N(A). On the other hand, ∀ y ∈ C(AT), ∃ z ∈ ℜm, s.t., y = ATz.
Therefore, ∀ y ∈ C(AT), x ∈ N(A),yTx = zTAx = z.0 = 0.
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Orthogonality and Projection

Not only are C(AT) and the right null space N(A) orthogonal to each other, but they are also
orthogonal complements in ℜn, that is, N(A) contains all vectors that are orthogonal to some
vector in C(AT).

Theorem
The null space of A and its row space are orthogonal complements.

Proof: We note, based on our discussion earlier that the dimensions of the row space and the
(right) null space add up to n, which is the number of columns of A. For any vector
y ∈ C(AT), we have ∃ z ∈ ℜm, s.t., y = ATz. Suppose ∀ y ∈ C(AT), yTx = 0. That is,
∀ z ∈ ℜm, zTAx = 0. This is possible only if Ax = 0. Thus, necessarily, x ∈ N(A).
Along similar lines, we could prove that the column space C(A) and the left null space N(AT)
are orthogonal complements in ℜm.
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Orthogonality and Projection

Based on preceeding theorem,we prove that there is a one-to-one mapping between the
elements of row space and column space.

Theorem
If x ∈ C(AT), y ∈ C(AT) and x ̸= y, then, Ax ̸= Ay.

Proof: Note that Ax and Ay are both elements of C(A). Next, observe that x − y ∈ C(AT),
which by theorem 6, implies that x − y /∈ N(A). Therefore, Ax − Ay ̸= 0 or in other words,
Ax ̸= Ay.
Similarly, it can be proved that if x ∈ C(A), y ∈ C(A) and x ̸= y, then, ATx ̸= ATy. The two
properties together imply a one-to-one mapping between the row and column spaces.
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Projection Matrices
The projection of a vector t on a vector s is a vector p = cs, c ∈ ℜ (in the same direction as
s), such that t − cs is orthogonal to s. That is, sT(t − cs) = 0 or sTt = csTs). Thus, the
scaling factor c is given by c = sTt

sTs . The projection of the vector t on a vector s is then

p = stTs
sTs (13)

Using the associative property of matrix multiplication, the expression for p can be re-written
as

p = Pt (14)

where, P = ssT 1
sTs is called the projection matrix.
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Projection Matrices (contd.)

The rank of the projection matrix is 1 (since it is a column mutiplied by a row).
The projection matrix is symmetric and its column space is a line through s.
For any d ∈ ℜ, P(ds) = ds, that is, the projection of any vector in the direction of s is
the same vector. Thus, P2 = P.
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Least Squares

We earlier saw a method for solving the system Ax = b (A being an m× n matrix), when
a solution exists. Howevever, a solution may not exist, especially when m > n, that is
when the number of equations is greater than the number of variables.
We also saw that the rref looks like [I 0]T, where I is an n× n identity matrix. It could
happen that the row reduction yields a zero submatrix in the lower part of A, but the
corresponding elements in b are not zeroes.
In other words, b may not be in the column space of A. In such cases, we are often
interested in finding a ‘best fit’ for the system; a solution x̂ that satisfies Ax = b as well
as possible.
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Projection Matrices (contd.)

We define the best fit in terms of a vector p which is the projection of b onto C(A) and
solve Ax̂ = p. We require that b − p is orthogonal to C(A), which means

AT (b − Ax̂) = 0 (15)

The vector e = b − Ax̂ is the error vector and is in N(AT). The equation (59) can be
rewritten as

(ATA)x̂ = ATb (16)
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Projection Matrices (contd.)
A matrix that plays a key role in this problem is ATA. It is an n× n symmetric matrix (since
(ATA)T = ATA). The right null space N(ATA) is the same as N(A)2. It naturally follows that
the ranks of ATA and A are the same (since, the sum of the rank and dimension of null space
equal n in either case). Thus, ATA is invertible exactly if N(A) has dimension 0, or
equivalently, A is a full column rank.
Theorem
If A is a full column rank matrix (that is, its columns are independent), ATA is invertible.

