" Prsaassion On hamewori rroL\em:

16/08/2013 Prove that if S is convex and its closure does not contair
0, then there exists a hyperplane that strictly separates S from {0}.
Deadline: August 21 2013.
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eral case as an exercise (exercise 2.22). We assume that the (Euclidean) distance
hetween O and [, defined as

dist(C, D) = inf{||u — v|}» |u e C, v € D},

1s positive, and that there exist points ¢ € C' and d £ D that achieve the minimum
distance, i.e., ||c — d||z = dist(C, 7). (These conditions are satisfied, for example,
when €' and D) are closed and one set is bounded. )

Define
]z — llellz

a=d— ¢, b= 5

We will show that the afine hunction
firy=a'z—b=(d—c) (z— (1/2)(d + ¢))

15 nonpositive on C and nonnegative on D), i.e., that the hyperplane {z | alr = b}
separates ' and [). This hyperplane is perpendicular to the line segment between
¢ and d, and passes through its midpoint, as shown in figure 2.20.

We first show that f is nonnegative on D). The proof that f is nonpositive on
C" 1s similar (or follows by swapping C and I) and considering — f). Suppose there
were a point u € [} for which

flu) = (d—e)" (u—(1/2)(d+c)) < 0. (2.16)
We can express f(u) as
fu)=(d—e)" (u—d+(1/2)(d~c)) = (d — )" (u—d) + (1/2)[ld — c]|3.

We see that (2.16) implies (d — )T (u — d) < 0. Now we observe that

%Hd ttu—d) —c|f] =2d-c)T(u-d) <0, @

f=0



so for some small £ = 0, with £ < 1, we have

I+ t(u — d) = cllz < [|d — el ®
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Theorem 46 Let T be an interval and suppose [ is continuous on I and dif-
ferentiable on int(I). Then:

1. if f'lx) = 0 for all x € int(I), then f is increasing on I;

2. 4f f'(x) < 0 for all x € int(T), then f is decreasing on T;

3. if f'(x) =0 for all x € int(T), iff, f is constant on T.

Proof: Lett € T and x € T with t < x. By virtue of the mean value theorem,
3c € (t,x) such that f'(c) = %

o If f'(z) > Oforall x € int(Z), f'(c) > 0, which implies that f(x)—f(t) > 0

and we can conclude that f 1s increasing on T.

o If f'(x) < Oforall z € int(T), f'(c) < 0, which implies that f(x)—f(t) <0

and we can conclude that f is decreasing on I.

o If f'(x) =0forallxr € int(I), f'(c) = 0, which implies that f(z)—f(t) =0,

and since x and { are arbitrary, we can conclude that f is constant on T.

i.e., the point d 4+ ¢(u — d) 1s closer to ¢ than d is. Since [} is convex and contains
d and u, we have d +t({u—d) € [). But this 1s impossible, since d 15 assumed to be
the point in ) that 1s closest to O,
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Figure 4.5: Illustration of the increasing and decreasing regions of a function
flz) = 3a* + 42° — 3627
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Generalized inequalities
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a convex cone K C R" is a proper cone if 36 m e-a YQ,S}"Y; V4 ha{\?

m ek we
e K is solid (has nonempty interior)

You W hos e K is pointed (contains no line) w‘ll "f-a(“."/ e -H/Q:\A)Hyz

nos}..\fn;‘%é)l e -g a,-a € \< then G<0
xamples

?a‘JID
o) e nonnegative orthant K =R} ={x e R" |2; > 0,1 =1,... n}

e K is closed (contains its boundary)

e positive semidefinite cone K =S

e nonnegative polynomials on [0, 1]:

K={zeR" |2 +aot +ast> 4 "t >0fort € 0,1]}



/rb ove H’\a\; k bere -c\,,ge,a,soha L Vb\f\'*,-(,&
ave NeCe o5 as k& SVg \cient co(\x'l:'wﬂs »S\a"

PR U\\, a“ ’K\a\: Tj
> 48 be @ \la\m\ nequ \‘J , Yec .
C > Shou)d sabisiy the Jol o

T‘,or.‘ Bes (’Y (J'e_‘ /‘?aﬁe 6) oé VOV\FI)Vtv-vadicsye.gatech.edu/~ nemirovs/Lect_ModCon}

1. Reflexivity: a = a;

2. Anti-symmetry: if both a > b and b = a, then a = b;
3. Transitivity: if both a = b and b = ¢, then a = ¢

4. Compatibility with linear operations:

(a) Homogeneity: if a > b and A is a nonnegative real, then Aa > Ab
("One can multiply both sides of an inequality by a nonnegative real” )
(b) Additivity: if botha>=band e > d, thena+ec>= b+ d
("One can add two inequalities of the same sign” ).

i
"’Zxam?\e, arhal oder =

vyed Geﬁ >
et

(56“‘ ce: http://en.wikipedia.org/wiki/Partially_ordered_s

The Hasse diagram of the set of all subsets of J_-._l/
a three-element set {x, vy, z}, ordered by inclusicn.




generalized inequality defined by a proper cone K:
r3gkyYy <= y—zekK, rT<gYy <= y—crecintk
examples
e componentwise inequality (K = R})
<pn - < ; =
TIREY = TSy, 1 1,...,n

e matrix inequality (K = S})

X jsi Y <= Y — X positive semidefinite
these two types are so common that we drop the subscript in <g
properties: many properties of <y are similar to < on R, e.g.,

rT=KkY, UKV — TH+ugy+v
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Minimum and minimal elements

<k is not in general a linear ordering: we can have x Ak y and y Ax =

x € S is the minimum element of S with respect to < if

yGS — T =K1Yy

x € S is a minimal element of S with respect to < if

yesS, ygxr = y=u=u

example (K = R%)

21 is the minimum element of S; i

ZTo is @ minimal element of S5 1
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