Proof: We will show that the null space of ATA is {0}, which implies that the square matrix
ATA is full column (as well as row) rank is invertible. That is, if ATAx = 0, then x = 0. Note
that if ATAx = 0, then xTATAx = ||Ax|| = 0 which implies that Ax = 0. Since the columns
of A are linearly independent, its null space is 0 and therefore, x = 0.
Assuming that A is full column rank, the equation (16) can be rewritten as

x̂ = (ATA)−1ATb. (17)
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Projection Matrices (contd.)
Therefore the expression for the projection p will be

p = A(ATA)−1ATb (18)

This expression is the n-dimensional equivalent of the one dimensional expression for projection
in (56). The projection matrix in (18) is given by P = A(ATA)−1AT.
We will list the solution for some special cases:

If A is an n× n square invertible matrix, its column space is the entire ℜn and the
projection matrix will turn out to be the identity matrix.
Also, if b is in the column space C(A), then b = At for some t inℜn and consequently,
Pb = A(ATA)−1(ATA)t = At = b.
On the other hand, if b is orthogonal to C(A), it will lie in N(AT), and therefore,
ATb = 0, implying that p = 0.
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Projection Matrices (contd.)

Another equivalent way of looking at the best fit solution x̂ is a solution that minimizes the
square of the norm of the error vector

e(x̂) = ||Ax − b||2 (19)

Setting de(x̂)
dx = 0, we get the same expression for x̂ as in (60). The solution in 60 is therefore

often called the least squares solution. Thus, we saw two views of finding a best fit; first was
the view of projecting into the column space while the second concerned itself with minimizing
the norm squared of the error vector.
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Projection Matrices (contd.)

We will take an example. Consider the data matrix A and the coefficient matrix b as in (20).

Ax =




2 −1
−1 2
1 1



[
x̂1
x̂2

]
=




1
3
3


 (20)
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Projection Matrices (contd.)
The matrix A is full column rank and therefore ATA will be invertible. The matrix ATA is
given as

ATA =

[
6 −3
−3 6

]

Substituting the value of ATA in the system of equations (16), we get,

6x̂1 − 3x̂2 = 2 (21)
−3x̂1 + 6x̂2 = 8 (22)

The solution of which is, x1 = 4
5 , x2 =

26
15 .
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Orthonormal Vectors

A collection of vectors q1,q2, . . . ,qn is said to be orthonormal iff the following condition holds
∀ i, j:

qT
i qj

{
0 if i ̸= j
1 if i = j (23)

A large part of numerical linear algebra is built around working with orthonormal matrices,
since they do not overflow or underflow. Let Q be a matrix comprising the columns q1

through qn. It can be easily shown that

QTQ = In×n

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 65 / 132



Orthonormal Vectors (contd.)

When Q is square, Q−1 = QT. Some examples of matrices with orthonormal columns are:

Qrotation =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
, Qreflection =

[
cos(θ) sin(θ)
sin(θ) −cos(θ)

]
,

QHadamard =
1

2




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 , Qrect =




1 0
0 1
0 0


 (24)

The matrix Qrotation when multiplied to a vector, rotates it by an angle θ, whereas Qreflection
reflects the vector at an angle of θ/2.
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Orthonormal Vectors (contd.)

These matrices present standard varieties of linear transformation, but in general,
premultiplication by an m× n matrix transforms from an input space in ℜm to an input space
in ℜn.
The matrix QHadamard is an orthonormal matrix consisting of only 1’s and −1’s. Matrices of
this form exist only for specific dimensions such as 2, 4, 8, 16, etc., and are called Hadamard
matrices3.
The matrix Qrect is an example rectangular matrix whose columns are orthonormal.

3An exhaustive listing of different types of matrices can be found at
http://en.wikipedia.org/wiki/List_of_matrices.
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Orthonormal Vectors (contd.)
Suppose a matrix Q has orthonormal columns. What happens when we project any vector
onto the column space of Q? Substituting A = Q in (18), we get4:

p = Q(QTQ)−1QTb = QQTb (25)

Making the same substitution in (60),

x̂ = (ATQ)−1QTb = QTb (26)

The ith component of x, is given by xi = qT
i b.

Let Q1 be one orthonormal basis and Q2 be another orthonormal basis for the same space. Let
A be the coefficient matrix for a set of points represented using Q1 and B be the coefficient
matrix for the same set of points represented using Q2. Then Q1A = Q2B, which implies that
B can be computed as B = QT

2Q1A. This gives us the formula for changing basis.
4Note that QTQ = I. However, QQT = I only if Q is a square matrix.
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Gram-Schmidt Orthonormalization
The goal of the Gram-Schmidt orthonormalization process is to generate a set of
orthonormal vectors q1,q2, . . . ,qn, given a set of independent vectors a1, a2, . . . , an.
The first step in this process is to generate a set of orthogonal vectors t1, t2, . . . , tn from
a1, a2, . . . ,•an. To start with, t1 is chosen to be a1.
Next, the vector t2 is obtained by removing the projection of a2 on t1, from a2, based on
(56). That is,

t2 = a2 −
1

aT
1 a1

a1aT
1 a2 (27)

This is carried out iteratively for i = 1, 2, . . . , n, using the expression below:

ti = ai −
1

tT
1 t1

t1tT
1 ai −

1

tT
2 t2

t2tT
2 ai − . . .− 1

tT
i−1ti−1

ti−1tT
i−1ai (28)
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Gram-Schmidt Orthonormalization (contd.)
This iterative procedure gives us the orthogonal vectors t1, t2, . . . , tn.
Finally, the orthonormal vectors q1,q2, . . . ,qn are obtained by the simple expression

qi =
1

||ti||
ti (29)

Let A be the matrix with columns a1,a2, . . . , an and Q, the matrix with columns
q1,q2, . . . ,qn.
It can be proved that C(V) = C(Q), that is, the matrices V and Q have the same column
space. The vector ai can be expressed as

ai =
n∑

k=1

(aT
i qk)qk (30)

The ith column of A is a linear combination of the columns of Q, with the scalar
coefficient aT

i qk for the kth column of Q.
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Gram-Schmidt Orthonormalization (contd.)

By the very construction procedure of the Gram-Schmidt orthonormalization process, ai is
orthogonal to qk for all k > i. Therefore, (30) can be expressed more precisely as

ai =
i∑

k=1

(aT
i qk)qk (31)

Therefore, matrix A can be decomposed into the product of Q with a upper triangular
matrix R; A = QR, with Rk,i = aT

i qk. Since aT
i qk = 0, ∀ k > i, we can easily see that R

is upper traingular.
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End Recap: Basis and Dimensions from
Linear Algebra wrt < ., . >E (Eucledian
Inner Product) (For your homework)
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HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?

Proof:
And here is how you can create a basis for V, < ., . >:

▶ If u = 0 or v = 0, then < u,v >= 0.
▶ Assume u,v ̸= 0. Let z = u − <u,v>

<v,v>v.
▶ By linearity of inner product in first argument, we have:

< z,v >=< u − <u,v>
<v,v>v,v >=< u,v > −<u,v>

<v,v> < v,v >= 0

▶ Therefore, < u,u >=< z + <u,v>
<v,v>v, z + <u,v>

<v,v>v >=< z, z > +(<u,v>
<v,v> )2 < v,v > +0

▶ So < u,u >≥ |<u,v>|2
<v,v>
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Compact representation of Inner Product Space

Let the linear subspace S ⊆ V be associated with an inner product < ., . >

Let B = basis(S) with respect to the arbitrary inner product < ., . > (extending results
from the eucledian inner product)
Let dim(V) = n, and dim(S) = m ≤ n.
Define S⊥; the orthogonal complement (S⊥ ∈ V) of S as:
S⊥ = {v ∈ V | < v, u >= 0 ∀ u ∈ S }
This implies:-

▶ Both S and S⊥ are linear subspaces of V.
▶ S ∩ S⊥ = {0}, dim(S) + dim(S⊥) = n
▶ (S⊥)⊥ = S.
▶ If B⊥ is the basis for S⊥, then B ∪ B⊥ is the basis for V.
▶ S = {v ∈ V| < v,u >= 0, ∀ u ∈ B⊥ }
▶ S⊥ = {v ∈ V | < v,u >= 0 ∀ u ∈ B }
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HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?
Motivation:

Consider the following inner product on ℜ2: For any x,y ∈ ℜ2, let
< x,y >= 2x1y1 − x1y2 − x2y1 + 4x2y2. It can be easily verified that this in an inner
product (by checking for linearity, symmetry and positive definiteness by expressing it as a
sum of squares).
This inner product is certainly different from the conventional (Eucledian) dot product
< x,y >E= x1y1 + x2y2 which corredponds to the ∥.∥2 norm.
Is it possible that the < x,y > defined in step 1 (or some other such inner product)
corresponds to ∥.∥p norm for p ̸= 2?
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HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?
Motivation:

Consider the following inner product on ℜ2: For any x,y ∈ ℜ2, let
< x,y >= 2x1y1 − x1y2 − x2y1 + 4x2y2. It can be easily verified that this in an inner
product (by checking for linearity, symmetry and positive definiteness by expressing it as a
sum of squares).
This inner product is certainly different from the conventional (Eucledian) dot product
< x,y >E= x1y1 + x2y2 which corredponds to the ∥.∥2 norm.
Is it possible that the < x,y > defined in step 1 (or some other such inner product)
corresponds to ∥.∥p norm for p ̸= 2?

In ℜn, it can be proved that for any inner product vector space (V , < ., . >), the inner product
< ., . > (including the Eucledian one) can be represented as

< u,v >=
n∑

i=1

n∑

j=1

aibj < ei, ej >=
n∑

i=1

n∑

j=1

aTEb =< aT,b >E
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HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?
Proof:

In ℜn, it can be proved that for any inner product vector space (V , < ., . >), the inner
product < ., . > (including the Eucledian one) can be represented as

< u,v >=

n∑

i=1

n∑

j=1

aibj < ei, ej >=

n∑

i=1

n∑

j=1

aTEb =< aT,b >E

▶ Here, e1, e2, . . . , en is a basis for the inner product vector space.
▶ The inner product < ., . >E is the eucledian inner product. That is, < ., . >E=

n∑

i=1

n∑

j=1

aibj.

The (positive definite) matrix E is defined as

E =




< e1, e1 > < e1, e2 > ...... < e1, en >
.

< en, e1 > < en, e2 > ...... < en, en >


 (32)

▶ Note that in any ℜn, any inner product vector space (V , < ., . >) will have a basis of size at
most n.
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HW: In ℜn, why ∥u∥p may not have an inner product for p ̸= 2?

Thus, any inner product < ., . > in ℜn can be expressed as a Eucledian inner product
< ., . >E, with possible rotation using a matrix R where E = RRT is a positive definite matrix5

5Recall from slides 25 to 27 that xPx is a norm if P is positive definite
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Convex Sets
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Motivations for Topology..(metric..norm...inner prod) => Neighborhod, 
Continuity

Motivation for inner product => Dual description... 

Motivation for convex sets => You need convexity of the domain on
which the convexity of the function 
is defined...



Convex sets

affine and convex sets.
some important examples
operations that preserve convexity
generalized inequalities
separating and supporting hyperplanes
dual cones and generalized inequalities
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Affine set
In 2D, a line through x1,x2: all points

x = αx1 + βx2

where α+ β = 1,α ∈ R.(1) α >= 0,β >= 0(2) α+ β = 1 andα >= 0,β >= 0(3)

affine set contains the line through any two distinct points in the set.
example solution set of linear equations {x|Ax = b} This is an insight from linear
algebra on geometry

▶ No Solution: x = ϕ. Is that affine?
▶ Unique Solution: x is a point.
▶ Infinitely Many Solutions: x is a line, or a plane, etc.

( conversely every affine set can be expressed as solution set of system of linear equations )
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Can be thought of as a vector space shifted from the origin



Convex set
In 2D, a line segment between x1,x2: all points

x = αx1 + βx2

where α+ β = 1, 0 ≤ α ≤ 1(also, 0 ≤ β ≤ 1).

(the term ’line segment’ is more appropriate a name when x1 and x2 are points in real,
finite dimensional Eucledian vector space ℜn or ℜm×n)
convex set contains line segment between any two points in the set.

▶ x1,x2 ∈ C, 0 ≤ α ≤ 1 ⇒ αx1 + (1− α)x2 ∈ C
examples (one convex, two non-convex sets).

▶

Prof. Ganesh Ramakrishnan (IIT Bombay) Convex Sets : CS709 26/12/2016 83 / 132



Recap: Cone and conic combination

cone A set C is a cone if ∀x ∈ C, θx ∈ C for θ ≥ 0.
conic (nonnegative) combination of points x1,x2, ...,xk is any point x of the form

x = θ1x1 + θ2x2 + ...+ θkxk

with θi ≥ 0.

example : diagonal vector of a parallelogram is a conic combination of two
vectors(points) x1 and x2 forming the parallelogram.
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Conic hull(or convex cone) and Affine hull
Conic hull or conic(S): The set that contains all conic combinations of points in set S.
conic(S) = Smallest conic set that contains S.

Similarly, Affine hull or aff(S): The set that contains all affine combinations of points in
set S.
aff(S) = Smallest affine set that contains S.
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